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Abstract
Mice deficient in epidermal growth factor receptor (Egfr−/− mice) are growth retarded and exhibit severe bone defects that
are poorly understood. Here we show that EGFR-deficient mice are osteopenic and display impaired endochondral and
intramembranous ossification resulting in irregular mineralization of their bones. This phenotype is recapitulated in mice
lacking EGFR exclusively in osteoblasts, but not in mice lacking EGFR in osteoclasts indicating that osteoblasts are
responsible for the bone phenotype. Experiments are presented demonstrating that signaling via EGFR stimulates osteoblast
proliferation and inhibits their differentiation by suppression of the IGF-1R/mTOR-pathway via ERK1/2-dependent up-
regulation of IGFBP-3. Osteoblasts from Egfr−/− mice show increased levels of IGF-1R and hyperactivation of mTOR-
pathway proteins, including enhanced phosphorylation of 4E-BP1 and S6. The same changes are also seen in Egfr−/− bones.
Importantly, pharmacological inhibition of mTOR with rapamycin decreases osteoblasts differentiation as well as rescues the
low bone mass phenotype of Egfr−/− fetuses. Our results demonstrate that suppression of the IGF-1R/mTOR-pathway by
EGFR/ERK/IGFBP-3 signaling is necessary for balanced osteoblast maturation providing a mechanism for the skeletal
phenotype observed in EGFR-deficient mice.

Introduction

Skeletal development requires complex and coordinated
interplay between mesenchymal cells—chondrocytes and
osteoblasts—at various stages of differentiation. The suc-
cession of events whereby osteoblast formation follows
chondrocyte differentiation resulting in bone formation in
long bones of vertebras is termed “endochondral ossifica-
tion” [1]. Differentiation of osteoblasts is induced by up-
regulation of specific transcription factors accompanied by
the expression of factors that facilitate mineralized extra-
cellular matrix formation [2].

Genetic ablation of the epidermal growth factor receptor
(EGFR) in mice revealed its intricate role during embryonic
and postnatal development [3, 4]. Mice lacking the EGFR
(Egfr−/−) have major organ defects and die either in utero or
shortly after birth, depending on the genetic background [3-
5]. Among other developmental abnormalities EGFR-
deficient mice are severely growth retarded and exhibit
skeletal defects [6]. We have previously reported that long
bones of EGFR-deficient mice display a greatly increased
zone of hypertrophic chondrocytes, suggesting that EGFR
negatively regulates condrocyte maturation [6]. Similar
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observations were made by Wang et al. [7], who in addition
found delayed primary ossification with irregular distribu-
tion of osteoblasts in Egfr−/− embryos [7].

Moreover, EGFR knock-in mice where the murine
EGFR is replaced by the human counterpart display low
EGFR activity in the bone and show impaired endochondral
ossification and an increased hypertrophic chondrocyte
zone [6]. Similarly, mice with reduced EGFR activity by
combined expression of a dominant-negative Egfr Wa5
allele and deletion of an Egfrfloxed allele using Col1a1-Cre
mice (Col1a1-Cre Egfrwa5/f), display bone abnormalities
starting around 3 months of age [8]. Mice lacking the
membrane-anchored metalloproteinase ADAM17, respon-
sible for cleavage of several membrane-bound cytokines
and growth factors including EGFR ligands also develop
expanded zones of hypertrophic chondrocytes, and
chondrocyte-specific deletion of ADAM17 results in

shortened long-bones with increased cartilage mineraliza-
tion [9].

EGF treatment of WT calvariae increased the prolifera-
tion of osteoprogenitor cells and maintained them in an
undifferentiated state [10]. Accordingly, Egfr−/− osteoblasts
show reduced proliferation but elevated differentiation
indicating that EGFR is essential during osteoblast
maturation [8]. However, the underlying molecular
mechanisms has so far not been investigated. It is also
unclear whether the bone defects observed in adult mice
result from developmental defects or arise later during bone
remodeling. The mouse models employed so far have not
allowed to investigate this effect, since incomplete EGFR
deletion was observed using Col-Cre mice and osteoblast-
independent effects of the ubiquitously expressed,
dominant-negative Wa5 on other ErbB family members
cannot be excluded [8].
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Fig. 1 Egfr−/− mice are
osteopenic. a Alcian blue and
Alizarin red whole body mount
showing skeletal mineralization
of Egfrwt and Egfr−/− mice on
postnatal day 7 (P7). b Skeletal
preparations of WT and KO
mice: femur and spine. c µCT
image of 7-day-old Egfrwt (left)
and Egfr-/- (right) mice d Von
Kossa staining of Egfrwt and
Egfr−/− calvaria at P7; scales:
100 μm for lower and 20 µm for
higher magnification. e Von
Kossa staining showing
calcification of Egfrwt and Egfr
−/− tibiae on P7; scales: 500 μm
for lower and and 100 μm for
higher magnification. f
Histomorphometric analysis of
Egfrwt and Egfr−/− tibiae from
P1 to P14: Quantification of
bone volume/tissue volume
(BV/TV), trabecular number
(Tb.N), trabecular separation
(Tb.Sp), trabecular thickness
(Tb.Th) and osteoblast number
per bone perimeter (N.Ob/B.
Pm). P1: n= 6. P7: n= 5. P14:
n= 6 WT, 3 KO mice
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Here we investigated the bone phenotype occurring in
the first weeks of age in Egfr−/− mice and in adult mice in
which Egfr is conditionally deleted in the osteoblast lineage
using Egfrf/f Runx2-Cre (EgfrΔOb) mice. We found that
EGFR signaling in osteoblasts negatively regulates IGF-1R/
mTOR pathway via ERK1/2 dependent up-regulaion of
IGFBP-3 to coordinate differentiation during embryonic
and postnatal bone formation.

