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Abstract

To meet the ever-growing demand for effective, safe, and affordable protein therapeutics, decades 

of intense efforts have aimed to maximize the quantity and quality of recombinant proteins 

produced in CHO cells. Bioprocessing innovations and cell engineering efforts have improved 

product titer; however, uncharacterized cellular processes and gene regulatory mechanisms still 

hinder cell growth, specific productivity, and protein quality. Herein we summarize recent 

advances in systems biology and data-driven approaches aiming to unravel how molecular 

pathways, cellular processes, and extrinsic factors (e.g. media supplementation) influence 

recombinant protein production. In particular, as the available omics data for CHO cells continue 

to grow, predictive models and screens will be increasingly used to unravel the biological drivers 

of protein production, which can be used with emerging genome editing technologies to rationally 

engineer cells to further control the quantity, quality and affordability of many biologic drugs.
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Introduction

Over the past few decades, Chinese hamster ovary (CHO) cells have emerged as the primary 

host for the biopharmaceutical industry. CHO cell lines were derived from the same hamster 

in 1957, and variants of the cell line have (e.g., CHO-K1, CHO-S and DG44) been further 

developed to meet different production requirements (see [1,2] for detailed genetic and 

phenotypic differences across the common CHO cell lines). These cell lines have been 

adopted by industry for various reasons, including the development of DHFR-deficient CHO 

cell line including which enable efficient transgene transfection and amplification. They also 

exhibit excellent capabilities to perform human-compatible post-translational modifications 

(PTMs), and they are highly adaptable to suspension-growth culture conditions in 

chemically-defined media. They also exhibit favorable safety profiles, e.g., being less prone 

to virus infection [3–5]. Over the past several decades, extensive efforts have aimed to 

increase the productivity of these cells to reduce the costs associated with culturing the cells 

and purifying product. Thus, innovations have effectively increased the yield of recombinant 

proteins (e.g., monoclonal antibodies) by three orders of magnitude, from 10-50mg/L in the 

1980s to >10g/L in the 2010s [6,7].

Historically, at least three waves of innovations have offered additional toolboxes to further 

enhance biotherapeutic production (Figure 1) . The first wave significantly improved the 

volumetric yield, and leveraged innovations in bioprocessing techniques, media optimization 

[8] and tools that improve production by engineering the transgene and vectors (e.g., to 

optimize mRNA copy number and codon usage). The second wave involves targeted 

engineering of the host cells to enhance productivity and per-cell yield [9]. The third wave is 

beginning to use systems-level engineering to boost protein productivity by modulating 

cellular pathways to optimize cellular processes (e.g., metabolism [10]). It is being enabled 

by systems biology models [11,12], large-scale omics datasets [13,14]), and combinatorial 

genome editing [15,16], which are discovering and leveraging more comprehensive 

knowledge about the cell pathways influencing protein quantity and quality. Each wave 

continues to contribute novel innovations, and are resulting in improved protein production 

(Figure 2).
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In this review, we mention a few important innovations in each wave, and focus primarily on 

emerging efforts in systems biology and data-driven approaches that can advance our 

understanding of the cellular mechanisms contributing to recombinant protein production in 

CHO cells. These techniques are starting to guide efforts to engineer the cellular pathways 

and improve the product quality and protein productivity. These emerging efforts are 

ushering in an era of rational cell factory design in mammalian cell bioprocessing.

Wave 1: Bioprocess and transgene expression optimization

Bioprocess and transgene expression optimization has improved recombinant protein titer in 

CHO cells by ∼100-fold over the past few decades. This increase in volumetric yield has 

been primarily achieved through media optimization [17], clonal selection processes [18], 

expression vectors [19], genetic elements [20], bioprocess controls [21], and bioreactor 

design [22]. Recent innovations further enhance production through high-throughput assays 

to test everything from genetic elements to media conditions [23], leveraging tools from 

robotics to microfluidics [24].

