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A B S T R A C T

We compared positional weight matrix-based prediction methods for transcription factor (TF) binding
sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false
positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale).
Comparison of three prediction methods—additive, multiplicative and information-vector based
(MATCH) showed an advantage of the MATCH method for majority of transcription factors tested.
We demonstrated that application of TF site identifying methods can help to connect the proteomics and
phosphoproteomics world of signaling networks to gene regulation and transcriptomics world.
ã 2016 Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This is an open
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1. Introduction

Transcription factors (TFs) are proteins of crucial importance for
regulation of all processes in human and other organisms. A
rigorous classification of human transcription factors was pub-
lished recently [1], summarizing many years of proteomics
research attempting to understand the molecular mechanisms
of functioning of transcription factors through their binding to
DNA target sites and consecutive regulation of transcription of all
genes in the human genome.

The poor correlation between proteomics and transcriptomics
data is extensively discussed in proteomics literature [2]. Lack of
such correlation making it extremely difficult to use high
throughput and easy to generate transcriptomics data in under-
standing many cellular mechanisms acting mostly on protein level.
Dynamic changes of abundance of proteins as well as changes of
the status of their posttranslational modifications (such as
phosphorylation of many regulatory proteins, including transcrip-
tion factors) govern many biological processes. Direct
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measurements of such proteins and their modifications (often
related to their activity) with the help of proteomics methods is
very tedious, expensive and not always possible at all, often due to
the lack of enough biological material necessary for proteomics
and phosphoproteomics experiments.

Activity of such important proteins as transcription factors (TFs)
can be estimated by their ability to bind DNA at their specific
binding sites in genomes. TFs are often triggered in the cells by
specific posttranslational modifications (phosphorylation), that
enable TFs to bind to their specific sites at DNA. So, by measuring
such interactions of TFs with DNA we can deduce activity status of
these proteins. Such DNA-binding assay experiments can be
combined sometimes with proteomics experiments measuring
specific phosphorylation events that can give a lot of information
to the researchers about exact mechanisms of acting of this class of
proteins. Multiple cascades of phosphorylation and de-phosphor-
ilation events happening in the cell signal transduction system
leading to the activation of considered transcription factors.
Therefore phosphoproteome data can be also combined with
prediction of signal transduction pathways upstream of transcrip-
tion factors to discover causative mechanism of acting of such
transcription factors under particular signaling triggering cells to
differentiation or to other cellular fate.
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Since its introduction in 2007 [3], ChIP-Seq has become the
most powerful experimental technique for genome-wide study of
interactions between TFs and DNA. As a rule, a single ChIP-Seq
experiment generates millions of short DNA reads. Then the
sequenced reads are aligned (mapped) to a reference genome, and
the TF-binding regions are identified by applying a peak detection
algorithm (or peak finder) to the resulting set of tags (aligned
reads). Until now a number of peak detection algorithms have been
proposed, in particular, MACS (Model-based Analysis of ChIP-Seq)
[4] and SISSRs (Site Identification from Short Sequence Reads) [5].
The reproducibility of nine peak detection algorithms including
MACS and SISSRs was studied in [6] on two repeated ChIP-seq
experiments for CTCF. It was inferred that MACS is one of the
highest reproducible algorithm, while SISSRs is the least repro-
ducible. This conclusion was made with the help of correspon-
dence profiles fitted by a copula model.

A comparative analysis of nine peak detection algorithms
including MACS and SISSRs was performed in [7]. This comparison
demonstrated that biological conclusions could change dramati-
cally when the same raw ChIP-Seq dataset was processed using
different algorithms. The results also indicated that the optimal
choice of algorithm depends heavily on the selected dataset.
Eleven different peak detection algorithms including MACS and
SISSRs were also compared on common data sets [8]. This study
offered a variety of ways to assess the performance of each
algorithm and addressed the question how to select the most
suitable among several available methods. In general, one can
conclude that currently it is impossible to choose the most reliable
and well-validated algorithm for peak detection.

The ChIP-Seq approach was designed as an experimental tool
for identifying TF-binding regions in genome. Unfortunately, some
TF-binding regions do not represent genuine TF-binding sites
because of, at least, the following three reasons. First, peak
detection algorithms can produce much wider TF-binding regions
(500–2000 bp or longer) than actual TF-binding sites (5–15 bp).
Second, some TF-binding regions are spurious due to the false
positive rates of methods for read mapping and peak detection.
Third, an unknown fraction of TF-binding regions should not
contain the TF-binding sites because of tethered binding [9]. In this
case, transcription factor bound to a DNA fragment not because it
recognized its site, but because it bound (due to protein–protein
interaction) to another transcription factor that, in turn, bound to
DNA.

In the 30 years since the PWM approach was introduced [10], it
has become the most common and widely used for the
computational analysis of TF-binding sites, see [11] for a review.
A number of methods for the prediction of TF-binding sites have
been developed within this approach. In particular, PWM
algorithms were implemented in the computational tools such
as MATCH [12], MatInspector [13], MATRIX SEARCH [14], ANN-
Spec [15] and MEME [16]. There are several repositories that
accumulate many matrices for the representation of TF-binding
sites, in particular, TRANSFAC [17], JASPAR [18], Factorbook [19],
UniPROBE [20] and HOCOMOCO [21]. Usually these matrices were
derived from experimentally identified TF-binding sites (or
regions) obtained by gel-shift analysis, SELEX, plasmid construc-
tion assays, ChIP-Seq, universal protein binding microarray
technology (PBM), and other experimental techniques. The
majority of those PWMs are represented as position frequency
matrices.

