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ABSTRACT: Ischemic stroke is a major cause of death and disability globally, and its incidence is increasing. 

The only treatment approved by the US Food and Drug Administration for acute ischemic stroke is 

thrombolytic treatment with recombinant tissue plasminogen activator. As an alternative, therapeutic 

hypothermia has shown excellent potential in preclinical and small clinical studies, but it has largely failed in 

large clinical studies. This has led clinicians to explore the combination of therapeutic hypothermia with other 

neuroprotective strategies. This review examines preclinical and clinical progress towards developing highly 

effective combination therapy involving hypothermia for stroke patients. 
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Hypothermia is a remarkable neuroprotectant and can 

mitigate brain injury induced by stroke, trauma, cardiac 

arrest or hypoxic–ischemic encephalopathy in newborns 

[1-3]. Yet how hypothermia protects the brain and what 

are the optimal conditions for protection are unclear. 

Studies suggest that initiating hypothermia as soon as 

possible after ischemia is better [4, 5], and that longer 

periods of hypothermia are superior to shorter periods [6]. 

Hypothermia appears to give better results when 

reperfusion occurs, though it is unclear whether 

hypothermia provides benefit in the case of permanent 

ischemia [5, 7]. The depth and duration of hypothermia 

strongly influence the risk of complications such as 

infection [8] and arrhythmias [9]. These adverse events 

and the lack of optimized procedures have limited the 

application of hypothermia in the clinic.  

To overcome these limitations, preclinical and 

clinical studies over the last few decades have been 

exploring the combination of hypothermia with a second 

neuroprotective strategy (Table 1). Such combination 

therapy is intended to prolong the therapeutic window of 

both treatments while reducing or eliminating adverse 

effects, thereby enhancing the magnitude and duration of 

neuroprotection. The present review discusses various 

combination approaches and summarizes their preclinical 

and clinical application in ischemic stroke. 
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Table 1. summary of the second neuroprotective strategies combined with hypothermia in ischemic 

stroke. 

 
Main Function of combined 

strategies 

Combined strategies Specified treatment 

Reduce energy consumption Anesthetics 

 

Methohexital 

Thiopentone sodium 

Xenon 

Dexmedetomidine 

 Psychotropic agents Chlorpromazine and promethazine  

Suppress calcium overload NMDA receptor antagonists 

 

 

 

Ryanodine receptor inhibitor 

Dextromethorphan  

MK-801 

Delfotel  

Magnesium with or without tirilazad 

Dantrolene 

Increase blood supply  Reperfusion 

 

Vessel dilator 

Induce arteriogenesis 

t-PA 

Intra-arterial recanalization 

Statin 

Granulocyte colony stimulating factor 

(G-CSF) 

Anti-inflammation Antibiotics Tacrolimus 

Minocycline 

Anti-oxidative stress  Oxidative stress scavengers Edaravone 

Mannitol 

Repair damaged cells Biosynthesis of cell component Citicoline 

Increase oxygen supply Oxygen 

 

Normobaric oxygen 

Hyperbaric oxygen 

Reduce intracranial pressure - Decompressive craniectomy 

Anti-apoptosis Anti-apoptosis protein FNK protein 

 Gene of anti-apoptosis protein Bcl-2 gene 

Multiple protection - Caffeinol (caffeine and ethanol) 

Insulin-like growth factor-1 (IGF-1) 

Brain-derived neurotrophic factor 

(BDNF) 

Albumin 

 

 

1. Combination therapy involving antagonists of the 

n-methyl-D-aspartate (nmda) receptor  

 

Therapies aiming at reducing exitotoxicity (preclinical 

evidence) 

 

In this approach, hypothermia is combined with the 

administration of NMDA receptor antagonists in order to 

reduce excitotoxicity. To date, this approach has been 

tested in preclinical studies. The approach is based on the 

fact that the abrupt deprivation of oxygen and energy 

depolarizes neurons and glial cells, which release large 

amounts of excitatory amino acids into the synaptic cleft. 

These amino acids bind to several receptors, one of which 

is the NMDA receptor, which in response triggers calcium 

influx that leads to programmed cell death. Not 

surprisingly, efforts to develop neuroprotective therapies 

have been focusing on NMDA receptors for decades, and 

various antagonists have been studied on their own or 

combined with hypothermia.  

The first studies were conducted using the non-

competitive antagonists dextromethorphan and MK-801. 

In one study, animals were exposed to MK-801, 

hypothermia (33°C) or both and then subjected to 

permanent middle cerebral artery occlusion [10]. Either 

MK801 or hypothermia on their own reduces infarct 

volume, while the combination of both did not show an 

additive protective effect. In another study, animals were 

subjected to transient middle cerebral artery occlusion, 

followed by hypothermia (30°C, 3 h) and later by MK-

801 therapy given 3-7 days after ischemia [11]. The 

combination of post-ischemia hypothermia and delayed 

MK-801 therapy attenuated neurobehavioral deficits at 

various follow-up points, and neuroprotection in the CA1 

hippocampus was observed histologically up to 2 months 

after ischemia [12].  