RESULTS

Egfr−/− mice show impaired endochondral and
intramembranous ossification

We first performed an analysis of the skeleton of Egfr−/−

mice that survived until postnatal day 7 (P7). Bones of Egfr
−/− mice were less mineralized and reduced in length
compared to WT littermates (Fig. 1a). Whole-mount body
staining revealed reduced centers of secondary ossification
in long bones and irregular calcification of vertebral end-
plates in EGFR-deficient mice (Fig. 1b). Additionally, Egfr
−/− mice showed reduced mineralization of costal cartilage
(Fig. S1a).

While most bones develop by endochondral ossifica-
tion, the lateral clavicles and parts of the skull are formed
by intramembranous ossification, where mesenchymal
cells directly differentiate into osteoblasts without
chondrocyte involvement [1, 11]. To determine whether
the bone phenotype of Egfr−/− mice can occur inde-
pendently of the cartilage defects, we examined skulls of
Egfr−/− mice. µCT analysis revealed an impaired cranial
suture closure on day 14 (Fig. 1c), indicating that EGFR
also plays an important role during intramembranous
ossification. Furthermore, while straight, well-organized

columns of calcified extracellular matrix (ECM) with a
clearly delineated border were observed in WTs, these
structures were lacking in Egfr−/− calvariae (Fig. 1d).
Taken together our results show that Egfr deletion leads
to impaired bone development in newborn mice with
defects in both endochondral and intramembranous
ossification.

Egfr−/− long-bones displayed a low-bone-mass pheno-
type with less calcified bone and fewer bony trabeculae on
P7 (arrowheads; Fig. 1e) and a thickened growth plate
(arrows; Fig. 1e). Egfr−/− tibiae exhibited thicker zones of
ECM located at the cortical sides reaching into the center of
the bone (Fig. S1b) indicating that the mineralization pro-
cess in Egfr−/− bones was impaired due to misbalanced
deposition of ECM by osteoblasts.

Histomorphometric analyses confirmed that the ratio of
bone volume over tissue volume (BV/TV) was significantly
lower in Egfr−/− mice (Fig. 1f). The trabecular number (Tb.
N) was decreased while trabecular separation (Tb.Sp) was
increased at P7 and P14, although trabecular thickness (Tb.
Th) was not significantly changed (Fig. 1f). While Egfr−/−

mice were born with osteoblast numbers (N.Ob) compar-
able to WT levels, their amount was significantly decreased
on P14 (Fig. 1f).

EGFR is essential for osteoblast proliferation and
ERK1/2 activation

As osteoblasts are essential for bone mineralization we next
focused on the role of EGFR during osteoblastogenesis. We
found decreased proliferation of primary pre-osteoblasts
lacking the EGFR [6] (Fig. S2a), without any significant
differences in the number of apoptotic cells (Fig. S2b).
Additionally, Egfr−/− osteo-progenitors showed reduced
BrdU and Cyclin D1 levels, indicating that EGFR deletion
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Fig. 2 EGFR deletion leads to
reduced proliferation and
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leads to cell autonomous proliferation defects without
affecting apoptosis (Figs. S2c, d).

To confirm that the observed defects are also occurring
in vivo, we evaluated the proliferation of bone-lining cells
in femoral sections of Egfr−/− and Egfrwt mice. The number
of cells positive for the mitosis marker p-Histone H3
(Fig. 2a) and the S-phase related marker PCNA (Fig. 2b)
were significantly reduced in Egfr−/− mice indicating that
EGFR is crucial for proliferation during bone development.