In general, the Receiver Operating Characteristic (ROC) curve
has long been used in signal detection theory [22,23]. It is a good
way of visualizing the correspondence between sensitivity and
false positive rate of a detection method. The area under the ROC
curve, known as the AUC, is currently considered the standard
measure to assess the accuracy of prediction methods, including
those for the prediction of TF-binding sites. Currently it is common
practice to reduce a comparison of different prediction methods to
a comparison of the corresponding AUCs [24–26]. It is important to
note that it is necessary to have a representative sample of genuine
TF-binding sites in order to evaluate the sensitivities of the
comparable methods. Unfortunately, the direct use of the TF-
binding region sets for sensitivity estimation does not seem
advisable because of the reasons mentioned above (including
tethered binding).

We have developed an approach for reliable comparison of TFBS
prediction methods under the condition that an unknown fraction
of the ChIP-Seq data does not contain genuine TF-binding sites. In
this article we have performed a comparative analysis of three
existing PWM based methods, namely the common additive,
common multiplicative methods, and the method that uses an
information vector. We also vary two peak detection algorithms,
MACS and SISSR. This analysis was carried out on 266 sets of
human TF-binding regions from GTRD (Gene Transcription
Regulation Database; http://wiki.biouml.org/index.php/GTRD)
and a collection of non-redundant matrices from TRANSFAC
(rel.2012.4). The analysis has revealed that all three methods
perform rather similarly on the same sets of data. For the majority
of PWMs the additive method gave slightly higher AUC values
compared to the other two methods. Still both multiplicative and
information vector based methods showed higher AUC values for
some of the PWMs of the library. A comparison of the methods
using partial AUC measure, which compare methods inside of their
applicability domain, revealed that the information vector based
method often outperforms other site search methods in the area of
low false positive rate, whereas methods that don’t use informa-
tion vector are better for the area of parameter giving a low false
negative rate. It is interesting to see that the general results
obtained are invariant with respect to choice of peak detection
algorithm despite dissimilarities between MACS and SISSRs that
were revealed in this work.

Finally, to demonstrate the utility of the TF site prediction
methods for proteomics research we combined the TF site analysis
with phosphoproteomics and transcriptomics (RNA-seq) data
(from PRIDE database) from the recently published experiment
of treatment of MCF7 cell line with retinoic acid (RA) [27].
Promoters of differentially expressed genes (from RNA-seq
analysis) were analyzed for TF-site frequency using the MATCH
method following the approach published earlier [28]. Revealed
overrepresented TF-sites indicate to us those transcription factors
that are potentially activated (usually through phosphorylation of
specific positions in the proteins) in the given cells under
stimulation of the cells by RA. Next, we demonstrated that the
revealed by this analysis transcription factors are connected to the
network of signal transduction cascades identified by phospho-
proteomics analysis of the cytoplasmic and nuclear fractions of
those cells.

Therefor we can conclude that the methods of computational
prediction of protein-DNA interactions of transcription factors that
are described in this paper help researchers to find the missing link
between the transcriptomics and proteomics (phosphoproteo-
mics) data.

2. Materials and methods

2.1. Data

Human TF-binding region sets that were used in this study are
stored in the GTRD database. GTRD collected raw ChIP-Seq data
(sequenced reads) from literature, Gene Expression Omnibus
(GEO), [29], Sequence Read Archive (SRA) [30], and the ENCODE
project (http://www.nature.com/nature/journal/v489/n7414/full/
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nature11247.html). Currently GTRD contains 1450 human raw
ChIP-Seq data sets, and the ChIP-Seq controls (such as input DNA or
IgG) are available for 1291 (89%) sets. The sequenced reads were
aligned to the reference genome (build 37) using Bowtie release
1.1.1 [31], and the sets of the TF-binding regions were generated
independently with the help of two peak detection algorithms,
MACS release 1.4.2 and SISSRs version 1.4.

The transcriptomic and phosphoproteomic data of the experi-
ment of treatment of MCF7 cell line with retinoic acid (RA) [27]
were extracted from following data repositories: e RNA-seq data
are available from the GEO institutional Data Access: http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81814. The mass
spectrometry proteomics data are available in PRIDE database
with the dataset identifier PXD004357.

2.2. The ROC curves and AUCs as basis of comparison

According to common practice, the areas under the ROC curves
are used in order to compare the site models. In turn, each ROC
curve represents the correspondence between sensitivity of the
model and false positive rate. In general, it is necessary to have a
representative sample of genuine TF-binding sites in order to
calculate the sensitivity. ChIP-seq derived TF-binding regions can
be used for this purpose. It is assumed that TF-binding regions
revealed by ChIP-seq experiments contain genuine TF-binding
sites. Therefore the sensitivity was computed as a relative number
of the TF-binding regions containing one or more TF-binding sites
predicted. The false positive rate was computed on the basis of
artificially generated sequences with the help of 10-fold permu-
tations of nucleotides in each TF-binding region. The false positive
rate was determined then as the relative number of such artificially
generated sequences containing one or more TF-binding sites
predicted. For AUC calculation we used the sets of the TF-binding
regions that are stored in GTRD.

