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Systemic amyloidoses and proteomics: The state of the art
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A B S T R A C T

Systemic amyloidoses are caused by misfolding-prone proteins that polymerize in tissues, causing organ
dysfunction. Since proteins are etiological agents of these diseases, proteomics was soon recognized as a
privileged instrument for their investigation. Mass spectrometry-based proteomics has acquired a
fundamental role in management of systemic amyloidoses, being now considered a gold standard
approach for amyloid typing. In parallel, approaches for analyzing circulating amyloid precursors have
been developed. Moreover, differential and functional proteomics hold promise for identifying novel
biomarkers and clarifying disease mechanisms. This review discusses recent proteomics achievements in
systemic amyloidoses, providing a perspective on its present and future applications.
ã 2016 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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Among the examples of proteomics applications in clinical
practice, typing of systemic amyloidoses has certainly gained a
prominent role. Since the first descriptions of proteomic
approaches for fibril identification, approximately a decade ago
[1,2], mass spectrometry (MS)-based amyloid typing has moved to
being a unique example of a routinely used, accredited clinical
proteomics assay [3]. Systemic amyloidoses have indeed been an
especially fertile ground for the application of proteomics, which is
not limited to tissue amyloid typing. Mass spectrometry-based
analysis, in fact, plays a role in at least three additional aspects: (1)
evaluation of amyloid precursors in body fluids; (2) identification
of disease biomarkers; (3) study of the mechanisms of disease
(Fig. 1). The unique success of clinical and translational proteomics
in systemic amyloidoses is largely due to the primary role that
proteins play in the pathogenesis of these diseases [4,5].
Amyloidoses are a group of clinical conditions in which misfold-
ing-prone autologous proteins acquire the ability to aggregate into
amyloid fibrils and create insoluble interstitial tissue deposits. In
the systemic forms, fibril deposition originates from proteins
transported to target organs through blood, is widespread and
affects vital organs, such as the hearth, kidney, liver, peripheral and
autonomic nervous systems. The classification of amyloidoses is
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based on which protein originates the fibrils; an increasing number
of different species are known to cause amyloid diseases in
humans, and a dozen of these can cause systemic forms [5]. The
common denominator of amyloidogenic proteins is the ability to
acquire, upon loss of the native structure, a fibrillar conformation,
and to aggregate into unbranched fibrils, which are remarkably
similar, despite the wide differences in folding, function and
sequence of the precursors [6]. The most common forms of
systemic amyloidoses in industrialized countries are light chain
(AL) amyloidosis, caused by the deposition of monoclonal
immunoglobulin free light chains (FLC) produced by a bone
marrow plasma cell clone [7–9], and transthyretin (ATTR)
amyloidosis, either in its hereditary form (caused by misfolding-
prone genetic variants of TTR), or related to deposition of wild type
TTR with aging (wild type ATTR amyloidosis, previously known as
senile systemic amyloidosis) [10–13]. Less frequent hereditary and
sporadic forms also exist [5]; importantly, the clinical presentation
of all forms is largely overlapping, preventing their accurate
distinction on a purely clinical basis.

The diagnosis of amyloidosis is biopsy-based and requires the
demonstration and characterization of amyloid deposits in tissues
[7,14]. Amyloid typing, i.e. definition of the core protein constituent
of the fibrils, is crucial, since the various types of amyloidoses differ
drastically in terms of pathogenesis, clinical course, prognosis and
treatment. In recent years, radical therapeutic progresses have
been made for several forms [8,15], with approval of effective new
treatments and regimens that can now change the natural history
and improve survival. However, therapeutic orientation and
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Fig. 1. Proteomics as a tool of clinical usefulness to investigate the different aspects of systemic amyloid diseases.
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patient management approaches differ completely among the
amyloidosis types, and precise diagnostic typing is a crucial
prerequisite for correct treatment.

The advent of diagnostic proteomics in the clinical management
of systemic amyloidoses has been mostly driven by the need for an
unbiased method for identifying the deposited protein, which
would allow to overcome the drawbacks (mainly consisting in
limited sensitivity and specificity) of traditional, immunohis-
tochemistry (IHC)-based typing techniques. In parallel, a number
of proteomics approaches have also been developed for the
qualitative and quantitative analysis of the amyloid precursors – in
particular TTR and monoclonal FLC – in body fluids. Moreover, the
scarce knowledge on the mechanisms of proteotoxicity at the
cellular and tissue level has prompted functional, targeted and
high-throughput proteomics studies, which have begun to cast
new light on the molecular events associated with the disease, and
have identified protein candidates to be studied as potential novel
tissue biomarkers.

