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Abstract

In medical sciences, a disease condition is typically associated with multiple risk and protective 

factors. Although many studies report results of multiple factors, nearly all meta-analyses 

separately synthesize the association between each factor and the disease condition of interest. The 

collected studies usually report different subsets of factors, and the results from separate analyses 

on multiple factors may not be comparable because each analysis may use different subpopulation. 

This may impact on selecting most important factors to design a multi-factor intervention 

program. This article proposes a new concept, multivariate meta-analysis of multiple factors 

(MVMA-MF), to synthesize all available factors simultaneously. By borrowing information across 

factors, MVMA-MF can improve statistical efficiency and reduce biases compared with separate 

analyses when factors were missing not at random. As within-study correlations between factors 

are commonly unavailable from published articles, we use a Bayesian hybrid model to perform 

MVMA-MF, which effectively accounts for both within- and between-study correlations. The 

performance of MVMA-MF and the conventional methods are compared using simulations and an 

application to a pterygium dataset consisting of 29 studies on 8 risk factors.
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1. Introduction

As a disease condition is typically associated with many risk and protective factors in 

medical sciences, many randomized controlled trials and observational studies considered 

multiple factors.1–4 Reliable summary of association between each factor and the disease 

condition is crucial for the design of a multi-factor intervention program. The growth of 

interest in evidence-based medicine has led to a dramatic increase in attention paid to 

systematic reviews and meta-analyses. In prevention studies, it has become increasingly 
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popular to perform meta-analyses on multiple risk and protective factors to summarize 

existing evidence; however, currently, nearly all meta-analyses are performed on each factor 

separately.5–7 Different studies usually focus on different subsets of all risk and protective 

factors, and may only selectively report some significant factors in peer-reviewed articles; 

some factors may be reported by only a few studies. Hence, if we organize the collected data 

in a matrix with rows and columns indexing studies and factors respectively, then the data 

matrix is expected to contain many missing entries; see the example in Table 1. The 

conventional meta-analysis separately estimates each factor’s association with the disease 

condition, so it cannot borrow information across the factors. Moreover, results from 

separate meta-analyses may not be directly comparable because they may be based on 

different subpopulations. This limits medical investigators to select most important factors 

for the design of a multi-factor intervention program.

Recently, Serghiou et al.8 introduced field-wide systematic review and meta-analysis to 

report and assess the entire field of putative factors for a disease condition. Based on this 

concept, researchers can learn the selective availability and different adjustments of factors 

and the patterns of modeling. Although multiple factors were collected, the authors pooled 

the results for each factor separately; this is not efficient to analyze the multivariate data 

from a field-wide systematic review.

This article proposes multivariate meta-analysis of multiple factors (MVMA-MF) to jointly 

synthesize all risk and protective factors in the field-wide systematic review. Compared with 

separate meta-analyses that use different subpopulations, the results produced by jointly 

modeling of multiple factors have better interpretation and generalizability because they are 

based on the whole population in the multivariate meta-analysis. Multivariate meta-analysis 

methods have gained much attention in the recent literature9–12, and they improve effect 

estimates by borrowing information from the correlations between multiple endpoints.13–15 

The multivariate meta-analysis models have been applied to several areas, such as meta-

analysis of diagnostic tests16–18, meta-analysis of multiple outcomes19,20, and network 

meta-analysis of mixed treatment comparisons.21–26 Mixed treatment comparisons use both 

direct and indirect evidence of treatment contrasts to synthesize the comparisons between 

multiple treatments; its focus differs from MVMA-MF, because MVMA-MF is interested in 

estimating the effect of multiple factors, not the contrasts between them.

Multivariate random-effects model generally requires correlations within each collected 

study. In some situations, within-study correlations are known to be zero. For example, in 

meta-analysis of diagnostic tests, the study-specific sensitivity and specificity are 

uncorrelated within studies because they are calculated from the true negative and true 

positive patients respectively.10 However, in MVMA-MF, the factors can be correlated 

within each study because they may be measured on same patients. Such within-study 

correlations are unknown unless individual patient data are available. Ignoring within-study 

correlations in the standard multivariate random-effects model may have great impact on the 

estimated overall effect sizes.27

To deal with unknown within-study correlations, this article considers an alternative 

Bayesian model for MVMA-MF. The conventional multivariate model partitions the overall 
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variance-covariance matrix into two parts: the within-study level that is due to sampling 

error and the between-study level that is due to heterogeneity between the collected studies. 