2.3. Scheme of site model comparison

According to common practice, the comparison of site models is
reduced to a comparison of AUCs. In turn, AUCs are calculated on
the sets of the TF-binding regions. However, the direct use of the
full sets of TF-binding region for the AUCs calculation does not
seem advisable because some TF-binding regions can be “empty”,
i.e. they do not contain genuine TF-binding sites. To model such a
situation we introduced a parameter t, which defines a percentage
of TF-binding regions that are not “empty” and contain at least one
genuine TF-binding site. The following scheme of site model
comparison takes into account the assumption about the existence
of empty TF-binding regions.

First, we prepare the sets of TF-regions in such a way that all
regions had the same length. If the TF-binding regions are longer
then 200 bp, we redefine them as regions of the lengths 200 bp
with the centers in summits of distributions of the number of
matched reads. If the TF-binding regions are shorter then 200 bp,
we extend them to the total length 200 bp adding respective flanks.

In the next step, each site model predicts its so-called ‘best site’
in every modified TF-binding region. The ‘best site’ of the given site
model is defined as the fragment of the TF-binding region where
the site model obtained the maximal score among all scores
calculated for every possible fragments of the TF-binding region.
Then, for each site model, a top list of the t percent (t is given) of
the ‘best sites’ with the highest scores is constructed and the so-
called t-union of the ‘best sites’ is composed as a union of all such
top lists for all three site models considered in the study. Then, the
so-called the t-union of the TF-binding regions is defined as the
merged union of such TF-binding regions that contained at least
one ‘best site’ from t-union of the ‘best sites’. Finally, the ROC
curves are generated on the t-union of the TF-binding regions and
the corresponding AUC values are calculated.

2.4. Implementation

The proposed approach for comparing the TF site prediction
methods was implemented with the help of the open source
BioUML platform (http://biouml.org/). We have created the
following Java modules:

1. ‘ROC curves for best sites union’
2. ‘Summary on AUCs’
3. ‘Peak finders comparison’
4. ‘Locations of best sites’

The ‘ROC curves for best sites union’ module generates the ROC
curves and calculates the corresponding AUCs for the user-selected
set of site models when the value of parameter t (1 � t �100) and
the set of the TF-binding regions are specified. The user interface
allows for selecting the site model (additive model, multiplicative
model or information vector based model, see Site model section
above for details). The resulting ROC curves and corresponding
AUCs are computed by the java modules and are stored within a
user-specified folder in the platform.

The ‘Summary on AUCs’ tool performs a comparative analysis of
site models when the value of the parameter t is pre-specified.
Initially all appropriate AUC values calculated by the ‘ROC curves
for best sites union’ tool are read in all available tables. Then a
comparison of AUC values is performed with the help of the non-
parametrical Friedman and Wilcoxon signed rank tests [32]. In the
case of the Friedman test, a chi-squared distribution with (k-1)
degrees of freedom is used for assessing the statistical significance
of the difference between AUCs, where k denotes the number of
site models. In the case of the Wilcoxon test, the significances of
the differences are assessed with the help of normal approx-
imations of the test statistics. Probability densities of differences
between paired AUCs are estimated by the kernel density
estimator [33] with Epanechnikov kernel and are plotted for the
user.

The ‘Peak finders comparison’ tool performs a comparative
analysis of two peak detection algorithms. To compare two peak
detection algorithms, this tool carries out a comparative analysis of
the matched sets of the TF-binding regions, where the numbers
and mean lengths of the TF-binding regions are analyzed
independently with the help of the Wilcoxon signed rank test.
The statistical significances are assessed on the base of normal
approximations of the test statistics. Additionally, the impact of the
ChIP-Seq controls (such as input DNA or IgG) on the performance of
peak detection algorithms is analyzed. Probability densities of the
numbers and mean lengths of the TF-binding regions are estimated
by the kernel density estimator with Epanechnikov kernel and are
plotted for user.

The ‘Locations of best sites’ tool estimates and plots the
probability density of the ‘best site’ locations along the TF-binding
regions around the so-called summits where a summit is
determined by MACS as the precise binding location within a
given TF-binding region. The probability density is estimated by
the kernel density estimator with Epanechnikov kernel.

2.5. Three site models available for comparative analysis

Currently, three site models that represent PWM approach are
available for comparative analysis. For a given TF they share the
same position frequency matrix MAT = (mij), i = {A,C,G,T}, j = 1, . . . ,
l but produce diverse scores for a fixed DNA fragment S = (s1, . . . ,
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sl). In other words, the models represent different scoring
algorithms.

2.5.1. Additive model
This model calculates the common additive score x defined by

the formula

x = x(MAT) = Sj = 1, . . . ,l score(j),

where the values score(j), j = 1, . . . ,l, are determined as follows:

score(j) = {mAj, if sj = A; mCj, if sj = C; mGj, if sj = G; mTj, if sj = T}.

2.5.2. Multiplicative model
For a fragment S this model calculates the common multiplica-

tive score xm

xm=
Q
j = 1, . . . ,l score(j).

This model can be converted to an equivalent additive model by
taking the logarithms of matrix elements, i.e.

xln = Sj = 1, . . . ,l score*(j),

where the values score*(j), j = 1, . . . ,l, are determined as follows:

score*(j) = {ln(mAj), if sj = A; ln(mCj), if sj = C; ln(mGj), if sj = G; ln
(mTj) if sj = T}.