It is difficult to understand the mechanism of 

combination therapies involving hypothermia and non-

competitive antagonists such as MK-801, since this 

compound by itself induces hypothermia [13, 14]. As a 

result, it is difficult to optimize combination therapy 
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parameters. In addition, non-competitive blockade of 

NMDA receptors may cause severe adverse effects [16, 

17] because low-dose NMDA is necessary for normal 

neuronal function and survival [15].  

Therefore, research has also focused on competitive 

NMDA receptor antagonists such as selfotel (CGS-

19755). Despite being a potent antagonist, this compound 

did not provide significant neuroprotection in gerbils 

when administered alone or with hypothermia 30 min 

after 5-min forebrain ischemic insult [18]. In contrast, the 

compound helped protect various parts of the brain when 

administered with hypothermia after a series of three 

transient ischemic insults lasting 3 min each and delivered 

1 h apart [19].   

An alternative to exogenous antagonists is to use 

endogenous antagonists such as magnesium ion (Mg2+). 

Mg2+ exerts anti-excitotoxic effects by antagonizing 

calcium entry via the NMDA receptor [20]. On its own, 

Mg2+ does not confer neuroprotection in transient or 

permanent stroke, but when combined with hypothermia, 

it has shown promising benefits in both injury contexts 

[21, 22]. In fact, the combination of magnesium and 

hypothermia proved superior to hypothermia alone in an 

animal model of transient middle cerebral artery occlusion 

[23]. On the other hand, a study of permanent middle 

cerebral artery occlusion failed to find a benefit of the 

combination of Mg2+ and hypothermia after ischemic 

stroke [24].  

These precedents suggest that combination therapy 

shows potential but that further work is needed to 

optimize when it is delivered relative to the stroke and at 

what doses. Obtaining optimal neuroprotection will likely 

require a deeper understanding of how the two 

components of the combination therapy act separately and 

together.  

 

2. Combination therapy involving reperfusion  

 

Therapies aiming at increasing brain perfusion 

(preclinical evidence) 

 

In this approach, hypothermia is combined with 

recombinant tissue plasminogen activator therapy, which 

is the only treatment for acute ischemic stroke approved 

by the US Food and Drug Administration. The rationale 

behind combining hypothermia and plasminogen 

activator therapy is that reperfusion helps to rapidly 

restore oxidative metabolism in surviving cells, resolve 

cytotoxic edema and reduce levels of excitatory amino 

acids. On the other hand, reperfusion can trigger NO 

release and superoxide formation as well as increase 

permeability of the blood brain barrier (BBB), which can 

lead to further excitotoxicity and hemorrhagic 

transformation. Hypothermia induced shortly after 

reperfusion can reduce NO efflux in the brain and BBB 

leakiness, minimizing reperfusion injury [25, 26].  

One study reported that combining hypothermia and 

plasminogen activator reduced infarct size as well as the 

hemorrhagic transformation ratio that plasminogen 

activator therapy usually increases [27]. Hypothermia 

also alleviated the adverse effects of plasminogen 

activator therapy, such as larger infarct volume and brain 

edema, and it mitigated reperfusion injury caused by 

matrix metalloproteinase-1 (TIMP-1) and soluble 

intercellular adhesion molecule-1 (sICAM-1) [28]. 

Nevertheless, the benefits of this combination therapy 

are not without controversy. Studies of embolic stroke 

reported no therapeutic enhancement when the two 

treatments were combined [29, 30]. Other studies showed 

that hypothermia yielded neuroprotection in transient 

ischemia, but it gave mixed results in permanent ischemia, 

it gave mixed results in permanent ischemia [5, 7]. Those 

studies suggested that hypothermia may give better results 

when performed with vascular recanalization. 

These results suggest a somewhat inconsistent picture 

of therapeutic benefits of combination therapy, 

highlighting the need for more detailed mechanistic 

insights. 

 

Therapies aiming at increasing brain perfusion (clinical 

evidence) 

 

On the basis of the strong benefits reported for 

thrombolysis or hypothermia on their own, clinical trials 

have explored the safety and efficacy of combining the 

two for treating acute ischemic stroke patients. The 

ICTuS-L trial recruited acute ischemic stroke patients 

within 6h of symptom onset and administered intravenous 

thrombolysis with or without 24-h endovascular cooling 

(33°C) [31]. Based on assessment using the modified 

Rankin Scale (mRS), combination therapy was not 

superior to thrombolysis alone. In another clinical trial, 

thrombolysis was administered to ischemic patients 

within 6 h of symptom onset with or without 1-h local 

hypothermia therapy (32-34°C) on the surface of the 

lesion side. Once again, combination therapy was not 

superior to thrombolysis alone, based on assessments 

using the National Institutes of Health Stroke Scale 

(NIHSS) score or the Barthel Index (BI) [32].  