Instead of partitioning the overall correlations into the two levels, the alternative model 

directly specifies one single overall correlation matrix; hence, it may be viewed as a hybrid 
approach. This model is the Bayesian version of the model introduced by Riley et al.28 

Currently, Riley’s model is implemented in a frequentist way, such as using the restricted 

maximum likelihood method.29 However, the data of MVMA-MF are usually fairly sparse 

(Table 1), and our simulations in Section 5 show that the frequentist method generated poor 

95% confidence intervals for sparse data; also, the algorithm for maximizing the (restricted) 

likelihood did not converge for many simulated data. Instead of using the frequentist 

method, we present a fully Bayesian method to perform MVMA-MF. Although Bayesian 

methods have been introduced to deal with multivariate meta-analyses by Lu and Ades30 and 

Wei and Higgins31, the former paper considered mixed treatment comparisons which 

focused on treatment contrasts, and the latter assumed known within-study covariance 

matrices. Hence, both Bayesian methods may not be directly applied to MVMA-MF. The 

Bayesian version of Riley’s model will be detailed in Section 4. We will use simulations and 

reanalyze the real data in Serghiou et al.8 to demonstrate the benefit of the joint Bayesian 

model for MVMA-MF, and we will conclude this article with brief discussion.

2. The motivating pterygium data

Pterygium is one of the most common eye conditions, and it may be related to many risk 

factors.32 Instead of reporting only one risk factor at a time, Serghiou et al.8 collected the 

odds ratios of all putative risk factors for pterygium. Specifically, they identified 60 eligible 

studies reporting on a total of 65 risk factors. Since most risk factors were only reported in 

less than 3 studies, we focus on the following 8 risk factors, each of which was reported in at 

least 4 studies: (1) occupation type (outdoor vs. indoor); (2) smoking status (yes vs. no); (3) 

education attainment (low vs. high); (4) use of hat (yes vs. no); (5) use of spectacles (yes vs. 

no); (6) area of residence (rural vs. urban); (7) use of sunglasses (yes vs. no); and (8) latitude 

of residence (low vs. high). These risk factors are sorted according to their frequencies 

reported in the collected studies (from high to low). Also, we cleaned the data by removing 

the log odds ratios that were obtained using multivariate regression model, because they 

were adjusted for different risk factors in different studies. Table 1 presents the cleaned data 

and Figure 1 shows the network plot of the 8 risk factors. The network indicates that most 

pairs of risk factors are simultaneously reported in some studies, but several pairs, such as 

area of residence and use of hat, are not. From Table 1, the risk factor latitude of residence 

was reported in only 4 studies, while 23 studies reported occupation type. Most studies 

reported different subsets of the 8 risk factors, and many entries in Table 1 are missing. The 

estimated overall effect sizes produced by univariate models may be poor because some risk 

factors have few samples. Also, many factors (e.g., area of residence and education 

attainment) are expected to be correlated, so a multivariate model may be more appropriate 

for this dataset than univariate models.
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3. Conventional meta-analysis models

This section reviews some existing models for general multivariate meta-analysis. Suppose 

that n independent studies are collected; each study reports a p-dimensional vector of effect 

sizes, denoted as yi = (yi1, …, yip)T, and denote its within-study variance-covariance matrix 

as Si (i = 1, …, n). The conventional univariate meta-analysis pools the results for each j = 1, 

…, p separately; a fixed- or random-effects model is applied to the data {(yij, vij)}i = 1
n , where 

vij is the within-study variance, i.e., the jth diagonal element in Si.33,34 Since most studies 

are conducted by different research teams in different places using different methods, the 

studies are usually expected to be heterogeneous.35 Also, the random-effects model may 

produce more conservative results than the fixed-effects model36,37, so this article focuses on 

the random-effects setting that accounts for the heterogeneity between studies. We denote 

the univariate model as Model U, which ignores both within- and between-study 

correlations.