In order to avoid taking a logarithm of zero we preliminarily
found minimal a non-zero element of matrix MAT. Then we
Fig. 1. The ROC curves obtained for different values of t on the YY1-binding regions that w
additive model, red lines to the multiplicative model, and light blue lines to the inform
replaced all zero values of MAT by this value and re-normed all
changed columns of MAT in such a way that the sum of frequencies
in each changed column was equal to unit.

2.5.3. Information vector-based model (MATCH model)
This model is determined by the popular PWM method MATCH

for TF-binding site prediction. This model calculates the so-called
matrix similarity score mSS defined in [12]. Actually, this model is a
common additive model, which uses a transformed matrix instead
of an initial matrix, where each column of the transformed matrix
was determined with the help of weighting the corresponding
initial column by information content. More specifically, the j-th
column of the weight matrix is equal (up to the constant (–Min/
(Max-Min))) to the product of the j-th column of the frequency
matrix and the value I(j)/(Max-Min), j = 1, . . . ,l, where I(j), Min, and
Max were defined in [12].

2.6. Software availability

The site search algorithms described in this paper are available
for free in BioUML/geneXplain platform. The anonymous access to
the platform is available here:

http://gtrd.biouml.org/bioumlweb/#anonymous=true
Individualized access to the platform with secure space for your

data is available for free upon registration at the URL:
http://www.genexplain.com/genexplain-platform-registration
ere generated by MACS peak detection algorithm. Dark blue lines correspond to the
ation vector based model (MATCH model).

http://gtrd.biouml.org/bioumlweb/#anonymous=true
http://www.genexplain.com/genexplain-platform-registration


Table 2
Comparison of three site models with the help of Friedman test using two peak
detection algorithms. P-value show the statistical significance of the value of the
Friedman test statistic showing global difference of the distributions of AUCs for
265 (for MACS) and 263 (for SISSRs) TF-binding ChIP-seq data.

Peak detection algorithm Percentage t Friedman test
statistic

p-value

MACS 100 17.556 1.541 �10�4

35 108.076 <10�12

25 139.908 <10�12

15 163.188 <10�12

5 218.362 <10�12

SISSRs 100 15.165 5.093�10�4

35 51.732 5.843�10�12
25 91.103 <10�12

15 92.104 <10�12

5 106.150 <10�12
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3. Results

3.1. Selection of t-union parameter

The key step of the proposed scheme of AUCs calculation is the
construction of the t-union of the TF-binding regions, where the
percentage t is a free parameter. In general, the following
relationship exists between t values and the shapes of the ROC
curves: the smaller the percentage t, the more convex the ROC
curve is, and the higher the AUC values are. Thus, for small values of
t (5–15%) the ROC curves, as a rule, are strongly convex, while the
shapes of the ROC curves became approximately linear when t
tends to 100%. An example is shown in Fig. 1, where the ROC curves
were generated on the YY1-binding regions (processed by MACS).
In turn the corresponding values of AUCs are close to 0.5 when t
tends to 100%, while these values are close to 1.0 when t tends to
5%, see Table 1.

It is important to note that the shown relationship between t
and the shape of the ROC curve can be interpreted as follows.
According to the definition of the t-union of TF-binding regions, it
consists of those TF-binding regions that contain the ‘best sites’
with the highest scores. In other words, the TF-binding regions that
contain TF sites with the smallest scores only are removed from
further analysis (so-called “empty” regions). Obviously, the higher
the percentage t, the smaller the number of regions that are
classified as empty, see also the first and the last columns of Table 1.

3.2. Comparative analysis of three site models

We performed a comparative analysis of the following three site
models that represent the PWM approach: additive model,
multiplicative model and information vector based model (MATCH
model). For this analysis we have selected 266 TFs that have got
matrices in TRANSFAC (release 2012.4) and human TF-binding
region sets in GTRD. It is important to note that we did not consider
matrices derived for TF families. For example, despite the
availability of the USF1-binding region set in GTRD, we did not
include it in the analysis, because there is no appropriate matrix for
the USF1-binding sites in TRANSFAC that contains the matrices V
$USF_01, V$USF_02, V$USF_C, V$USF_Q6 and V$USF_Q6_01
derived for the sites of the USF family.

A comparative analysis was performed independently on 265
sets of TF-binding regions generated by MACS, and on 263 sets
generated by SISSRs. In the case of SISSRs we excluded 2 sets from
our analysis because of their small sizes (<200). TF-binding regions
produced by MACS and SISSRs were trimmed or enlarged to 200 bp
according to the procedure described in the Method Section.

For the first comparative analysis we have considered the
following five values of t: 100%, 35%, 25%, 15% and 5%. We
computed AUC values for each of three site models applied to each
of the TF-binding region set with five values of t. Next, we
compared results generated by three site models with the help of
the Friedman test which compares distributions of generated AUC
values by applying the site models to all analyzed PWMs. We used a
Table 1
AUCs calculated for different values of t on the YY1-binding regions that were generat

Site model 

Percentage, t Information vector based model Multiplicative model 

100 0.548 0.550 

50 0.707 0.694 

35 0.782 0.744 

25 0.835 0.817 

15 0.892 0.899 

5 0.956 0.963 
Chi-squared distribution with two degrees of freedom for
assessing the significance of differences between three site models
(see Table 2). As one can see from the result of this comparison, the
three site models produce statistically significantly different
results. This difference increases with the increase of t. Therefore
it is important to understand which site model is the method of
choice in the further analysis of biological data.