The ERK pathway, a major EGFR downstream signaling
pathway, plays a central role in cell proliferation [12].
Therefore, we analyzed the phosphorylation of ERK1/2 in
bone lining cells at P7. Egfr−/− mice exhibited significantly
reduced numbers of p-ERK1/2 positive cells on their tra-
becular bone (Fig. 2c), suggesting that the proliferation
defects during bone development are based on impaired
ERK1/2 activation.

Osteoblast-specific deletion of EGFR leads to bone
defects

To address whether the bone phenotype in Egfr−/− mice is
due to cell-autonomous defects in osteoblasts, Egfrf/f mice
were crossed to an osteoblast-specific Cre line (Runx2-Cre),
to generate Egfrf/f Runx2-Cre (EgfrΔOb) mice [13]. Com-
plete deletion of EGFR was confirmed by Western Blot in
cultured osteoblasts and by IHC in long bones
(Figs. S3a, b). As shown by qRT-PCR from RNA isolated
from bone and cartilage of Egfrwt and EgfrΔOb femurs,
deletion of Egfr was restricted to bone tissue, but not car-
tilage (Fig. S3c). EgfrΔOb mice developed normally without
any significant differences in overall body length (Fig. S3d).
On P6 the zone of hypertrophic chondrocytes of EgfrΔOb

mice was significantly increased, comparable to Egfr−/−

mice (Fig. 3a). Importantly, EgfrΔOb mice showed reduced
length of long bones which was significant by P21 and
became more severe with age (Figs. 3b, c). These results
demonstrate that EGFR signaling in osteoblasts is essential
for proper bone development.

Adult EgfrΔOb mice develop a low-bone-mass
phenotype

The augmented zone of hypertrophic chondrocytes was
accompanied by increased expression of the hypertrophic
chondrocyte marker Col10a1 in long bones of EgfrΔOb mice
on P21 (Fig. 4a). Significantly elevated Runt-related tran-
scription factor-2 (Runx2) mRNA levels together with
reduced Colagen1a1 (Col1a1) mRNA and reduced Osteo-
calcin (Ocn) mRNA and protein levels (Figs. 4a, S4a)
indicate that EGFR deletion in osteoblasts leads to impaired
mineralization due to premature differentiation of osteo-
progenitors. Histomorphological analysis revealed a pro-
gressive, low-bone-mass phenotype with decreased bone
volume and trabecular number in adult EgfrΔOb mice
(Figs. 4b, c). Additional trabecular bone markers further
showed reduced trabecular thickness and increased spacing
in EgfrΔOb mice (Fig. S4b). Less osteoblasts on the trabe-
cular bone and reduced osteocalcin serum levels (Fig. 4d)
indicate that the low-bone-mass is based on osteoblast
defects.

To exclude that EGFR in osteoblasts indirectly affects
osteoclastogenesis, osteoclast-specific markers were ana-
lyzed in long bones and serum. No significant differences in
osteoclast number could be detected neither in young nor in
adult EgfrΔOb mice. Furthermore, EgfrΔOb mice did not
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show any differences of the serum biomarker for bone
resorption C-terminal telopeptide (CTX-1) (Fig. S4c).

Additionally, we assessed whether EGFR directly affects
osteoclast development by breeding Egfrf/f mice to LysM-
Cre mice that express Cre recombinase in the myeloid
lineage (EgfrΔOc). Osteoclasts isolated from EgfrΔOc mice
showed reduced EGFR protein levels (Fig. S4d), but did not
display any bone defects nor differences in the number of
osteoclasts in trabecular bones or serum CTX-1 (Fig. S4e).
Bone-marrow derived pre-osteoclasts from Egfr−/− mice
did not show any significant differences in their ability to
form osteoclasts in vitro (Fig. S4f). Finally, OC number in
trabecular bones and serum CTX-1 levels were not altered
in Egfr-/- mice (Fig. S4g) indicating that lack of EGFR does
not affect osteoclastogenesis.

Enhanced differentiation of Egfr−/− osteoblasts
correlates with IGF-1R/mTOR activation

Once confirmed that the defects are primarily in the osteo-
blast lineage, we employed primary osteoblasts from Egfrwt

and Egfr−/− mice to investigate the underlying molecular
mechanism. As osteoblasts from Egfr−/− mice display
enhanced differentiation [6] and the IGF-1R pathway was
shown to play a central role during osteoblast differentiation

[14], we investigated whether EGFR regulates bone
development by interacting with the IGF-1R signaling
pathway. We detected elevated levels of total and phos-
phorylated IGF1Rβ in differentiated osteoblasts isolated
from Egfr−/− mice (Fig. 5a). Furthermore, Egfr−/− osteo-
blasts showed increased total and phosphorylated protein
levels of the IGF-1R adapter protein insulin receptor sub-
strate 1 (IRS-1) and its downstream target mTOR (Fig. 5a).
Importantly, IGF-1R/IRS1/mTOR up-regulation was ligand
independent as the levels of IGF-1 and IGF-2 were not
altered (Fig. S5a).