Multivariate meta-analysis recently gains much attention to simultaneously synthesize the p-

dimensional effect sizes.9–11 Given that the within-study variance-covariance matrices Si are 

known, the commonly used random-effects model is specified as follows to analyze the 

multivariate data {(yi, Si)}i = 1
n :

yi N(μi, Si);

μi N(μ, T),

where μi represents study i’s underlying true effect sizes, μ = (μ1, …, μp)T contains the 

overall effect sizes, and T = (τij) is the p × p between-study variance-covariance matrix. We 

denote this multivariate model as Model M. Note that within-study variances are routinely 

reported in published articles, but within-study correlations are usually unavailable. Let Di = 

diag(Si) be the diagonal matrix consisting of the within-study variances. To analyze the data 

{(yi, Di)}i = 1
n  when the within-study correlations are unknown, a naïve multivariate method is 

to simply ignore these correlations by setting them to zero but still account for the between-

study correlations; we denote this model as Model M0. Nevertheless, ignoring within-study 

correlations could lead to poor estimated effect sizes, especially when the within-study 

correlations are comparable to or greater than the between-study correlations.27 The 

following section introduces an alternative model that can incorporate both within- and 

between-study correlations for MVMA-MF.

4. Multivariate meta-analysis of multiple factors

4.1 Multivariate hybrid meta-analysis model

Model M may be deemed ideal to perform MVMA-MF: it uses the within-study correlations 

between multiple factors that are usually unknown, and it provides a benchmark for the 
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performance of other potential models. Note that study i’s marginal variance-covariance 

matrix in Model M is Mi = Si + T, and it can be written as Mi = (Di + Δ)1/2Ri(Di + Δ)1/2, 

where Δ = diag(τ1
2, …, τp

2) contains between-study variances (i.e., diagonal elements in T), 

and Di is the diagonal matrix containing within-study variances (i.e., diagonal elements in 

Si). The marginal correlation matrix of study i, Ri, is determined by both Si and T, and thus 

it needs to be estimated if the within-study correlations are unknown. It may be inefficient to 

use the data from merely n studies to simultaneously estimate all Ri’s, which involve too 

many parameters.

Alternatively, extending the bivariate model in Riley et al.28, we consider a multivariate 

model that does not require within-study correlations to perform MVMA-MF:

yi N(μ, (Di + Ψ)1/2R(Di + Ψ)1/2),

where Ψ = diag(ψ1
2, …, ψ p

2) is a diagonal matrix that consists of additional variances beyond 

sampling error due to between-study heterogeneity for the p effect sizes. In this model, all 

collected studies are assumed to share a common marginal correlation matrix R. This 

assumption effectively reduces the number of parameters to be estimated and accounts for 

both within- and between-study correlations. Like Model M, the alternative model partitions 

the marginal variances of yi, Di + Ψ, into the within- and between-study levels; however, it 

directly uses the matrix R to model the overall correlations, instead of partitioning the 

correlations into the previous two levels. Therefore, the alternative model may be deemed 

hybrid, and we denote it as Model H.

4.2 Missing data

So far, the models for complete data have been discussed. In MVMA-MF, each collected 

study often reports a small subset of the complete factors, and many factors are missing as in 

Table 1. It is straightforward to extend the four methods (i.e., Models U, M, M0, and H) to 

deal with missing data under the assumption of missing at random. Model H for missing 

data will be detailed here. Suppose that ỹi = (ỹi1, …, ỹip)T contains the complete p factors 

in study i; however, we only observe ti factors and their within-study variances (1 ≤ ti ≤ p). 

Denote the effect sizes of the ti factors as yi = (yi1, …, yiti)
T, which is a ti-dimensional sub-

vector of ỹi, and let Di be the ti × ti diagonal matrix containing the within-study variances. 

We write yi = Xiỹi, where Xi = (ei1, …, eiti)
T is a ti × p matrix indicating missingness.31 

Specifically, for each j = 1, …, ti, eij = (eij1, …, eijp)T with eijk = 1 if the observed yij is the 

effect size of factor k and eijk = 0 otherwise. For example, for study 3 in the pterygium data 

(Table 1),

X3 =
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

.