As the next step, we performed a more detailed comparative
analysis of the generated ROC curves and AUC values in order to
understand which site models are preferable for each of the PWMs
and under which conditions. Here, we choose a value of t equal to
25%, since most of the site models give reasonably high values of
AUC for all of the PWMs (0.7–0.9).

A more detailed consideration of computed ROC curves for each
PWM shows that, in fact, the actual difference of AUC values for
different matrices is relatively small. This conclusion is invariant
with respect to the choice of peak detection algorithm. So, with a
few exceptions, we can say that although the general difference of
the performance of all three site models for all PWMs altogether is
statistically significant, the absolute values of the differences of
AUC for each individual PWM are quite small. In Table A1 in the
Appendix (see Supplementary data), we provide all values of AUC.
We also indicate which site model gives better AUC for each PWM.
Also, we annotate this table with the name of the TF antibody
which was used in each ChIP-seq experiment, the cell line, the
classification of TF according to their DNA binding domain using
the classification of human transcription factors [1]. We also
computed and presented in the table the total and average entropy
and the length of each PWM.

Next, we computed several partial-AUC values for each of the
PWMs. This means that we summed up the areas under the ROC
curve for particular ranges of FP and FN values only. The reason of
computing a partial AUC is well described previously [34,35]. Such
a partial-AUC attempts to estimate the performance of the
recognition method in the area of true positive and false positive
rates that are actually applied in the data analysis in the majority of
cases. We considered the two most frequent use cases of the
ed by MACS peak detection algorithm.

Percentage of regions that are classified as “empty”

Additive model

0.555 0
0.716 37.5
0.778 51.5
0.852 65.4
0.918 78.8
0.972 92.9



Table 3
Results of comparison of three site model methods applied to the TRANSFAC PWMs on respective ChIP-seq data sets. Three measures of site recognition methods were
applied—full AUC and two partial-AUCs. We computed the number of PWMs that gives maximal value of the measure (full AUC or partial-AUC) for the given site model. The
last row gives the number of PWMs when all three methods produced equal values for the respective measure. In bold we indicate a method that gives the highest number of
PWMs with maximal AUC_FP0.1 criteria.

A) MACS

Site model method. Number of PWMs with maximal
AUC

Number of PWMs with maximal partial
AUC_TP0.8

Number of PWMs with maximal partial
AUC_FP0.1

Additive 152 154 40
Multiplicative 61 58 92
MATCH 42 43 113
All three methods give the same AUC
value

10 10 20

B) SISSRs

Method name Number of PWMs with maximal
AUC

Number of PWMs with maximal partial
AUC_TP0.8

Number of PWMs with maximal partial
AUC_FP0.1

Additive 138 134 45
Multiplicative 62 65 85
MATCH 52 53 107
All three methods give the same AUC
value

11 11 26
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application of site recognition models. The first one corresponds to
values of false positive rates equal or lower then 0.1. It applies to all
potential searches of TF binding sites in full genomes, or at least in
relatively long genomic regions. It is reasonable to assume that in
such an application of the site search method it makes no sense to
allow for false positive rate higher then 0.1 (which means on
average one site prediction in every tenth position). Normally
much lower false positive rates are used in such genome scanning
methods to minimize potential huge noise. The second use case
corresponds to the values of true positive rate higher or equal to
0.8. It applies to those rather rare use cases when one should not
miss practically any of the true sites irrespectively of how many
false positives it also finds. Such site searches are applied in cases
of analysis of relatively short genome regions (e.g. one individual
promoter or enhancer), with consideration of further validation of
all found sites by independent experimental or computational
methods (for instance, by cross-species comparison [36] or by
analysis of site combinations [37]).

We compared the performance of three site models using three
measures—AUC, partial-AUC_TP0.8 (which corresponds to the area
under the ROC curve of true positive rates higher or equal to 0.8)
and partial-AUC_FP0.1 (which corresponds to the area under the
ROC curve of false positive rates lower or equal to 0.1) (see Table 3).
It is interesting to see that depending on the measure we get rather
different results. In case of the application of full AUC, the highest
value is provided by the additive site model method for most of the
PWMs. The partial-AUC_FP0.1 however gives a completely differ-
ent picture. For most of the PWMs, the highest values are provided
by the information-vector based site model method (MATCH
method). Application of partial-AUC_TP0.8 gives a very similar
result to the full AUC.

3.3. Application of TF site prediction models to link transcriptomics
and phosphoproteomics data

In order to demonstrate the usefulness of the described TF site
prediction methods for proteomics research we jointly analyzed
phosphoproteomics (from PRIDE database) and transcriptomics
(RNA-seq) data from recently published experiment of treatment
of MCF7 cell line with retinoic acid (RA) [27]. Since the change of
expression of the genes measured by transcriptomics upon
treatment by RA must be clearly dependent on the changes of
activity of transcription factors we, first of all, analyzed promoters
of differentially expressed genes for TF-site frequency using the
MATCH method following the approach published earlier [28].
Here we used MATCH models described in the current paper as
most specific for the given type of analysis of multiple promoter
sequences. Revealed overrepresented TF-sites in promoters of
differentially expressed genes in comparison to the promoters of
genes with no change of expression indicated to us those
transcription factors that are potentially activated or inhibited
(usually through phosphorylation of specific positions in their
protein sequence) in the given cells under stimulation of the cells
by RA. (see Table 3).