Therapeutic benefit of combination therapy may 

depend on the relative timing of the procedures: 

performing hypothermia after thrombolysis has been 

shown to reduce edema and hemorrhagic transformation 

[33] as well as improve clinical outcomes [34]. Further 

work is needed to clarify the influence of timing. At the 

very least, the available evidence clearly shows that the 
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combination of hypothermia and thrombolysis is safe and 

feasible in acute ischemic patients. These trials have also 

demonstrated the safety of intra-arterial hypothermia, 

which can rapidly reduce brain temperature significantly 

while avoiding adverse effects associated with systemic 

cooling.  

Endovascular mechanical thrombectomy (intra-

arterial recanalization) is an alternative to plasminogen 

activator therapy that has significantly improved the 

success rate of stroke treatment in recent years [35, 36]. 

One clinical study showed good results when acute 

ischemic stroke patients were subjected, within 8 h after 

stroke onset, to intra-arterial hypothermia followed by 

intra-arterial recanalization. Clots were mechanically 

removed using a stent retriever inserted through an 

angiographic catheter [37]. The combination therapy was 

performed without technical errors in all 26 patients, 

without obvious complications related to the 

hypothermia.  

These clinical studies show the feasibility and safety 

of combining hypothermia with plasminogen activator 

therapy or intra-arterial recanalization in acute stroke 

patients. They also highlight the feasibility of intra-

arterial hypothermia as a potentially safer alternative to 

systemic cooling. Further work is needed to determine 

whether such combination therapies are superior to 

thrombolysis or recanalization on their own.   

 

3. Combination therapy involving anti-

inflammatory factors  

 

Therapies aiming at anti-inflammation (preclinical 

evidence) 

 

This approach has been tested so far only in preclinical 

studies. It is well known that neuroinflammation is a key 

element in the ischemic cascade after cerebral ischemia, 

and that it leads to the damage and death of neurons in the 

subacute phase. This death and especially the release of 

necrotic cell debris triggers inflammation, strongly 

activating phagocytic cells [38]. Induction of mild-to-

moderate hypothermia in the ischemic brain inhibits local 

inflammation and is believed to contribute to 

neuroprotection [6, 39]. In addition, FK506 (Tacrolimus), 

an agent that suppresses the release of inflammatory 

cytokines and decreases NO synthase expression, was 

found to protect animals against ischemic injury [40, 41], 

though its therapeutic window was shorter than 2 h, 

limiting its clinical application. Combining FK506 with 

hypothermia (35°C) prolonged the therapeutic window 

and led to smaller infarct volume and edema than either 

treatment on its own [42].  

The anti-inflammatory effects of minocycline, a 

second-generation, semi-synthetic tetracycline, are 

thought to contribute to its ability to protect neurons from 

ischemic injury in  preclinical models [43]. Various 

studies suggest that it may act by inhibiting the activity of 

inducible nitric oxide synthase (iNOS) [44] and matrix 

metalloproteinase (MMPs) [45], inhibiting the activation 

of caspase-1 and -3 [46], and enhancing the effects of Bcl-

2 [47]. One study involving transient middle cerebral 

artery occlusion found a small, albeit non-significant, 

increase in therapeutic benefit when minocycline was 

combined with hypothermia (33°C, 4 h) relative to either 

treatment on its own [25]. Further work is required to 

explore this combination therapy since a study involving 

permanent middle cerebral artery occlusion found no such 

additive effect [48]. Delaying the use of minocycline can 

still provide neuroprotection, but combining delayed 

minocycline with delayed hypothermia (34-35°C) did not 

enhance protective effects [49]. Clearly the research into 

combination therapy involving hypothermia and anti-

inflammatory treatments is in very early stages. 

 

4. Combination therapy involving statins  

 
Therapies aiming at increasing brain perfusion 

(preclinical evidence) 

 

This approach aims to increase brain perfusion in order to 

protect neurons from ischemic injury, and so far, it has 

been evaluated only in preclinical studies. Statins up-

regulate endothelial nitric oxide (NO) synthase (eNOS) 

and are recommended for treating patients with 

atherosclerotic ischemia [50]. NO is a major vasodilator 

produced by cerebrovascular endothelium to maintain 

sufficient cerebral blood flow and normal brain function 

[51]. Combining atorvastatin with hypothermia (32-33°C, 

2 h) led to smaller infarct volume than either therapy 

separately and it expanded the therapeutic window of 

hypothermia from 3 to 6 h after ischemia [52]. This 

promising approach should be investigated in greater 

detail in preclinical studies and ultimately in clinical trials. 