To investigate the kinetics of mTOR activation we next
analyzed multiple time points during osteoblast differ-
entiation. IGF-1R/mTOR-pathway proteins were con-
sistently present at higher levels and were hyper-
phosphorylated during differentiation in Egfr−/− osteo-
blasts indicating that IGF-1R/mTOR-signaling remained
elevated throughout the whole culture period (Fig. 5b).

IHC staining on femur sections of WT and EGFR-
deficient mice at P7 revealed that the mTOR-signaling
pathway was also altered in vivo. In line with the in vitro
findings, significantly increased phosphorylation of mTOR
and its main downstream targets 4E-BP1 and S6 protein
were observed in Egfr−/− long-bones (Figs. 5c, d). Addi-
tionally, EgfrΔOb mice also showed reduced p-S6 protein
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levels in bone-lining cells indicating that this activation
depends on osteoblastic EGFR signaling (Figs. S5b, c).

Interplay between EGFR- and IGF-1R-pathways in
osteoblast differentiation

To analyze the cross-talk between EGFR and IGF-1R-
signaling during osteoblast differentiation, WT osteoblasts
were cultured under differentiation-inducing conditions
together with IGF-1, EGF and/or the ERK1/2 inhibitor
U0126. At day 21 bone nodule formation was assessed as a
functional read-out for differentiation. Mineralization was
enhanced by IGF-1 treatment (Figs. 6a, b) and completely
abolished by EGF (Fig. 6c). Addition of EGF was able to
suppress IGF-1 induced differentiation in a dose-dependent
manner with complete inhibition at 100 ng/ml (Figs. 6d–f).
IGF-1 induced differentiation was further increased when
ERK1/2 signaling was blocked by U0126 (Figs. 6g, h). ERK
inhibition together with EGF and IGF-1 stimulation rescued

the EGF-induced hypo-differentiation phenotype resulting in
normalized bone nodule formation comparable to untreated
controls (Fig. 6i). Taken together our results show that IGF-
1R signaling enhances, whereas EGFR signaling inhibits
osteoblast differentiation and that EGFR signaling dom-
inates by negatively regulating IGF-1R via ERK1/2.

To dissect the underlying molecular mechanism we
analyzed the activation of EGFR and IGF-1R downstream
proteins in differentiated WT osteoblasts cultured for
21 days in the presence of EGF / IGF-1 and U0126. EGF
treatment prevented phosphorylation of IGF-1Rβ with
reduced activation of the mTOR/S6/4E-BP1 pathway,
whereas IGF-1 induced the phosphorylation of IGF-1Rβ/
mTOR/S6/4E-BP1 (Fig. 6j). When osteoblasts were cul-
tured with both growth factors, activation was again
reduced suggesting that EGFR signaling is able to block
differentiation via IGF-1Rβ inhibition. Importantly, EGF-
induced downregulation of the IGF-1Rβ pathway was partly
restored when ERK1/2 was blocked, indicating that EGFR
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negatively regulates differentiation by down-regulating
IGF-1Rβ/mTOR signaling via ERK1/2 (Fig. 6j). No dif-
ferences in insulin receptor β (IRβ) phosphorylation could
be detected indicating that EGF stimulation exclusively
downregulates IGF-1R without affecting IRβ activation
(Fig. S6a).

To prove that reduced activation of IGF-1Rβ is a direct
consequence of EGF stimulation, we cultured WT osteo-
blasts under differentiation conditions for 21 days, starved
them for 24 h and stimulated for 10 min with EGF or IGF-1.
As expected, EGF treatment induced a strong activation of

ERK1/2 and at the same time reduced the phosphorylation
of IGF-1Rβ whereas IGF-1 stimulation did not affect
ERK1/2 signaling (Fig. S6b).

To investigate the mechanism how EGFR signaling
suppresses IGF-1R/mTOR signaling we next analyzed
IGFBP-3 levels, as IGFBP-3 is known to modulate and
repress IGF-1R signaling [15, 16]. Moreover, it has been
shown that EGFR directly regulates IGFBP-3 in primary
esophageal cells [17]. We found elevated IGFBP-3 levels in
osteoblasts cultured together with EGF or with EGF and
IGF-1 whereas IGF-1 alone had no effect (Fig. 6k).
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Importantly, IGFBP-3 up-regulation was a direct con-
sequence of ERK1/2 signaling, as additional treatment with
the ERK1/2 inhibitor U0126 normalized EGF-induced
IGFBP-3 levels (Fig. 6k). In contrast, EGFR inhibition
with Afatinib led to a dose-dependent decrease in IGFBP-3
protein levels along with increased p-mTOR phosphoryla-
tion in osteoblast precursors (Fig. 6l). In addition, IGFBP-3
was also strongly reduced in the supernatant of osteoblast
precursor cells after 48 h treatment with EGFR inhibitor as
compared to DMSO treated controls (Fig. S6c).