In the next step we applied graph algorithms described earlier
[28] in order to identify potential common regulators of the
activity of predicted set of transcription factors in the signaling
network of the cells under study. Statistical significance of such
common regulators is confirmed by random shuffling of the input
TF lists. Among such common regulators we expect to find protein
kinases and other components of signal transduction cascades that
can phosphorylate multiple transcription factors or other inter-
mediate signaling molecules and therefore play a role as such
common regulators of the activity of the set of TFs under study. In
turn, an indicator of activity of such protein kinases often could be
their phosphorylation status which is measured in the phospho-
proteomics experiments. So, we were interested to find links
between the signal transduction proteins detected by phospho-
proteomics measurements in the cytoplasm or in the nucleus of
the cells and the TFs predicted by our promoter analysis. Indeed,
we confirmed such links between identified common regulators
and phosphoproteomics measurements. (see Table 4). One can see
that almost all found common regulators (9 out of 11) have been
identified by the phosphoroteomics experiment (Table 5).

On Fig. 2. we show the diagram that connects two most
significant common regulators (light red nodes at the top of the
diagram) and TFs (light blue nodes in the middle and at the bottom
of the diagram) whose sites found overrepresented in the
promoters of differentially expressed genes. With red, blue and
gray decoration of several nodes in the diagram we annotate the
phosphorylation of the respective proteins detected in the
phosphoproteomics experiment. The left part of the decoration
circle corresponds to the protein phosporialytion observed in the
cytoplasm of the cells and the right side corresponds to the protein
phosphorylation observed in the nucleus. The red color corre-
sponds to the increased level of phosphorialtion after treatment of



Table 4
Transcription factors found by the combined analysis of transcriptomics and phosphoprotyomics data. With the help of MATCH algorithm we identified overrepresented TF
binding sites in promoters of differentially expressed genes (DEG) (from transcriptomics data). TRANSPAC PWM—name of the position weight matrix from TRANSFAC
database which was used by MATCH; Yes-No ratio—the ratio of TF site frequency in promoters of DEG compared to the promoters of non-changed genes; p-value—statistical
significance of the Yes-No ratio; Phospho Cytoplasm/Nucleus—detection of the phosphorypation of the TF in cytoplasm or in nucleus of the cells (p- phosphorylation was
detected, p-up—phosphorylation was found increased upon treatment by RA, p-dn—decreased by RA).

Gene symbol TF name TRANSFAC
PWM

Yes-No
ratio

P-value UniProt
ID

Phospho
Cytoplasm

Phospho
Nucleus

Gene description

RELA RelA-
p65

V$RELA_Q6 1.22 2.78E-
04

Q04206 p p v-rel reticuloendotheliosis viral oncogene homolog A
(avian)

RXRA RXR-
alpha

V$DR4_Q2 1.34 8.36E-
15

P19793 p p retinoid X receptor, alpha

SP1 Sp1 V$SP1_Q6_01 2.37 1.36E-
85

P08047 p p-dn Sp1 transcription factor

CTCF ctcf V$CTCF_01 1.71 1.75E-16 P49711 p p CCCTC-binding factor (zinc finger protein)
RXRB RXR-

beta
V$DR4_Q2 1.34 8.36E-

15
P28702 p p retinoid X receptor, beta

TRIM28 RNF96 V$RNF96_01 2.54 6.71E-
43

Q13263 p-up p-dn tripartite motif containing 28

NFYC NF-YC V$NFY_Q3 1.67 1.16E-04 Q13952 p p nuclear transcription factor Y, gamma
SP3 Sp3 V$SP1_Q6_01 2.37 1.36E-

85
Q02447 p p Sp3 transcription factor

RREB1 RREB-1 V$RREB1_01 1.33 1.28E-12 Q92766 p p-dn ras responsive element binding protein 1
NR2F2 COUP-

TF2
V$DR4_Q2 1.34 8.36E-

15
P24468 p p nuclear receptor subfamily 2, group F, member 2

KLF4 GKLF V$GKLF_Q4 1.63 4.06E-
135

O43474 p p-dn Kruppel-like factor 4 (gut)

PATZ1 PATZ V$MAZR_01 2.14 1.90E-11 Q9HBE1 p p POZ (BTB) and AT hook containing zinc finger 1

Table 5
Statistically significant common regulators found by the graph algorithm of the geneXplain platform (www.genexplain.com) by searching upstream of TFs listed in Table 5 in
the signal transduction network of TRANSPATH database [38]. TF-reached—number of TFs (out of 12 from Table 5) that are reached in the network downstream from the
respective common regulator; Score—score of the common regulator calculated on the basis of the number of reached TFs and topology of the network [28]; FDR and Z-score
are calculated by multiple randomization of input set of TFs [28].(FDR <0.05 AND Z-Score > 1.0 AND TF-reached > 7).