 

5. Combination therapy involving oxidative stress 

scavengers 

 

Therapies aiming at scavenging free radical (preclinical 

evidence) 

 

This approach, which has been tested so far only in 

preclinical studies, aims to scavenge excess free radicals 

produced when cerebral ischemia and reperfusion injury 

perturb the balance between free radical production and 

degradation [53]. Since 2002, for example, the free radical 
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scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-

one) has been approved for the treatment of stroke in Asia 

[54]. This scavenger is believed to interact with peroxyl 

and hydroxyl radicals, creating a radical intermediate that 

forms stable oxidation products [55, 56]. The combination 

of edaravone and hypothermia (35°C) was found to 

significantly reduce edema and infarct volume in rats 

subjected to transient focal cerebral ischemia [57]; in 

contrast, edavarone on its own reduced edema, while 

hypothermia on its own showed no neuroprotective effect.  

Mannitol is a free-radical scavenger also used 

clinically as a dehydrating agent because it can reduce 

intracranial pressure by creating an osmotic pressure 

gradient [58]. Combining mannitol and hypothermia (32-

34°C) that was begun 1 h before permanent middle 

cerebral artery occlusion and continued for 2 h afterwards 

led to infarct volume similar to that with hypothermia 

alone [59]. Similarly, combining mannitol with 

hypothermia (33°C) lasting 1 h through the ischemic 

process did not enhance the therapeutic effects of 

hypothermia in a rat model of transient ischemia [60]. 

 

6. Combination therapy involving citicoline  

 

Therapies aiming at biosynthesis of cell component 

(preclinical evidence) 

 

This approach, which has been evaluated so far only in 

preclinical studies, takes advantage of the ability of 

citicoline to mimic cytidine-5'-diphosphocholine, which 

is an intermediate in the generation of 

phosphatidylcholine and is essential for the biosynthesis 

of membrane phospholipids [61]. Citicoline restores the 

activity of mitochondrial ATPase and membrane Na+/K+ 

ATPase, and it inhibits the activation of phospholipase 

A2, the formation of free radicals and the release of free 

fatty acids [62, 63]. Citicoline can influence the ischemia 

cascade at different levels to produce neuroprotective 

effects [64]. Combining citicoline with hypothermia 

(34°C) was more effective than either therapy alone at 

suppressing apoptosis [65].  

 

7. Combination therapy involving psychotropic agents 

 

Therapies based on multiple mechanisms (preclinical 

evidence) 

 

The combination of low-dose caffeine and ethanol, 

termed caffeinol, can effectively reduce brain damage in 

rodent models of focal cerebral ischemia [66], perhaps by 

stimulating adenosine-mediated transduction pathways 

that inhibit gamma-aminobutyric acid (GABA) and 

NMDA receptors [67]. The neuroprotective effect of 

caffeinol can be enhanced by combining it with 

hypothermia (35°C) in animal models of transient 

occlusion of the middle cerebral artery [68]. The 

therapeutic window needs to be determined carefully, 

since administering caffeinol daily for two weeks before 

ischemic stroke onset eliminated its neuroprotective 

effects. 

 

Therapies based on multiple mechanisms (clinical 

evidence) 

 

In addition to preclinical studies, the combination of 

caffeinol and hypothermia has been explored in patients. 

In one study in which caffeinol, tissue plasminogen 

activator and hypothermia (33-35°C) induced from 5 to 

24 h after stroke onset were given to patients with acute 

ischemic stroke, caffeinol did not enhance the effects of 

plasminogen activator [69].  

 

Therapies aim at reducing energy consumption 

(preclinical evidence) 

 

Phenothiazines are among the oldest synthetic anti-

psychotic drugs. They block dopaminergic receptors to 

induce neuroleptic effects, but they also reduce energy 

consumption by inhibiting calmodulin, protein kinase C, 

and P-glycoprotein transport, suppressing cell 

proliferation [70, 71]. Combining chlorpromazine and 

promethazine (both 1  mg/kg) with 5-min hypothermia 

(35°C) at the initiation of reperfusion following 2-h 

occlusion of the middle cerebral artery led to smaller 

infarct volume and long-term neurological deficit [72]. In 

contrast, neither treatment on its own showed 

neuroprotection.  

 

8. Combination therapy involving anesthetic-related 

agents  

 

Therapies aiming at reducing energy consumption 

(preclinical evidence) 

 

Numerous preclinical studies have explored the 

combination of hypothermia with barbiturates and volatile 

anesthetics, which on their own have been shown to 

protect against cerebral damage in animal models of focal 

ischemia [73, 74]. These drugs may exert protective 

effects by reducing cellular energy requirements, 

improving blood flow into ischemic brain tissue, and 

counteracting oxidative stress and excitotoxicity [75, 76].  