Wave 2: Targeted engineering of CHO cells

Optimizing these extrinsic factors has improved titers, often by achieving higher cell 

densities; therefore, opportunities remain to further enhance the per-cell yield by directly 

engineering the cells [25]. Several cellular processes are associated with protein production, 

such as metabolism [26] and the secretory pathway [27]. Thus, following the success from 

bioprocess optimization came the second wave of strategies to engineer host cell lines. The 

advent of targeted genetic modification technologies, including knock-in strategies, have 

enabled the study of genes that improve protein production [28]. For example, 

overexpression of secretory pathway elements has been used to locate the faulty step in 

protein secretion while comparing the expression of easy- and difficult-to-express proteins 

[29]. Additional tools, such as ZFNs, TALENs [30] and CRISPR/Cas9 [15] enable efforts to 

edit individual host cell genes to fine-tune cell physiology, and precisely control product 

quality, such as glycosylation [31,32]. Further improvements to protein production could be 

achieved as additional emerging technologies are applied to CHO to activate or repress host 

cell genes with the CRISPRa/i system [33] and targeted epigenetic changes [34].

Wave 3: Characterizing and Engineering the CHO Protein Secretion System

Genome-wide analysis of protein secretion through omics technologies

The advances in the first two waves have provided powerful tools to enhance protein 

production. However, the synthesis and secretion of a single protein depends the concerted 

function of hundreds or thousands of other proteins. Thus, truly effective engineering 

strategies may require multiple genetic changes to the host cell. To achieve this, efforts have 

been made to comprehensively study the molecular changes that occur to enable high rates 

of protein secretion, thus shedding light on molecular and physiological factors making 

certain cells high producers.
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Omics data have been used extensively to study productive clones. For example, a 

differential proteomic analysis identified the up-regulation of glutathione biosynthesis and 

the down-regulation of DNA replication to be characteristic of high-producing CHO cells 

[35]. Likewise, transcriptomic profiling of various CHO cell lines indicated that certain 

favorable metabolic and glycosylation patterns are associated with differential expression of 

key genes [36]. Ribosome profiling and polysome profiling have also been used to quantify 

translation of recombinant proteins and the endogenous mRNA in antibody-producing CHO 

cells [37,38].

Metabolite profiling of CHO can improve production by measuring metabolite accumulation 

and nutrient consumption. Indeed, several studies have profiled both extracellular and 

intracellular metabolites in CHO cell cultures with different growth media to connect cell 

culture media, productivity and growth rate [39–41]. Metabolomics has also successfully 

identified novel apoptosis-inducing metabolites that accumulate in the culture media [42].

These and many additional studies, show that omics data have emerged as valuable assays 

that provide insights into which genes, proteins, metabolites are associated with desired 

traits in protein production in CHO cells. Furthermore, they are helping to identify potential 

targets for cell engineering and bioprocess optimization for enhanced protein production.

Mapping out the CHO secretory pathway

The aforementioned high-throughput omics experiments often provide many differentially 

expressed genes, and it can be unclear which genes are most responsible for the 

improvements in production. Since bottlenecks in the secretory pathway frequently limit 

recombinant protein production [43], analysis of omics data in the context of this pathway 

can be informative. Recent progress in high-throughput omics technologies now allow 

researchers to systematically map out and dissect portions of the secretory pathway, such as 

protein synthesis, the unfolded protein response, glycosylation, and metabolism.

Various omics technologies are helping identify components of the secretory machinery. For 

example, a systematic discovery of genes involved in protein folding was carried out in yeast 

with synthetic genetic arrays [44]. More recently, a similar screen conducted at the single-

cell level with combinatorial CRISPR interference revealed the bifurcation of unfolded 

protein response in unprecedented detail [45].