TRANSPATH ID Name of common regulator TF reached Score FDR Z-Score Phospho Cytoplasm Phospho Nucleus

MO000056714 HDAC1 8 0.623 0.036 1.031 p-up p-up
MO000257368 SUSP1 8 0.555 0.031 1.354 p p-dn
MO000103308 CKI-gamma1 8 0.530 0.035 1.093
MO000019363 RelA-p65 7 0.484 0.030 1.679 p P
MO000132731 PP4C 7 0.445 0.047 1.068 p P
MO000140900 ing4 8 0.434 0.050 1.613
MO000272358 ctcf{sumo} 7 0.390 0.035 1.455 p P
MO000284804 RNF96{p} 7 0.341 0.047 1.590 p-up p-dn
MO000107711 RXR-alpha{sumo} 8 0.337 0.033 1.549 p P
MO000272357 ctcf{sumo} 7 0.275 0.049 1.564 p P
MO000284833 RNF96{pS473}{pS824} 7 0.250 0.040 1.833 p-up p-dn
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cells by RA, blue color corresponds to decreased level and gray—the
same level of phosphorylation of these proteins after the RA
treatment.

We can show here that such important signaling proteins as
“histone deacetylase 1 (HDAC1)”, whose level of phosphorylation
is rapidly increasing after treatment of the cells by RA, and “SUMO-
1-specific protease 1 (SUSP1)”, whose level of phosphorylation is
high and stable in the cytoplasm and decreasing in the nucleus, are
involved in this cellular system in triggering signal transduction
pathways towards activity of particular transcription factors.
Among them there are the number of important transcription
factors such as RelA, Sp-1, RXR, CTCF, GKLF, RNF96 that are
characterized by the high and often changing level of phosphory-
lation in cytoplasm and especially important, in nucleus and
evidently as a result of such signal transduction cascade changing
their activity during RA treatment and consequently up-regulating
expression of their target genes. It was also interesting to see that
HDAC1 was actually one of the top proteins whose phosphoryla-
tion status most significantly increased after RA treatment (11
additional phosphopeptides detected in nucleus after the
treatment by RA). And it was also independently identified as
the top common regulator in our analysis.

Therefor we can conclude that the methods of computational
prediction of protein-DNA interactions of transcription factors that
are described in this paper help researchers to find the missing link
between the transcriptomics and proteomics (phosphoproteo-
mics) data.

4. Discussion

Currently the AUC values are considered the standard measures
to assess the predictive abilities of site models. Certainly, for an
accurate calculation of precise AUCs it is necessary to have
representative samples of genuine TF-binding sites. Available TF-
binding regions from ChIP-seq experiments processed by peak
calling algorithms provide a good resource for such computations.
But the direct use of the raw initial sets of the TF-binding regions
for the AUC calculations is not reasonable because many of the TF-
binding regions can be “empty” (not actually containing genuine
TF-binding sites) mainly due to various experimental and data pre-

http://www.genexplain.com


Fig. 2. Signal transduction diagram that connects two most significant common regulators (light red nodes at the top of the diagram) and TFs (light blue nodes in the middle
and at the bottom of the diagram) whose sites found overrepresented in the promoters of differentially expressed genes. Red, blue and gray decoration of the odes in the
diagram annotates the phosphorylation of the respective proteins detected in the phosphoproteomics experiment. The left part of the decoration circle corresponds to the
protein phosporialytion observed in the cytoplasm of the cells and the right side corresponds to the protein phosphorylation observed in the nucleus. The red color of the
decoration corresponds to the increased level of phosphorialtion after treatment of cells by RA, blue color corresponds to decreased level and gray – the same level of
phosphorylation of these proteins after the RA treatment.
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processing uncertainties discussed above. Indeed, it turned out
that when taking full sets of ChIP-seq TF-regions for the majority of
the selected TFs, the values of the computed AUCs of all applied
PWM-based methods were close to 0.5 (see Table A2 Supplemen-
tary data), and the shapes of the ROC curves were approximately
linear (see, for instance, Figure A3 Supplementary data).

It becomes clear that such sets of sequences are not directly
suitable as an ideal set for the comparison of different TF-site
recognition algorithms. In this paper we have suggested the
t-union approach for selecting subsets of TF-binding regions
suitable for the sheer purpose of comparing the performance of
different site models to each other. Of course this does not
guarantee the selection of all true TF-binding sites out of the initial
sets of TF-binding regions. This method just provides a platform for
a relatively unbiased comparison of different methods for TF-site
recognition.

Certainly, the construction of the t-union of the TF-binding
regions is just one of several possible ways to compose refined sets
of TF-binding regions that can be used for site model comparison.
One of the alternative ways to compose refined sets is to select the
most “reliable” TF-binding regions according to external character-
istics obtained in the ChIP-seq data preprocessing. We demon-
strated (see Appendix 4.4 Supplementary data) that the use of such
external characteristics coming from the peak detection algorithm,
as ‘FDR’, ‘Fold enrichment’, ‘Tag number’, ‘Score’ and ‘p-value’, does
not actually provide suitable platform for comparing TF site
prediction methods.

As has been described in detail in the Method Section, the
t-union approach allows for preparing subsets of TF-binding
regions that contain an unbiased mixture of DNA motifs for TF-
binding sites as they are recognized by different PWM site models.
This way we create a good platform for comparing different site
models to each other using the same set of sequences, which
makes such a comparison most objective and unbiased. At the
same time, such a comparison is done on the basis of natural
genomic sequences, experimentally shown to be bound by the
given transcription factors (directly or indirectly), rather then on
the basis of some artificially prepared sequences as has been done
elsewhere. This provides a higher reliability of such a comparison
of methods and a better basis for choosing the method for a real
analysis of genomic sequences.