This paper reviews the main achievements in the use of
proteomics for the diagnosis and the study of systemic amyloido-
ses and related aspects, with particular focus on the most recent
acquisitions, providing a critical presentation of the available
literature and presenting future perspectives.

1. Mass spectrometry-based tissue amyloid typing: a decade of
experience

It has been less than a decade since the pioneering studies on
the use of MS for identifying amyloid (i.e. for defining the principal
amyloid-forming protein) in clinical samples [1,2]. During this
time, proteomics has rapidly gained a critical role in the diagnostic
definition of systemic amyloidoses in the routine clinical workup
and has been applied for typing thousands of patients’ samples, up
to the point that MS-based amyloid identification is now
considered a gold standard disease typing approach [3,16] (Fig. 2).

The advent of MS for the biochemical definition of the nature of
amyloid fibrils had initially been advocated as a potential way to
overcome the drawbacks of the traditional amyloid typing
approaches, i.e. antibody-based methods. Although the use of
immuno-electron microscopy [17] and/or performing the immu-
nohistochemistry analysis in referral centers [18,19] improve the
performances of antibody-based methods, it is recognized that
attributing the amyloid type on the basis of immunohistochemis-
try can suffer of limited diagnostic sensitivity and specificity,
leading to inaccurate diagnosis and potentially fatal errors [20–25].
The factors responsible for these drawbacks have been extensively
discussed elsewhere [26] and can be largely attributed to the
altered conformation and extensive processing of amyloid proteins
in the fibrils. MS-based amyloid typing is antibody-independent
and is based on a completely distinct concept, providing, as an
output, the identity of the proteins present in a sample, including
those deposited as fibrils. Specificity of amyloid typing is thus
mediated by the specificity of protein identification through
bioinformatics, and by the correct interpretation of the protein
identification lists, to extract the correct amyloidogenic species.

The information obtained with a single proteomic analysis,
however, is not limited to a list of identified proteins; the MS/MS
assessment of peptide sequences, in fact, also allows the evaluation
of other relevant features, such as amino acid variants and post-
translational modifications (PTM), as outlined later. For these
characteristics – antibody-independent identification, wealth of
information provided, coupled to the rapidity and robustness of
the current MS analytical methods – the success of proteomics in
this field has been explosive.

Although procedures for amyloid classification based on 2D gels
and imaging MS (IMS) have been proposed [2,27–29], the methods
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Fig. 2. Workflow of amyloid diagnosis and typing on tissues and the role of MS in the various steps.
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currently employed in the clinic are based on liquid chromatogra-
phy coupled to MS (LC–MS), using high-resolution instruments.
Two main procedures, in particular, are in use in amyloid centers
worldwide. The first was developed by pathologists at Mayo Clinic
and can be used for typing amyloid from formalin-fixed, paraffin-
embedded (FFPE) specimens [3,30]. The amyloid deposits are first
cut from thick (10 mm) tissue slices mounted on specific slides by
laser capture dissection/microdissection (LMD), using an LMD
microscope equipped with a fluorescence module that allows
visualizing the Congo red positive areas. Laser dissection leads to a
strong enrichment of the amyloid deposits over the tissue protein
background and provides material suitable for the LC–MS/MS
analysis. Assignment of the disease type, from the list of proteins
identified in the dissected areas, is based on which amyloid protein
is found with greater abundance, on the basis of spectral counting.
This method has proven able to define the most frequent, as well as
rare forms, on virtually any tissue type [3,30–36].