In line with our in vitro results, we also found sig-
nificantly reduced IGFBP-3 in the serum of Egfr−/− and
EgfrΔOb mice (Figs. 6m, S6d) indicating that EGFR sig-
naling in osteoblasts is essential for IGFBP-3 production.
IGFBP-3 levels were also reduced in whole tibia protein
lysates of Egfr−/− mice, as revealed by both ELISA and
western blot analysis (Figs. 6n, o). These results demon-
strate that EGFR is required for IGFBP-3 production and
suppression of IGF-1R/mTOR activation thus providing a
mechanistic link between EGFR and IGF-1R signaling and
osteoblast differentiation.

To further show that the hyper-differentiation pheno-
type of Egfr−/− osteoblasts is indeed a consequence of
elevated mTOR activation we next inhibited mTOR in
differentiating osteoblasts using rapamycin. Bone nodule

formation was strongly reduced in the presence of rapa-
mycin (Fig. 6p). Upon rapamycin treatment, phosphor-
ylation of the mTOR downstream proteins 4E-BP1 and S6
was down-regulated in Egfr−/− cultures similarly to WT
osteoblasts (Fig. S6e) demonstrating that the increased
differentiation in Egfr−/− osteoblasts can be prevented by
mTOR-inhibition.

Taken together our data provide evidence that EGFR
controls osteoblasts differentiation via ERK-dependent
IGFBP-3 up-regulation, which ensures proper osteoblast
maturation by controlling IGF-1R/mTOR signaling.

mTOR inhibition partially rescues bone phenotype
of Egfr−/− embryos

We next analyzed whether mTOR inhibition during
embryonic development, when mineralization starts, can
normalize the bone defects in EGFR-deficient mice. Phar-
macological inhibition of mTOR during gestation has pre-
viously been reported not to cause any bone-specific side
effects in mice [18]. We injected pregnant females from
EGFR heterozygous intercrosses with rapamycin or vehicle
twice a day on E15.5 and on E16.5 and analyzed embryonic
bones at E18.5 (Fig. 7a). Rapamycin treatment was not
teratogenic nor did it affect litter size or viability of pups
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(Fig. S7a). Inhibition of mTOR signaling pathway was
confirmed by p-S6 IHC staining on femurs of fetuses
obtained from rapamycin or vehicle-treated mothers
(Fig. S7b).

We could not observe any effect on hypertrophic chon-
drocyte zone in embryonic Egfr−/− bones after rapamycin
treatment (Fig. S7c), which is in line with our hypothesis
that the hypertrophic chondrocyte phenotype is not
responsible for the impaired bone development. However,
chemical inhibition of mTOR increased the zone of
hypertrophic chondrocytes in WT animals (Fig. S7c)
without affecting Egfr expression levels in long-bones
(Fig. S7d).

Importantly, after rapamycin treatment bones of Egfr−/−

embryos showed BV/TV comparable to WT mice (Figs. 7b,
c). Furthermore, Osteocalcin mRNA levels in femurs of
Egfr-/- embryos from rapamycin-injected mothers were also
normalized (Fig. 7d). In addition, rapamycin treatment also
normalized the ratio between Runx2 and Osteocalcin
mRNA expression in bones of Egfr−/− embryos
(Figs. S7e, f) providing evidence that EGFR signaling
suppresses mTOR during bone formation to prevent early
maturation of osteoprogenitor cells to ensure the develop-
ment of functional osteoblasts.

Discussion

In the present study, we show that EGFR-deficient mice
suffer from a complex bone phenotype with decreased
bone mass, which starts before birth and persists to
adulthood. Moreover, deleting EGFR specifically in the
osteoblast or osteoclast lineage demonstrates that EGFR
in the osteoblast lineage is essential for adequate bone
development.