The final comparison of PWM site models was done on the
t-union sets of TF-binding regions with a relatively low value of t
equal of 25%. This means that only about 25% of TF binding regions
obtained from the ChIP-seq experiments were used for such a
comparison. Our choice of this value was based on the average
values obtained of the AUCs for most of the PWM site models (see
Table A1 in the Appendix Supplementary data), which were mainly
above 0.7 (with some small exceptions); this is considered to be a
borderline for relatively good quality for a diagnostic test [39].

The use of the AUC value for comparing the precision of
different recognition methods and diagnostics tests is well
accepted in the machine learning community [39], and is widely
used for comparison of various bioinformatics methods including
TF site recognition methods [40]. However, this practice has
recently been questioned [41,42]. Certain important parameters
should be carefully taken into account when applying AUC for
comparison of different recognition methods. When comparing
two methods by their ROC curves problems arise when the interest
does not lie in the entire range of false-positive rates. Often in
bioinformatics and other applications it is more useful to look at a
specific region of the ROC curve rather than at the whole curve. To
overcome these difficulties the approach of computing partial AUC
has been proposed earlier [34,35]. In this approach one focuses for
instance on the low false positive rates only, which is often of
prime interest for population or genome screening tests, and
calculates the value of “partial AUC” by calculating the area under
the ROC curve only in the respective part of the curve [34,35].
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In our work we applied two partial AUCs that correspond to two
of the most frequently used cases of applying TF-site recognition
methods. In the first case, we compute the area under the ROC
curve only in the region of false positive rates from 0.0 to 0.1. In this
way we focus our attention on the cases of TF binding sites
searches in full genomes or at least in relatively long genomic
regions. We assume that in such applications of full genome
screening it makes no sense to allow false positive rate higher then
0.1. Otherwise the results will be flooded with millions of false
positive hits and will become useless in practical applications. In
the second use case we focus our attention on the alternative part
of the scale when the values of true positive rate should be higher
of equal to 0.8. Such use cases correspond to the TF-site analysis in
relatively short genome regions (e.g. in an individual promoter or
enhancer) when one should minimize the loss of real sites. We
implemented two measures of partial AUC—“partial AUC_FP0.1”
and “partial AUC_TP0.8”, respectively.

Using these partial AUC measures as well as traditional full AUC
we compared the efficiency of three different PWM-based site
models for recognition of binding sites for more then 260 different
human transcription factors. Such a full-scale comparison has not
been done so far. Our results provide a basis for the choice of the TF
site identification methods for various future applications.

In order to find a rationale for the higher performance of a
certain PWM-based site model for recognition of sites for different
transcription factors we compared the results of AUC calculations
with various characteristics of transcription factors and their
respective PWMs. In Table A1 in the Appendix (see Supplementary
data) we summarized several characteristics, including: TF
classification index [1], name of the TF antibody and cell line
used in the respective ChIP-seq experiments, the length of PWM,
mean and sum entropy of the PWM. Our attempts to find any
correlation between those characteristics and the performance of
one of the tested TF-site model failed. For instance, no significant
difference was found while comparing the average entropy of
those PWMs that showed superior results for “additive site model”
with the average entropy of PWMs showing superior results for the
“site model based on information vector”. Also, it was interesting to
observe that even for very similar transcription factors belonging
to one family, different family members can display absolutely
different preferences to one or another TF site model. For instance,
the FOX family of transcription factors is characterized by very
similar PWMs. Although for most of the family members the
highest values of full AUC correspond to the additive site model, for
the factor FoxM1 the highest value was achieved by the
multiplicative site model, and for the factor FoxO4 it was taken
by the site model based on information vector.

Generally the application of the full AUC measure gives the
highest values for the “additive site model method” for most of the
tested PWMs. Still our results show that for the actual most
frequent applications of the PWM method, e.g. in the use cases of
searches of TF sites in long genomic sequences, the supreme
method is the site model which is based on information vector
(which is implemented in the popular MATCH algorithm [12]),
since it gives the higher values of the respective partial AUC.

Therefore, in this paper we successfully applied a novel unified
method for comparing different approaches of computing TF site
models based on PWM.

Finally, to demonstrate the utility of the TF site prediction
methods for proteomics research we combined the TF site analysis
with phosphoproteomics and transcriptomics data. We analysed
promoters of the differentially expressed genes (from RNA-seq)
using the MATCH site prediction method and predicted those
transcription factors that are potentially activated in these cells.
Next, using graph analysis algorithm we connected these
transcription factors to the network of signal transduction
cascades identified by phosphoproteomics analysis of the cyto-
plasmic and nuclear fractions of those cells. This example of
analysis of two “-omics” datasets allowed us to conclude that the
methods of computational prediction of protein-DNA interactions
of transcription factors that are described in this paper can indeed
help researchers to find the missing link between the tran-
scriptomics and proteomics (phosphoproteomics) data.

We hope that our results will contribute to an improvement of
efficiency in the application of computational methods for
understanding the molecular mechanisms of functioning of such
an important group of proteins as transcription factors and will
contribute to the growing field of proteomics research.
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