Methohexital administered 30 min before stroke 

reduced infarct volume and neurological score in a 

preclinical study, and these benefits were not enhanced by 

adding hypothermia [77]. In a study involving cortical 



Zhang Z., et al                                                                                             Hypothermia combined with other strategies 

Aging and Disease • Volume 9, Number 3, June 2018                                                                               512 

 

neuron cultures exposed to prolonged hypoxia (24-48 h) 

[78], the combination of thiopentone sodium with mild 

hypothermia (32°C) or deep hypothermia (22°C) 

provided greater neuroprotection than either therapy on its 

own. Xenon, a potent anesthetic, has shown 

neuroprotective effects in adult rats subjected to transient 

brain ischemia [79]. The mechanisms underlying this 

neuroprotection may involve interaction with NMDA 

receptors, down-regulation of cytosolic pro-apoptotic Bax 

protein, up-regulation of Bcl-xL expression and increased 

phosphorylation of transcription factor cAMP-response 

element binding protein [80, 81]. Xenon and hypothermia 

have shown additive therapeutic effects in hypoxia-

ischemia models [82, 83], as well as in a model of 

transient middle cerebral artery occlusion [84]. 

Administering the α2 agonist dexmedetomidine before 

ischemia significantly reduced subsequent levels of 

plasma catecholamines and decreased neurological 

comorbidities [85], potentially by reducing oxidative 

stress as well as inhibiting inflammation [86] and 

apoptosis [87]. Combining dexmedetomidine (given 30 

min before ischemia) with hypothermia (35°C) from 1 h 

before ischemia until 1 h after reperfusion onset showed 

no additional benefit relative to either therapy on its own 

[88].  

The anesthetic dantrolene, an inhibitor of ryanodine 

receptors, shows good preclinical promise for enhancing 

the therapeutic benefits of hypothermia after stroke. It 

blocks the release of Ca2+ stores from endoplasmic 

reticulum, protecting neurons from oxygen-glucose 

deprivation toxicity [89] and apoptosis [90]. Dantrolene 

can also accelerate body temperature cooling [91] and 

reduce incidence of shivering and shivering 

thermogenesis [92], both common side effects of 

hypothermia. For these reasons, dantrolene has been 

approved for treating malignant hyperthermia after 

anesthesia. One study found that combining dantrolene 

with hypothermia (33°C) helped protect cerebral cortex 

neurons from oxygen-glucose deprivation, increasing 

neuronal survival and mitochondrial membrane potential 

as well as reducing DNA fragmentation and apoptosis 

[93].  

 

9. Combination therapy involving normo- and 

hyperbaric oxygen  

 

Therapies aiming at increasing oxygen supply 

(preclinical evidence) 

 

One of the initiators of ischemic pathophysiology is 

shortage of oxygen to the brain. Normobaric hyperoxia 

(NBO), induced by breathing air containing 21-100% 

oxygen at a pressure of 1 absolute atmosphere, effectively 

reduced infarct volume and neurological deficits in 

rodents following acute ischemic stroke [94, 95]. NBO 

can also reduce BBB permeability and extend the 

therapeutic window of reperfusion therapy [96, 97]. In 

animals subjected to 1-h occlusion of the middle cerebral 

artery, the combination of tissue plasminogen activator-

induced reperfusion, NBO (60%) and 3-h hypothermia 

(33°C) starting 1 h after infarction reduced infarct 

volume, neurological deficit and production of reactive 

oxygen species [98]. These effects were associated with 

an increase in pyruvate dehydrogenase activity and 

protein expression. Combining NBO with hypothermia 

reduced reperfusion injury by modulating NADPH 

oxidase activity and attenuating hyperglycolysis [99, 

100].  

Hyperbaric oxygen (HBO) may provide superior 

neuroprotection than NBO during transient and 

permanent cerebral ischemia [101, 102]. At the same time, 

HBO has been shown to induce oxidative stress in animal 

studies, likely reflecting prolonged exposure to highly 

concentrated oxygen [103, 104]. Performing HBO (2 

absolute atmospheres, 100% oxygen, 60 min) during 

rewarming from moderate hypothermia (31°C, 60 min) 

preserved CA1 pyramidal neurons better than 

hypothermia alone [105]. 

 

10. Combination therapy involving granulocyte 

colony-stimulating factor  

 

Therapies aiming at inducing arteriogenesis and brain 

perfusion (preclinical evidence)  

 

Hematopoietic cytokines, by binding receptors on the 

membranes of neurons and glial cells in the central 

nervous system, stimulate intracellular signaling 

pathways that can help protect against injury and/or 

support neurogenesis [106, 107]. The cytokine 

granulocyte colony-stimulating factor (G-CSF) stimulates 

growth and differentiation of hematopoietic cells and is 

clinically used to treat chemotherapy-induced neutropenia 

[108]. It induces arteriogenesis in the hypo-perfused brain 

of rats and mice, restores cerebral blood flow, and 

mitigates stroke severity [109-112]. G-CSF may exert 

neuroprotective effects by mobilizing stem cells, 

preventing apoptosis, promoting neurogenesis, and 

reducing inflammation [113, 114]. Combining G-CSF 

with mild, 30-min hypothermia (33.5-35°C) initiated at 

reperfusion significantly reduced mortality, edema and 

neurological deficit after transient middle cerebral artery 

occlusion [115].  