Over time, the accurate proteomic typing of large cohorts of
organ biopsies has provided an updated map of the epidemiology
of the surgical amyloid types, disclosing sometimes unexpected
results. In a large cohort of endomyocardial biopsies characterized
by MS, for example, ATTR was the predominant amyloidosis type
[37], further underlying the concept that tissue typing should be
performed even in presence of monoclonal components. In liver,
the recently recognized ALect2 amyloidosis was found to be
responsible for up to 25% of cases, besides other common and rare
forms [38]. Also in nerve and kidney, other frequent biopsy sites,
the origin of amyloidosis could be determined in most cases, even
in presence of infrequent or novel forms [31–33,39,40]. Overall,
LMD–LC–MS/MS was reported to have 98% sensitivity and
specificity for typing [30], comparing favorably with immunohis-
tochemistry: a recent work, analyzing the performances of the two
techniques, has found 100% concordance between positive IHC and
LMD–LC–MS/MS, whereas the latter increased diagnostic accuracy
from 76% to 94% [41]. This LMD–LC–MS/MS proteomic assay, every
step of which has been standardized for better quality control, has
received regulatory approval for patient diagnosis in the United
States, being the first example of a shotgun proteomics test to
receive such accreditation [3].

A second approach for amyloid typing by MS, developed by the
Pavia amyloid team and currently in clinical use, is based on a
different workflow [42–44]. Upon acquisition of the complete
proteome map of unfractionated tissue by shotgun LC–MS/MS
analysis, a semiquantitative label-free pairwise comparison of the
map of amyloid positive samples against an average map of
negative ones is performed. In this case, amyloid identification
from the whole tissue proteome is based on calculation of a
parameter, called alpha-value [44], representing the normalized
relative abundance of each known amyloid protein in patients
compared to controls. The method can be applied for typing both
fresh fat tissue and FFPE tissue samples, provided that an adequate
control map is available. On adipose tissue, this approach, for
which concordance with IEM typing was 100% [44], allows amyloid
classification in 96% of amyloid-positive samples (Pavia case series,
unpublished). The important feature of this shotgun assay is the
presence of a control map, which allows to estimate, in particular,
the average abundance of carried-over plasma proteins; these, as
discussed later, are often confounding factors during interpreta-
tion of the identified proteins lists. A shotgun procedure for the
analysis of unfixed and unfractionated fat samples was also more
recently implemented by Mayo Clinic researchers, enabling
classification of amyloid type in 90% of cases when tested as a
clinical assay on a wide set of amyloid-positive samples [45].

Regardless of the approach used, it is important to emphasize
that these proteomics methods provide information on the
composition, not on the conformation of proteins in the samples;
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detection of fibrils still relies on imaging and on use of specific
staining. Nevertheless, proteomic analysis can provide indirect
information on the presence of amyloid deposits, through
detection of amyloid associated proteins. These species (which
include serum amyloid P, apolipoprotein E, apolipoprotein A-IV,
clusterin, vitronectin, HSPG etc), are associated with amyloid fibrils
regardless of the disease type, creating a sort of “amyloid proteome
signature” both in organ biopsies and in subcutaneous abdominal
fat aspirates [44,45]. Indeed, the contemporaneous identification
of multiple amyloid-associated proteins (in particular apolipopro-
tein E, serum amyloid P-component and apoliprotein A-IV) has
recently been proposed as an indirect diagnostic index of the
presence of amyloid deposits [45], which could be of support for
diagnostic characterization.

As mentioned earlier, tissue proteomic analysis can also provide
a wealth of additional information useful for diagnostic purposes.
MS and MS/MS analysis, in particular, can provide sequence
information useful for detecting and locating amino acid variants
on amyloidogenic proteins. As discussed above, amyloidogenic
proteins have the peculiarity of possessing primary sequences that
often differ from wild-type ones, as in the case of proteins
responsible for hereditary forms. The mutation usually shifts the
mass of the affected peptides, and the variant proteins can be
identified, provided that the peptide is visible by MS and the
mutated sequence is present in the database. In fact, in order to
maximize the information obtainable with traditional searching
algorithms and increase the rate of assignment of peptides
containing the amino acid substitution, standard protein sequence
databases must be supplemented with specific sequences of
known or predicted mutated amyloidogenic proteins [46].
Recently, a bioinformatics platform has been implemented by
Mayo Clinic researchers in order to test the ability of clinical
proteomics to detect known as well as novel amyloidogenic
mutations in proteins responsible for hereditary forms [46]. The
known mutations are identified through classical searching
algorithms on an augmented database, whereas the novel variants
are identified by matching the MS/MS spectra against wild type
protein sequences, using a sequence tagging search strategy
configured to look for unanticipated mutations. The sensitivity and
specificity of these workflows are high (respectively, 92% and 100%
for the known mutation detection and 82% and 99% for novel
mutation detection), indicating that tissue proteomics is a useful
method for rapidly and efficiently confirming the deposition of a
pathogenic variant.