Such studies are fueling efforts to connect the known secretory machinery components. A 

network reconstruction of the CHO secretory pathway characterized the functional roles and 

localizations of the secretory machinery components, allowing better integration of omics 

data in the context of the secretory pathway [46]. Similarly, the machinery required for 

protein synthesis, post-translational modification, and secretion of individual recombinant 

proteins has been mapped out for mammals, enabling insights into product-specific needs 

[47].

Another component of the CHO secretory pathway required for most biotherapeutics is 

human-compatible glycosylation [48]. Recent advances in glycomics have enabled the 
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profiling of glycan structures under various glycosyltransferase genes knockouts [31] and 

lectin binding preference [49] in CHO.

Developing predictive models for elevating cell productivity and product quality

Efforts to map out the protein secretion pathway are enabling more informative analyses of 

omic datasets. Such resources provide a platform for systems biology and machine learning 

algorithms to understand cell mechanisms for the production of recombinant proteins in 

CHO cells. Modeling efforts centered around the mechanisms in CHO protein production 

usually fall into one of the two frameworks: knowledge-based parametric models, and data-

driven statistical models.

The knowledge-based modeling paradigm links the genotype to phenotype on a mechanistic 

basis. With careful curation, the models could help distill biological causation from observed 

data correlation. Genome scale models (GEMs) directly couple cellular functions such as 

cell growth and protein synthesis to enzyme activities [50]. The most comprehensive 

genome scale metabolic reconstruction in CHO [12] has provided recent insights into 

changes in lipid metabolism in antibody-producing CHO cells [51]. Apart from the 

stoichiometrically motivated GEMs, kinetic models characterize the dynamics of the cellular 

processes. These models have provided valuable insights in smaller-scale systems such as 

glycolysis and the pentose phosphate pathways [52]. N- and O-linked glycosylation profiles 

can also be modelled [53] through rule-based kinetic [54] and Markov models [55,56]. In 

addition, specific productivity was found to influence mAb glycosylation through an 

integrated model that couples glycosylation with cellular metabolism and secretory capacity 

[57].

Data-driven models do not rely on labor-intensive human curation, and they make fewer 

assumptions about the host cells. Therefore, these methods are particularly valuable in 

poorly characterized systems. Such models have been deployed to study the productivity of 

recombinant proteins and antibodies using CHO gene expression [58], product sequence 

features [59] and measurements of various bioprocess parameters [60]. Other bioprocess 

variables such as lactate consumption can also be accurately predicted [61]. One dilemma 

facing data-driven models is the shortage of high-coverage experimental data, used as 

training sets [62]. As biological data can be difficult or expensive to obtain, having a 

community-driven repository for various types of omics data can be one way to mitigate the 

shortage of training data [63,64].

Both of these powerful modeling frameworks are enabling the simulation and analysis of 

cellular responses influencing recombinant protein production in CHO cells. Furthermore, 

they are facilitating detailed analysis and integration of multiple omics data types. With the 

rather recent introduction of systems biology and machine learning methods to recombinant 

production in CHO cells, we expect to see a more widespread adoption of these tools for 

guiding rational design of CHO cell factories.
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Conclusion

While innovations have driven a 1000-fold increase in protein titer in CHO cells, many 

challenges remain surrounding the production of many therapeutic proteins at high specific 

cellular productivity and high quality. Thus, further innovations in bioprocess optimization 

are needed to optimize expression conditions. Similarly, to speed up screening efforts, we 

need higher efficiency in genome editing strategies and high expression targeted integration 

sites for transgenes. Finally, omics studies and model-guided approaches will continue to 

map out the cellular pathways influencing the quantity and quality of secreted proteins. 

Fundamentally, a better general understanding of CHO cells is needed. For example, clonal 

variation and genomic instability in CHO lead to variable protein production over time. A 

recent multi-omics study showed that ∼40% of differentially expressed genes in a producer 

cell line contained different copy number variations, suggesting CNVs as a driver of 

transcriptional activation as opposed to epigenetic or regulatory changes [51]. Thus, to 

unravel which genetic and epigenetic changes underlie desired protein production traits, 

large scale genetic screens coupled with multi-omics data and computational models 

[45,65,66] will be invaluable to understand and engineer desired characteristics such as 

specific productivity, viability, morphology, and growth rate for large-scale bioprocesses. We 

anticipate that such data and novel computational tools will be increasingly valuable to 

therapeutic protein production.
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Highlights

• 3 waves of innovation have enhanced protein production in CHO cells.