 

11. Combination therapy involving growth factors  
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Therapies based on multiple pretection (preclinical 

evidence) 

 

Insulin-like growth factors (IGFs) are peptide hormones 

with significant structural homology to insulin. IGF-1 is a 

potent cardiomyocyte growth and survival factor [116], 

which can regulate cell proliferation and inhibit cell 

apoptosis and necrosis after ischemic stroke [117-119]. 

The combination of IGF-1 and hypothermia was tested in 

a study in which rats were subjected to global ischemia 

lasting 8 min. Afterwards, animals were treated with 

hypothermia (32°C, 4 h) and/or IGF-1 (0.6 U/kg), then 

spatial memory was assessed at 21 days and CA1 neurons 

were counted on day 7 or 28 [120]. The combination of 

both treatments starting at the onset of reperfusion 

preserved CA1 structure and memory at 28 days better 

than either treatment on its own. On the contrary, another 

study indicated that after cerebral ischemia lasting 30 min, 

white matter damage was similar between animals treated 

with the combination of IGF-1 (3 µg, ventricularly) and 

hypothermia (30-33°C) from 5.5 h after ischemia until 72 

h after ischemia, and animals treated with hypothermia 

alone, based on immunohistochemistry and numbers of 

caspase 3-positive cells [121]. 

 

12. Combination therapy involving brain-derived 

neurotrophic factor (bdnf)  

 

Therapies based on multiple pretection (preclinical 

evidence) 

 

Brain-derived neurotrophic factor (BDNF) plays an 

important role in proliferation, differentiation, 

maintenance, plasticity, survival and neurite extension in 

the central and peripheral nervous systems [122]. BDNF 

administered intraventricularly or intravenously can 

protect the brain from transient or permanent ischemic 

insult [123, 124]. It may exert these effects by countering 

the activity of Bax and Bcl-2 proteins within the ischemic 

penumbra [125], inhibiting glutamate and NO 

neurotoxicity [126] and reversing NMDA-induced 

inactivation of protein kinase C [127]. In a model of the 

hyperacute phase of permanent middle cerebral artery 

occlusion, combining BDNF [300 mg/(kg/h), 2 h) with 

hypothermia (33°C) at 30 min after occlusion onset 

reduced post-ischemic glutamate concentration and 

infarct volume [128].  

 

13. Combination therapy involving magnesium and 

tirilazad  

 

Therapies aiming at reducing exitotoxicity (preclinical 

evidence) 

 

Mg2+ is a non-competitive endogenous NMDA antagonist 

[10], and tirilazad (U-74006F) is a non-glucocorticoid, 

21-aminosteroid that inhibits lipid peroxidation. Tirilazad 

is thought to inhibit iron-dependent lipid peroxidation 

within membranes through free-radical scavenging of 

lipid peroxyl and hydroxyl groups. This reduces the 

formation of hydroxyl radicals and maintains the levels of 

endogenous antioxidants [129]. Administering tirilazad 

before ischemia reduced stroke lesion size, neuronal 

necrosis, brain injury, and cerebral edema in rodents 

exposed to permanent or transient ischemia, while 

administering it after ischemia provided no protection 

[130, 131]. The combination of Mg2+ and tirilazad given 

pre-ischemia resulted in better neurologic function and 

smaller infarct volume [132]. Combining these two agents 

with 3-h hypothermia (33°C) starting 20 min before 

transient ischemia further decreased subsequent infarct 

volume and improved electroencephalography amplitude 

and neurological function [133]. The same researchers 

also showed that the triple combination of Mg2+, tirilazad 

and hypothermia gave better results than the combination 

of nimodipine, mannitol, dexamethasone, and 

methohexital [134]. At least in a model of transient 

infarction, the triple combination of Mg2+, tirilazad and 

hypothermia showed potent neuroprotection when 

administered before ischemia onset or up to 3 h afterwards 

[135].  

 

14. Combination therapy involving albumin  

 

Therapies based on multiple pretection (preclinical 

evidence) 

 

This approach, which has been evaluated only in 

preclinical studies, is based on the ability of albumin to 

inhibit endothelial apoptosis and to act as an antioxidant 

[136]. It also causes hemodilution, helps maintain 

microvascular permeability and regulates the enzyme 

pyruvate dehydrogenase. Administering low-dose cold 

albumin (0.5 g/kg, 0°C) via the middle cerebral artery to 

induce 45-min local hypothermia (30°C) in the ischemic 

lesion led to smaller infarct volume and better 

neurological outcomes than normothermia albumin  

[137].  