Recall that μ, Ψ, and R represent the overall mean effect sizes, the between-study variances, 

and the marginal correlation matrix for the complete p factors, respectively. Hence, for the 
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observed ti-dimensional vector yi, its overall mean is Xi μ, its marginal variances form the 

diagonal matrix Di + XiΨXi
T, and its marginal correlation matrix is XiRXi

T. Consequently, the 

hybrid model for missing data can be specified as

yi N(Xiμ, Φi),  where Φi = (Di + XiΨXi
T)1/2XiRXi

T(Di + XiΨXi
T)1/2 .

Although the derivation here is based on the assumption of missing at random38, the 

simulations in Section 5 will compare the performance of Model H with Models M, M0, and 

U when some factors are missing under various mechanisms (including missing not at 

random).

4.3 Bayesian hybrid model

Currently the existing statistical software, such as the Stata command “mvmeta”, can only 

implement Model H in a frequentist way.28,29 However, when the dimension of factors p is 

large compared with the number of collected studies, the estimated variance-covariance 

matrix using the frequentist method may be inconsistent39, leading to poor interval 

estimates. Indeed, the simulations in Section 5 show that the frequentist method produced 

poor 95% confidence intervals when the data of MVMA-MF were sparse, and the algorithm 

for maximizing the (restricted) likelihood did not converge for many simulated data. 

Therefore, we use a fully Bayesian approach to estimating the overall multivariate effect size 

μ and its variance-covariance matrix that are of interest in Model H. Vague priors are 

assigned to both the mean and variance-covariance structures. The Supporting Information 

provides the details of implementing the Bayesian MVMA-MF and its R and JAGS code. 

The simulations in Section 5 indicate that the 95% CrIs obtained using the Bayesian method 

generally had higher coverage probabilities than those obtained using the frequentist method 

for sparse data, which are common in MVMA-MF.

5. Simulations

We conducted simulations under various settings to compare the performance of the hybrid 

model (Model H) with the ideal model that uses within-study correlations (Model M), the 

model that ignores within-study correlations but accounts for between-study correlations 

(Model M0), and the univariate model that ignores both types of correlations (Model U). 

Bias and root mean squared error (RMSE) of point estimate and 95% CI/CrI coverage 

probability were used to evaluate the models’ performance. We set the number of studies in 

each simulated MVMA-MF dataset to 30 and considered 5 factors in total. The true overall 

effect sizes of the 5 factors were zero, i.e., μ = (0, 0, 0, 0, 0)T. Also, the between-study 

standard deviation τ was 1 for each factor; the within-study standard deviation of each factor 

σ was set to 0.5, 1, or 2. These choices for σ represented different extents of heterogeneity 

between studies. Moreover, we considered the exchangeable correlation structure for both 

the between- and within-study correlation matrices, RB = (rBij) and RW = (rWij), which were 

determined by the correlation parameters ρB and ρW, respectively; that is, rBij = ρB and rWij 

= ρW for 1 ≤ i ≠ j ≤ 5. The between-study correlations ρB were 0.2, 0.5, or 0.8, and the 

within-study correlations ρW were drawn from U(0, 0.3), U(0.3, 0.6), or U(0.6, 0.9). For 
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each setting, 1,000 MVMA-MF datasets were simulated using the ideal Model M with Si = 

σ2RW and T = τ2RB. Three missingness scenarios were considered: (I) all 5 factors were 

observed in all studies, i.e., the data were complete; (II) the data of factors 1, 3, and 5 in 10 

studies were missing completely at random; and (III) the smallest 10 effect sizes of factors 1, 

3, and 5 were missing. The missingness that was not at random in scenario (III) may be 

viewed as the effect of reporting bias. We also considered a missingness scenario that was 

similar to (III) but contained more missing data: (III′) the smallest 25 effect sizes of factors 

1, 3, and 5 were missing; in this case, the three factors were only available from 5 studies, so 

the simulated MVMA-MF data were much sparser than the previous scenarios. Both the 

REML and Bayesian methods were applied to implement the four models. For the Bayesian 

analyses, we used the priors specified in Section S1.2 of the Supporting Information. The 

Markov chain Monte Carlo (MCMC) algorithm was used for estimation with one chain, 

having a run of 10,000 updates after a 10,000-run burn-in period.