The data sets from patients with AL amyloidosis can instead be
interrogated by bioinformatics to recovery information on the
deposited FLC. Immunoglobulin light chains present specific issues
during proteomic analysis, related to the sequence diversity of the
variable region. A complex combination of genetic VJC genes
rearrangement and somatic hypermutation, in fact, translates in
the fact that each light chains’s variable region possesses a unique
primary sequence: this leads to the frequent unassignment of
variable domain peptide ions, given the lack of a corresponding
sequence in databases. Recently, a novel informatics workflow has
been proposed [47], employing an augmented database search
with known light chains variable region sequence templates, to
detect the clonotypic peptides from patient MS/MS data. Even
though the method cannot sequence the whole pathogenic light
chain, mapping the detected peptides to the corresponding
variable region gene loci has proven useful to determine the germ
line gene, and represents an interesting and promising alternative
to genetic sequencing.

Overall, although available only in specialized centers (due to
the need for specific equipment and especially trained personnel),
proteomics has become a reference method for amyloid identifi-
cation worldwide. Indeed, it would be misleading to believe it to be
completely free from specific issues, which need instead to be
considered in the course of result interpretation [26,48]. A first
issue relates to the already mentioned variability of amyloid
proteins compared to their normal counterpart. Whereas supple-
mented databases and advanced bioinformatics can cope with this
issue in most cases of hereditary forms, sequence heterogeneity
still remains a major problem in the case of light chains, in which
peptides from the V region are often unassigned, affecting protein
identification and quantification. A second significant issue stands
in the possible carryover of blood proteins. Given that almost all
species responsible for systemic amyloidoses are, in their non-
pathogenic form, normal constituents of human plasma, it is clear
that identifying potential amyloidogenic precursors from incom-
pletely washed samples can lead to incorrect or equivocal typing.
Some solutions to this issue have been proposed, employing
mathematical corrections and/or control samples to compensate
for background plasma contaminants, and to identify amyloid
proteins present with the greatest abundance [44,49].

More recently, novel methods, based on imaging MS, have been
applied to systemic amyloid typing and analysis [27,28,50] on solid
organ biopsies. Although these approaches have not yet been
developed as clinical grade assays, their ability to couple MS with
histology examination makes them promising new tools.

2. MS analysis of circulating amyloidogenic proteins

2.1. Immunoglobulin light chains and transthyretin

Proteomic analysis of circulating precursors can provide
important information of potential clinical relevance from either
a qualitative or a quantitative point of view. In practice, MS
assessment of amyloidogenic proteins in patients’ plasma or serum
has been mainly used to investigate TTR and immunoglobulin light
chains [51–55] and, to a lesser extent, other proteins such as serum
amyloid A [56]. In the case of AL amyloidosis, the investigation
must be focused specifically on the free form of light chains (FLC)
[57,58], i.e. not bound to the heavy chain as in an intact
immunoglobulin.

Although precursor analysis has not yet entered the clinical
routine as it has happened for tissue proteomics, several of the
developed approaches show potential as new means to identify
destabilizing mutations at the protein level, as a complement to
genetic analysis, or to quantify the pathogenic proteins, in
alternative to immunometric tests. As described later, compared
to the current clinical-grade assays, MS offers unique perspectives
in terms of specificity towards particular isoforms or pathogenic
subpopulations.

In most proteomic approaches aiming at the circulating
precursors, MS analysis is preceded by strategies to enrich the
protein of interest and reduce the interfering effects of blood
constituents. A widely used strategy is based on capturing the
protein using antibodies [51,59,60], either off-line or on-line with
MS [52,59]. For assessing FLCs, it is necessary to employ antibodies
directed specifically against light chains not bound to the heavy
chain, in order not to precipitate the abundant pool of polyclonal
immunoglobulins normally present in blood. Our group employed
a strategy based on the use of anti-FLC antibodies covalently linked
to agarose beads in microcentrifuge tubes [51]. In alternative to
immunoprecipitation, in the case of TTR, chip-based enrichment in
the context of SELDI-TOF MS-based methods have been described
[61,62]. Recently, a method that couples capillary zone electro-
phoresis with MS has been reported for screening of TTR variants in
serum samples [63]. MS-based strategies are also being developed
to analyze monoclonal light chains from intact serum antibodies,
which can be useful when the patient’s clone produces an intact
monoclonal immunoglobulin besides the FLC excess [54,64,65]. In



8 F. Lavatelli et al. / EuPA Open Proteomics 11 (2016) 4–10
this instance, light chains are studied once detached from the
heavy chain through reduction of the disulfide bonds.