 

15. Combination therapy involving decompressive 

craniectomy  

Therapies aiming at decreasing intracranial pressure 

(preclinical evidence)  

 

Decompressive craniectomy, in which part of the skull is 

removed and the dura is opened, can reduce intracranial 
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pressure; edema is a lethal complication of malignant 

supratentorial stroke, and it leads to high mortality [138]. 

This surgical procedure is superior to conservative 

treatment at reducing mortality [139]. While hypothermia 

on its own can also reduce intracranial pressure, the 

pressure can rebound during or after rewarming and cause 

lethal herniation [140]. Combining 5-h hypothermia 

(32°C) and decompressive craniectomy in rat models of 

permanent middle cerebral artery occlusion significantly 

reduced infarct volume and improved neurological 

outcome [141]. Applying this combination therapy even 

up to 6 h after stroke gave better results than either therapy 

on its own, based on infarct volume, neurological score 

and BBB integrity [142].  

 

Therapies aiming at decreasing intracranial pressure 

(clinical evidence)  

 

The combination of hypothermia and decompressive 

craniectomy has also been evaluated in clinical trials. The 

combination of surgery and hypothermia (35°C) induced 

immediately afterward led to better clinical outcomes than 

surgery alone in patients with malignant supratentorial 

stroke [143].  

 

16. Combination therapy involving protein 

 

Therapies aiming at anti-apoptosis (preclinical 

evidence)  

 

This approach, which has been evaluated only in 

preclinical studies, takes advantage of the fact that Bax 

promotes apoptosis, whereas Bcl-2 and Bcl-xL inhibit 

apoptosis by blocking the translocation of cytochrome C. 

Substituting three amino acids in Bcl-xL enhances the 

anti-apoptotic activity, and the resulting variant, called 

FNK, can be fused to the protein transduction domain of 

HIV/Tat protein and efficiently introduced into cells 

[144]. In cell culture studies, FNK provided greater 

protection than Bcl-xL against oxidative stress, calcium 

ionophores, growth factor withdrawal, heat, or treatment 

with anti-Fas agents, cell cycle inhibitors or a protein 

kinase inhibitor [145]. FNK has been shown to ameliorate 

ischemic damage in vivo and in vitro [146]. Combining 

FNK with mild, 2-h hypothermia (35°C) starting from 

ischemia onset until reperfusion enhanced 

neuroprotection in rats following transient middle 

cerebral artery occlusion, potentially by inhibiting pro-

apoptotic pathways mediated by caspase-12, and not by 

promoting anti-apoptotic pathways mediated by Bcl-2 

[147].  

 

17. Gene-based combination therapy  

 

Therapies aiming at anti-apoptosis (preclinical 

evidence) 

 

The rationale of gene therapy is to insert genes encoding 

neuroprotective proteins into neurons to promote their 

survival against cerebral insults [148]. Such therapy can 

lead to protective effects only after hours or even days. 

Administering simplex virus (HSV) vector expressing 

Bcl-2 led to neuroprotection via Bcl-2 overexpression 

when it was given 1.5 h after stroke but not 5 h after stroke 

[149]. To prolong the therapeutic window of gene 

therapy, researchers have combined it with hypothermia. 

Indeed, in one study, combining Bcl-2 gene treatment 

with hypothermia (33°C) induced after ischemia 

prolonged the therapeutic window of Bcl-2 

oxerexpression from 1.5 h to 5 h, and it blocked the 

release of cytochrome C up to 48 h after ischemia [150].   

 

Conclusions 

 

The combination of diverse neuroprotective strategies 

with hypothermia has been extensively investigated for 

the alleviation of ischemic injury arising from cardiac 

arrest, hypoxic–ischemic encephalopathy or spinal cord 

impairment. The literature applying such combination 

therapy to focal stroke is more limited. In addition, studies 

of such combination therapy often report inconsistent 

results about the efficacy for treating stroke (Table 2). 

Several differences among studies may help explain these 

discrepancies, such as how stroke was modeled, when 

treatment was initiated relative to stroke, how long 

treatment lasted, and what was the depth of cooling. As 

far as neuroprotective drugs are concerned alone, 

heterogeneity of human stroke and lack of methodological 

agreement between preclinical and clinical studies may 

lead to failure of translating experimental success to 

clinical. Another potential problem is that drug 

metabolism may differ at cooler temperatures from at 

normal body temperature. The finding by several studies 

that combination therapy failed to improve on the results 

of monotherapy may reflect in some cases a “ceiling 

effect”: the monotherapy achieved the optimal efficacy, 

such that additional benefit from the other therapy was 

undetectable.  
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Table 2. Summary of outcomes of neuroprotective treatments combined with therapeutic hypothermia in ischemic 

stroke. 