Histological analyses revealed an enlarged zone of
hypertrophic chondrocytes, which could be the reason for
the subsequent bone defects. However, we show that both
endochondral as well as intramembranous ossification is
defective in the absence of EGFR. Since intramembranous
ossification does not involve chondrocyte differentiation
and cartilage formation, our results suggest that the osteo-
blast and bone defects are unlikely to result from chon-
drocyte defects. Therefore, EGFR signaling seems to be
required cell-autonomously in osteoblasts. Long-bones of
mice with osteoblast-specific deletion of EGFR showed
elevated Runx2 with reduced Colagen1a1 and Osteocalcin
expression levels revealing an important role of EGFR
during mineralization. This finding also reflects results from
published in vitro experiments suggesting that a major
function of the EGFR is to maintain a pool of osteopro-
genitor cells by downregulating Runx2 and Osterix in order
to prevent premature differentiation [19]. Despite the fact

that Egfr−/− osteoblasts showed elevated mineralization
in vitro, both Egfr−/− and EgfrΔOb mice are osteopenic. This
apparent discrepancy might be due to the fact that osteo-
progenitor cells lacking the EGFR, which display pro-
liferation defects, cannot form sufficient numbers of
osteoblasts to guarantee proper maturation and ossification
in vivo.

We identified the mTOR-pathway as a positive regulator
of osteoblast differentiation that is suppressed by EGFR
signaling. In the absence of EGFR, IGF-1R/mTOR signal-
ing is up-regulated due to reduced IGFBP-3 signaling
leading to accelerated osteoblast differentiation thus not
allowing a sufficient number of osteoprogenitor cells to
accumulate to form proper bones. Under normal physiolo-
gical conditions EGFR/ERK-mediated IGFBP-3 is essential
to suppress IGF-1R/mTOR in order to ensure efficient
osteoblasts maturation.

Many possible interactions between IGF-1R and EGFR
have been identified [20]. Cancer cells acquire resistance
against EGFR inhibitor treatment via loss of IGFBP-3, which
activates the IGF-1R signaling pathway [21, 22]. A tight
regulation of IGFBP-3 signaling is not only essential for
cancer treatment but also during bone development as shown
by both Igfbp3 transgenic and knock-out mouse models.
Long-bones of Igfbp3 transgenic mice overexpressing human
IGFBP-3 demonstrate reduced trabecular and cortical bone
density [23]. Igfbp3−/− mice, on the other hand, develop a
low-bone-mass phenotype comparable to Egfr-deficient mice
comprising reduced trabecular bone volume and number with
increased trabecular separation [24]. In agreement with our
data, a link between EGFR and IGFBP-3 has also been
described for primary human esophageal cells and esopha-
geal squamous cell carcinomas indicating that EGFR indeed
directly regulates IGFBP-3 [17].

The mTOR-pathway plays an important role during
development by regulating cell survival, growth, differ-
entiation and autophagy [25]. Recently, rapamycin-induced
autophagy was shown to increase the number of osteoblasts
and the mineralized area in fracture calluses of rats during
bone fracture healing [26]. mTOR signaling has also been
linked to other bone-related diseases like osteoarthritis
(OA). Patients suffering from OA show increased mTOR
protein and mRNA levels in affected joints [27]. Addi-
tionally, rapamycin treatment or deletion of mTOR in
chondrocytes reduced the severity of experimental OA in
mice [27, 28]. Reduced EGFR signaling, on the other hand,
leads to a worse progression of experimental OA due to
increased cartilage destruction in gefitinib-treated mice [29]
and subchondral bone plate thickening with increased joint
pain in genetically modified (Egfrwa5/f Col2-Cre) animals
[30]. These findings suggest that EGFR might not only
negatively regulate the mTOR-pathway during bone
development, but also during OA progression. Further
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studies are needed to investigate the impact of EGFR sig-
naling on mTOR activation in bone-related diseases.

Mice with osteoblast-specific IGF-1R deletion display
mineralization defects [31, 32]. mTOR signaling pathway
activation via IGF-1 has been reported to play a major role
in bone development by regulating osteoblast differentiation
in adult mice [32]. Moreover, osteoblast-specific deletion of
TSC2, a negative regulator of the mTOR pathway, leads to
elevated mTOR signaling with increased bone formation
starting around 6 weeks after birth. Interestingly, three
weeks after birth these mice showed an osteopenic-like
phenotype with significantly increased trabecular separa-
tion, reduced bone volume to tissue volume and reduced
number of trabecles [33]. As Egfr−/− mice also exhibit an
osteopenic bone phenotype with elevated mTOR expression
in osteoblasts, we hypothesize that up-regulation of mTOR
pathway might inhibit bone formation during embryonic
and early postnatal development, whereas it induces bone
mineralization in older animals. Consistently, treatment of
pregnant dams with rapamycin largely rescued the low bone
mass phenotype of Egfr−/− embryos.