• Systems-level methods are now unravelling drivers of protein production

• Predictive models will facilitate rational cell engineering for protein 

production
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Article Highlight

*The art of CHO cell engineering:

A comprehensive overview of the targeted engineering efforts in CHO cells.

*What can mathematical modelling say…

A review of the development of the field of modelling CHO metabolism and protein 

glycosylation.

**A consensus genome-scale…

The first genome-scale reconstruction of the CHO metabolic pathways.

*high-throughput screening and selection of …

A summary of the cell line selection methods that isolate high-producing clones with a 

particular focus on the recent development of high-throughput essay techniques.

**Engineered CHO cells for production of diverse…

19 glycosyltransferases were knocked out (singly and combinatorially) in CHO cells 

stably expressing EPO. The resulting glycosylation patterns were subsequently profiled.

*ribosome profiling-guided depletion…

Ribosome profiling provided a genome-wide view of protein translation in an IgG-

producing CHO cell line.

*A multiplexed single-cell CRISPR

Key genes regulating the unfolded protein response are identified using a genome-scale 

CRISPR interference screen.

**Network reconstruction of the mouse secretory pathway…

This secretory pathway network reconstruction for CHO facilitates the interpretation of 

omics data related to protein secretion, and identifies targets for engineering improved 

growth and IgG production.

*A markov chain model for N-linked protein glycosylation

A non-kinetic low-parameter Markov model for N-glycosylation used glycosyltransferase 

reaction rules to predict glycoprofiles following in glycoengineering efforts.

**Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a 

Recombinant CHO Cell Line

The authors proposed a workflow combining multi-omics data and genome scale models 

to study the genotypic and phenotypic differences between a wild-type and recombinant 

antibody-producing Chinese hamster ovary (CHO) cell line.

*Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome 

using a novel meta-analysis workflow
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The authors compiled the CHO bibliome: a repository covering all published CHO cell 

studies from 1995 to 2015, and demonstrated that data can be extracted for further 

analysis.
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Fig 1. Three waves of different technologies have enabled continued improvement of 
recombinant protein production in CHO cells
(a) Recombinant protein production has steadily improved over the past few decades thanks 

to innovations in bioprocessing, targeted genetic manipulation of cells, and systems biology 

approaches. Together, novel technologies, approaches and discoveries in each field have 

been of great importance. (b) A comprehensive survey of the CHO bioprocessing literature 

[60] highlights the historical development of the field in CHO cell research. The first wave-

bioprocess development has been driving most of the earlier studies, while the targeted 

genetic manipulation, omics studies, and modeling efforts have become increasingly 

important after the mid-2000s with the increased prevalence of genomic resources, genome 

editing technologies, and development of novel computational models and algorithms.
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Fig. 2. Published specific productivity, cell density and total product titer has improved steadily 
over the years
The trend for three major productivity metrics reported by literature from 2000- 2010 [60]. 

As a result of development in bioprocessing and feeding strategies, the volumetric yield has 

been greatly improved. The introduction of cell engineering to CHO has further improved 

the per-cell productivity since the mid-2000s.

Kuo et al. Page 15

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical abstract
	Introduction
	Wave 1: Bioprocess and transgene expression optimization
	Wave 2: Targeted engineering of CHO cells
	Wave 3: Characterizing and Engineering the CHO Protein Secretion System
	Genome-wide analysis of protein secretion through omics technologies

	Mapping out the CHO secretory pathway
	Developing predictive models for elevating cell productivity and product quality

	Conclusion
	References
	Fig 1
	Fig. 2