In parallel to the evolution of MS instrumentation and methods,
the analytical approaches and goals of the proteomic analysis of
precursors have also evolved. The main focus of former studies was
directed towards qualitative characterization, especially for
detecting amyloidogenic mutations. The developments of diag-
nostic methods has been particularly fertile in ATTR amyloidosis, in
which MS has proved informative to evidence mass shifts in the
digested [60,66,67] or in the intact protein [61,62,68–70]. While
several past studies used MALDI-TOF and peptide mass finger-
printing for identifying mutations-bearing peptides [66,67], more
recent approaches confirm and locate the variant by MS/MS
sequencing or top-down analysis, using high-resolution instru-
ments [69].

In parallel, quantitative MS-based methods have begun to
emerge. In a recent work, a methodology for quantification of
serum TTR, as well as for quantification of its PTMs, has been
described, involving MS analysis of the intact protein and targeted
LC-MS analysis of peptides carrying the PTMs of interest [71]. In AL
amyloidosis, quantitation of the pathogenic monoclonal free light
chain using MS has been advocated as a way to increase specificity
over the polyclonal background [54,64]. Indeed, given the presence
of the variable region, FLC have very unique sequences; this
translates in the fact that each full length protein has a peculiar
mass, and that the peptides from each light chain are not only
protein-specific, but also specific for the patient’s clone [51,72].
These properties have been exploited to develop MS-based
methods that monitor monoclonal components using the mass
of the full length light chain (in the miRAMM approach:
monoclonal immunoglobulin Rapid Accurate Molecular Mass)
[54,64] or its “clonotypic” peptides [72]. Whereas these methods,
so far applied to multiple myeloma patients, hold great promise for
increasing the specificity of pathogenic light chain quantification,
significant uncertainty still concerns their sensitivity. A combina-
tion of polyclonal immunoglobulin depletion and SRM-based
quantification using labeled light chain peptide standards has
recently been proposed for quantifying total serum FLC, showing
concordance with results obtained by nephelometry, excellent
linearity and good sensitivity [55]. This area of research is
expanding very rapidely, and ad hoc studies will need to be
designed to precisely define the clinical performances of these
promising methods, compared to current diagnostic approaches.

3. Translational proteomics: novel information to improve
disease knowledge

A most exciting application of proteomics to systemic
amyloidoses consists in its use for studying the molecular
mechanisms of disease at the cell and tissue level. Although
protein misfolding and aggregation are necessary components of
the pathogenetic cascade, the proteotoxic events in target organs
are still largely unknown. The availability of validated model
systems and of human disease-specific, proteomics-grade bio-
banks has been the basis for a number of recent studies
investigating, from a high-throughput point of view, the biological
bases of misfolded proteins toxicity. Mass spectrometry-based
proteomics, either employed in the context of systems biology
analyses [2,42,73], or aimed to study specific aspects as protein
PTMs, has indeed already provided important clues on the events
occurring in vivo and in vitro.

Our team has employed a MudPIT-based differential proteomics
approach for identifying proteins changing in abundance in
patients’ subcutaneous abdominal fat tissue [42]. This label-free
differential analysis, coupled to computational studies, has led to
the identification of tissue-resident species, biological pathways
and functions quantitatively affected in relation to amyloid
deposition. These proteome changes concern both the intra- and
the extracellular compartments and are involved in a variety of
processes; prominent features include subversion of the matrix
composition, with increase of collagen and heparan sulphate
proteoglycans, changes in the cytoskeleton, in species involved in
chaperone activity and protein processing, tissue-specific metab-
olism and mitochondrial energetics. The specific role of these
alterations in the disease pathogenesis can now be assessed in a
targeted manner with functional studies; moreover, the differen-
tially represented proteins, as single analytes or in combination,
could be assessed as novel potential biomarkers of amyloid-
associated tissue damage [74].