In summary, we demonstrate that impaired prolifera-
tion and enhanced differentiation of osteoblasts is
responsible for the osteopenia and irregular mineralization
in bones of Egfr−/− and EgfrΔOb mice. The bone defects of
Egfr−/− mice are not restricted to endochondral ossifica-
tion, since mineralization defects are also apparent in
skulls of Egfr−/− pups. Therefore, defective osteoblast
maturation very likely is the driving force for the miner-
alization defects in Egfr−/− mice. We identified the
mTOR-pathway as a positive regulator of osteoblast dif-
ferentiation, suppressed by EGFR/ERK/IGFBP-3-signal-
ing and hyper-activated in its absence via IGF-1R. Future
studies will address whether the cross-talk between these
important signaling pathways is also operating in other
tissues and under pathological conditions.

Materials and methods

Mice

Egfr−/− mice have been described previously [4]. EgfrΔOc

mice were generated by breeding Egfrf/f mice [34] to LysM-
Cre [35] transgenic mice. EgfrΔOb mice were generated by
crossing Egfrf/f mice with Runx2-Cre [13] transgenic mice
(kindly provided by Jan Tuckermann, University Ulm).
Only male EgfrΔOb and littermate controls (Egfrf/f, Egfrf/+ or
Egfrf/+ Runx2-Cre) with a C57BL/6 genetic background
were used for experiments. Genotyping was performed as
previously described [4, 35, 13]. Mice were kept in the
animal facility of the Medical University of Vienna in
accordance with institutional policies and federal

guidelines. All animal experiments conducted were com-
pliant with federal laws and guidelines of the Medical
University of Vienna.

Whole mount stainings, histomorphometry,
immunohistochemistry

Mice were sacrificed at indicated time points. Whole mount
stainings were performed as described previously [36]. For
histological stainings, bones were fixed in 4% PBS-buffered
formaline and embedded either in paraffin or methylmeta-
crylate. 5 μm paraffin sections were used for H.E.-stainings
after decalcification in 0.5M EDTA or uncalcified for Von-
Kossa stainings (calvaria); methylmetacrylate was used for
Von-Kossa stainings (long bone) and for Movat-stainings
(osteoid). Histomorphometry was performed with Movat
and/or H&E-stainings according to the standardized proto-
cols of the American Society for Bone and Mineral
Research [37] on the Osteo-measure system (Osteometrix)
in a blinded fashion. Immunohistochemistry was performed
on 4 µm formalin-fixed paraffin embedded and decalcified
femur sections. Primary antibodies (for a full list see
Table S1) were incubated overnight at 4 °C followed by
HRP-based immunoreactivity detection (CST). Non-
specific binding was blocked by applying TBS-T contain-
ing 2% BSA and 5% normal goat serum. Quantifications of
IHC stainings were performed in a blinded fashion by
counting positive cells on the trabecular bone surface and
results are shown as positive cells per bone perimeter.

Primary osteoblast cultures

Osteoblasts were cultured in α-MEM containing ribonu-
cleosides and deoxyribonucleosides (GlutaMAX, Sigma)
and 10% FBS (Autogen Bioclear). Primary osteoblasts were
isolated from calvariae of neonatal mice (P1-P7) as pre-
viously described [38] and seeded at a density of 5.000
cells/cm2. For differentiation, ascorbic acid (50 μg/ml) and
β-glycerolphosphate (10 mM) were added to the culture
medium. Bone nodules were stained at differentiation day
21 using Alizarin Red (Sigma). For BrdU stainings, osteo-
blasts were cultured until 70% confluency and incubated
with 10 µM BrdU (Roche) for 4 h, before fixation with 70%
ethanol and staining with an anti-BrdU antibody according
to the manufacturer’s instructions (Becton Dickinson).
Rapamycin (Wyeth), EGF (Roche) and IGF-1 (Promega)
were used in concentrations indicated in the respective
figure legends.

Primary osteoclast cultures

For osteoclast isolation, bone marrow cells were harvested
from long-bones of 8 week old mice. Cells were cultured
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overnight in α-MEM containing 10% FBS. Non-adherent
cells were harvested, counted and seeded in 6-well plates
(1.0× 106 cells/well) with M-CSF (50 ng/ml). 48 h later
RANKL (50 ng/ml) was added to induce differentiation for
additional 96 h.