 
 

Reference Permanent(P)/ 

Transient (T) 

Ischemia 

Temperature 

degree(°C) 

Combined Treatment Aim of study Yes /No 

Animal       
[10] P 33 Mk-801 Enhanced effect No 

[11] T 30 Mk-801 Effective Yes 

[12] T 30 Mk-801 Enhanced effect Yes 

[18] T 34 Selfotel Enhanced effect  No 

[19] Repetitive  34 Selfotel Enhanced effect Yes 

[21] T 35.4 Magnesium Enhanced effect Yes 

[22] P 35 Magnesium Enhanced effect Yes 

[23] T 33-34 Magnesium Enhanced effect Yes 
[24] P 35  Magnesium Enhanced effect No 

[27] T 33 t-PA Reduce the side effect of t-PA Yes 

[28] T 34 t-PA Reduce the side effect of t-PA  Yes 

[29] T 32 Delayed t-PA Enhanced effect No 

[30] T 33 t-PA Enhanced effect No 

[42] T 35 Tacrolimus Enhancec /expand time window of 

tacrolimus 

Yes 

[52] T 32-33 Atorvastatin Enhanced effect / 
expand time window of hypothermia 

Yes 

[57] T 35 Edaravone Enhanced effect Yes 

[65] T 34 Citicoline Enhanced effect Yes 

[25] T 33 Minocycline Enhanced effect Yes  

[48] P 34 Minocycline Enhanced effect No 

[49] P 34–35 Minocycline Enhanced effect No 

[69] T 35 Caffeinol Enhanced effect Yes 
[72] T 35 Chlorpromazine and Promethazine Enhanced effect Yes 

[77] T 33 Methohexital Enhanced effect No 

[84] T 36 Xenon Enhanced effect Yes 

[88] Incomplete 35 Dexmedetomidine Enhanced effect No 

[98] T 33 
t-PA and Normobaric Oxygen (NBO)  

Enhanced effect Yes 

[99] 

[105] 

T 

- 

33 

31 

t-PA And normobaric oxygen (NBO) 

Hyperbaric oxygenation (HBO2)  

Enhanced effect 

Enhanced effect 

Yes 

Yes 

[100] T 33 t-PA and normobaric oxygen (NBO)  reduce the side effect of t-PA  Yes 
[115] T 33.5-35 Granulocyte–Macrophage Colony-

Stimulating Factor (G-CSF) 

Enhanced effect Yes 

[120] T 32 Insulin-Like Growth Factors -1(IGF-1) Enhanced effect Yes 

[121] T 30-33 Insulin-Like Growth Factors -1(IGF-1) Enhanced effect No 

[128] P 33 Brain-Derived Neurotrophic Factor 

(BDNF) 

Enhanced effect Yes 

[133] T 33 Magnesium and Tirilazad Enhanced effect Yes 

[134] T 33 Magnesium and Tirilazad Effective Yes 
[135] T 33 Magnesium and Tirilazad Enhanced effect Yes 

[59] P 32-34 Mannitol Enhanced effect No 

[60] T 33 Mannitol Enhanced effect No 

[137] T 30-31 Albumin Enhanced effect Yes 

[141] P 32 Decompressive Craniectomy  Enhanced effect Yes 

[142] P 29-31 Decompressive Craniectomy Enhanced effect Yes 

[147] T 35 PTD-FNK  Enhanced effect Yes 
[150] T 33 Gene of Bcl-2  Expand time window/Enhanced effect Yes 

Neuronal 

culture 

     

[78] - 22/32 Thiopentone Sodium (TPS) Enhanced effect Yes 

[93] - 33 Dantrolene Enhanced effect Yes 

Clinical      

[31] T 33 t-PA Enhanced effect No 

[32] T 32-34 t-PA Enhanced effect No 
[33] T <35.5 t-PA Feasible/ improve outcome Yes 

[34] T 34.5 t-PA Reduce the side effect of tPA  Yes 

[37] T decrease 2 

in brain 

Intra-Arterial Recanalization Feasible and safe Yes 

[69] T 33-35 Caffeinol and T-PA Feasible Yes 

[143] P 35 Decompressive Craniectomy  Enhanced effect Yes 
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An important consideration when assessing evidence 

about efficacy of combination therapy is whether the 

study was conducted in preclinical models or in patients. 

Hypothermia has shown clear neuroprotective effects in 

animal studies, but not sure in clinical trials. Hypothermia 

is induced differently in preclinical animal models and in 

patients and hypothermia complications such as shivering 

and infections are generally ignored in the laboratory but 

can pose substantial problems in the clinic. At the very 

least, the studies reviewed here make clear that 

hypothermia induction is feasible in stroke patients, 

though the optimal conditions still need to be explored.  

This review also illustrates the broad range of 

neuroprotective treatments that have shown promise in 

preclinical studies, but have not yet been evaluated in the 

clinic or have failed to show success in patients. So far, 

only tissue plasminogen activator, intra-arterial 

recanalization, caffeinol and decompressive 

hemicraniectomy have been combined with hypothermia 

in stroke patients. Much more work remains to be done, 

which should take into account the heterogeneity of 

human stroke.  
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