Proteomic analysis of human tissues has also been used for
studying the biochemical features of amyloid fibrils, under the
hypothesis that peculiar modifications of the amyloidogenic
precursor, such as truncation or other PTMs, might be pro-
amyloidogenic factors [75,76]. Using 2D-PAGE coupled to MALDI-
TOF MS, the amyloid deposits of AL, ATTR and b-2 microglobulin
were studied in detail. In all cases, fibrils were shown to contain a
mixture of pI isoforms of full-length precursors and fragments
thereof [2]. The pI heterogeneity can be referred to the presence of
post-translational modifications, such as oxidation and deamida-
tion, whereas fragmentation is likely due to the activity of still
undefined proteases, acting in the peculiar physical context of
target tissues [77], and appears to be connected with amyloid
deposition [2,76,78]. Fragmentation is especially prominent in AL
amyloidosis, in which C-terminally truncated species constitute a
large fraction of the total deposited proteins. However, the
presence of the full length light chain, besides fragments, was
clearly demonstrated by proteomics [2,30], supporting biochemi-
cal and biophysical studies that have demonstrated the critical role
of the constant region in amyloidogenesis [79].

Mass spectrometry has also been used as an instrument to
characterize the features of the circulating amyloidogenic pre-
cursors, on which it allowed demonstrating and locating the
presence of known and unexpected PTMs. Extensive tryptophan
oxidation, N-terminal pyroglutamate and unexpected S-cysteiny-
lation of internal cysteines have been detected by MS/MS on serum
light chains [51], whereas cysteinylation of the C-terminal cysteine
has been shown in urinary kappa light chains [80]. Variant
amyloidogenic TTR and wtTTR from patients affected by hereditary
and wild type ATTR amyloidosis have been shown to contain
heterogeneous PTMs at the Cys-10 residue, consisting of mixed
disulfides (S-sulfonation, S-glycinylcysteinylation, S-cysteinylation
and S-glutathionylation) [51,71,81,82]. A method for their targeted
quantitation in patients has recently been proposed [71], under the
rationale that these PTMs may play an important biological role in
protein destabilization and in the onset of the disease.

The most innovative application of MS in the evaluation of
amyloidogenic proteins consists in the study of folding and
quaternary structure. Using native and ion mobility MS, the
formation of oligomers and variant conformational states has been
explored, especially in the case of b-2 microglobulin [83–85] and
serum transthyretin [86].

Regarding the analysis of the proteotoxic mechanisms at the
cellular level, functional proteomics has been a powerful approach
for exploring novel experimental possibilities. In a recent work, we
followed the hypothesis that the interaction of amyloidogenic FLC
with specific protein partners in target cardiac cells might mediate
cardiac damage, through perturbation of the interactors’ function
and biological activity [87]. Using a functional proteomics-based
approach, we identified a subset of proteins, with mitochondrial
(OPA1, VDAC and ACAD9) and peroxisomal (ACOX1) localization,
interacting specifically with cardiotoxic light chains. The occur-
rence of the interactions has been verified in cardiac cells, along
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with alterations of the morphology and protein expression of
mitochondria. This proteomic analysis has opened new perspec-
tives on the pathogenesis of AL cardiac toxicity, and serves as a
basis to specifically study the functional role of single molecules in
cell damage.

4. Conclusions and perspectives

The introduction of proteomics has had a profound impact on
clinical management and research in the field of systemic
amyloidosis. Amyloid typing by MS has already achieved
regulatory approval in the United States and is now routinely
used as gold standard diagnostic tool in clinical practice. In the
perspective of offering proteomic amyloid typing as an health care
service, by those centers where this technique is available, it is also
of critical importance to achieve CE accreditation for in-vitro
diagnostics. In this way, mass spectrometry-based typing will
possess all the formal requisites to be used in the clinical setting
throughout European institutions. The availability of curated,
proteomics-grade biobanks in major specialized centers has
granted a collection of optimal material for human fluid and
tissue proteomic analysis, as well as for experimental proteomics
studies. Applied to the field of basic research on the mechanisms of
disease, proteomics has disclosed involved molecules and affected
pathways, with promising translational applications. Overall, a
great wealth of proteomic data sets from tissues and experimental
models is being collected, holding the promise to serve as a gold
mine from which other important information could be extracted
in the future, in parallel to the development of novel search tools
and experimental queries.
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