Total RNA isolation, Real-time qRT-PCR analysis

Total RNA from osteoblasts and whole bone was isolated
using peqGOLD TriFast reagent (Peqlab) or RNeasy Kit
(Qiagen). cDNA synthesis was performed with ProtoScript
II Reverse Transcriptase (NEB) according to the manu-
facturer’s instructions. Real-time qRT-PCR was performed
using the Power SYBR Green Master Mix (Thermo Fisher
Scientific) together with the Applied Biosystems 7500 Fast
Real-Time PCR System (Thermo Fisher Scientific) using
the following primers: Collagen type 1 alpha 1 (Col1a1) 5′-
ACCTGGTCCACAAGGTTTCC-3′ and 5′-GACCCATT
GGACCTGAACCG-3′; Collagen type 1 alpha 2 (Col1a2)
5′-GGTCCAAGAGGAGAACGTGG-3′ and 5′-TGGGAC
CTCGGCTTCCAATA-3′; Collagen type 2 alpha 1
(Col2a1) 5′-GGCCAGGATGCCCGAAAATTA-3′ and 5′-
CGCACCCTTTTCTCCCTTGT-3′; Collagen type 10 alpha
1 (Col10a1) 5′-CATCTCCCAGCACCAGAATC-3′ and 5′-
GCTAGCAAGTGGGCCCTTTA-3′; Epidermal growth
factor receptor (Egfr) 5′-TTGGAATCAATTTTA-
CACCGAAT-3′ and 5′-GTTCCCACACAGTGACACCA-
3′; Osteocalcin (Ocn) 5′-AGACTCCGGCGCTACCTT-3′
and 5′-CTCGTCACAAGCAGGGTTAAG-3′; Osteonectin
(On) 5′-TCTCAAAGTCTCGGGCCAAC-3′ and 5′-ATG-
CAAATACATCGCCCCCT-3′; Osteopontin (Opn) 5′-
CTGGCTGAATTCTGAGGGACT-3′ and 5′-TTCTGT
GGCGCAAGGAGATT-3′; Osterix (Osx) 5′-TGCCTGAC
TCCTTGGGACC-3′ and 5′-TAGTGAGCTTCTTCCTCA
AGCA-3′; Runt-related transcription factor 2 (Runx2)
5′-GCCGGGAATGATGAGAACTA-3′ and 5′-GGACCGT
CCACTGTCACTTT-3′; Expression levels were standar-
dized to the primer set specific for TATA-binding protein
(Tbp): 5′-GGGGAGCTGTGATGTGAAGT-3′ and 5′-
CCAGGAAATAATTCTGGCTCAT-3′.

Western blot analysis

Western blot analysis was performed as previously descri-
bed [39]. For a full list of the antibodies used, please see
Table S1.

Enzyme-linked immunosorbent assay (ELISA)

Mouse IGF-1 (Quantikine, R&D Systems) and IGF-2
(RayBiotech) Immunoassays were performed according
to manufacturer’s instructions with 48 h-old supernatants

collected from osteoblast cultures on differentiation day 14.
Osteocalcin (Alfa Aesar) and CTX-1 Elisa (RatLaps, IDS
Immunodiagnostic Systems) were performed according
to the manufacturer’s instructions with serum isolated from
male mice at p21 and p210. Mouse IGFBP-3 Elisa (R&D
Systems) was performed with 48 h-old supernatants
collected from osteoblast cultures on differentiation day 21
or from undifferentiated osteoblast precursors. Serum
IGFBP-3 levels where analyzed in serum isolated from p7
and p210 mice. For IGFBP-3 quantification in whole
tibia protein lysates from p7 mice, 20 µg protein/well
were applied after Bradford-based protein measurement
(Bio-Rad).

Rapamycin treatment

Rapamycin (Sigma) was diluted in injection vehicle con-
taining 10% PEG-400 and 17% Tween-80 in 1× PBS.
Mice were randomly assigned into two groups and injected
every 12 h between E15.5 and E16.5 either with 5 mg
Rapamycin per kg bw in 200 µl injection vehicle or with
200 µl injection vehicle alone according to a published
protocol [18].The investigators were not blinded during the
experiment.

Statistical methods

Sample size calculation: For in vivo treatment experiments
a minimum of six embryos per group were considered,
which ensures a 90% power to detect a difference in means
of 2 standard deviations at the significance level of 0.05.
Based on the central limit theorem, we can assume a normal
distribution of mean values even if the underlying variable
is not perfectly normally distributed. Unless otherwise sta-
ted experiments were performed at least 2 times and data are
shown as mean± s.e.m. For analyses of IHC and qRT-PCR
data, univariable comparisons of expression values between
groups were analyzed by unpaired two-tailed Student’s t-test
with f-test to ensure comparable variances between the
groups. For analysis of hypertrophic chondrocyte zone, BV/
TV and qRT-PCR analysis after Rapamycin treatment, one-
way ANOVA was applied. A p-value below 0.05 was
considered statistically significant and was marked with a
star (*), p< 0.01 with 2 stars (**), p< 0.001 with 3 stars
(***) and p< 0.0001 with 4 stars (****). For analyses, SAS
for Windows 9.1.3 (The SAS Institute, Inc., Cary, North
Carolina, USA) and Prism 6 (GraphPad) were used.
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