Table 2 presents the results when ρB was 0.5, and Tables S1 and S2 in the Supporting 

Information present those when ρB was 0.2 and 0.8, respectively. First, since the data of 

factors 2 and 4 were complete under all scenarios, their corresponding results produced by 

the four models were almost the same; all models led to nearly unbiased estimates and 

proper 95% CI/CrI coverage probabilities for these two factors. Second, the results of factors 

1, 3, and 5 produced by the four models also differed little when the data were complete or 

missing completely at random. This is expected from the perspective of missing data 

analysis.38 Third, if the missingness was not at random, the results produced by the four 

models were noticeably different. The univariate model led to the largest bias and RMSE 

and the lowest 95% CI/CrI coverage probability. Since Model M0 still accounted for the 

between-study correlations, its performance was similar to Model H when ρW was small 

compared to ρB. However, Model H outperformed Model M0 when ρW was larger than ρB, 

because the within-study level dominated the estimation of the overall effect sizes in this 

situation, but Model M0 ignored correlations at this level. Finally, note that Model M was 

ideal as it used the within-study correlations that are usually unavailable in real world. 

Although Model H did not use the within-study correlations, the biases and RMSEs 

produced by Model H were fairly close to the ideal Model M under various settings. Also, 

the 95% CI/CrI coverage probability produced by Model H was generally higher than those 

produced by Models M0 and U.

In most situations, the biases and RMSEs of point estimates obtained using the REML 

method were close to those obtained using the Bayesian method. However, under the 

missingness scenarios (III) and (III′), the 95% CrI coverage probabilities for factors 1, 3, 

and 5 obtained using the Bayesian method were generally higher than those obtained using 

the REML method. As noted in Section 4.3, this may be due to that the estimated variance-

covariance matrix was inconsistent when many observations were missing and the 

dimension was close to the sample size (only five observations for each of factors 1, 3, and 

5). Also, under scenario (III′), the biases and RMSEs produced by Model H using the 

REML method were noticeably different from those using the Bayesian method for factors 

1, 3, and 5; again, these differences may be caused by the sparsity of the simulated data. In 

addition, when Model H was used under scenario (III′), the optimization algorithm for the 
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REML estimates did not converge for many simulated replicates. We ran around 2,500 

iterations to obtain 1,000 datasets that produced converged REML estimates, and these 

1,000 datasets were used to produce the results for scenario (III′). Hence, the Bayesian 

method is preferred to implement the multivariate hybrid model when the dimension of 

factors is high but the observations are limited.

Moreover, we conducted an additional simulation study driven by the pterygium data. The 

conclusions are similar to those presented here. For more details, see Section S2 in the 

Supporting Information.

6. Real data analysis

The pterygium dataset has been introduced in details as our motivating example. Since the 

within-study correlations were unknown, we used Models H, M0, and U but not Model M to 

estimate the overall log odds ratios of the 8 risk factors. Due to the sparsity of the dataset, 

the models were implemented using Bayesian analyses. The estimates were based on three 

MCMC chains, each containing a run of 100,000 updates after a 100,000-run burn-in period. 

The convergence of the chains was checked using their trace plots. Table 3 presents the 

median overall log odds ratios with 95% CrIs. Figure 2 shows the posterior density plots of 

the 8 risk factors.

For risk factors that were reported in a relatively large number of studies (e.g., occupation 

type, smoking status, and education attainment), the three models yielded similar estimated 

overall log odds ratios; their density curves were also fairly similar. For risk factors that were 

only reported in a few studies (e.g., use of spectacles, area of residence, and latitude of 

residence), the peaks of the density curves produced by Model H were narrower and higher 

compared with those produced by Models M0 and U, indicating that Model H produced 

narrower 95% CrIs. Also, for the risk factor use of sunglasses, the location of its density 

curve produced by Model H was noticeably different from those produced by the other two 

models. Figure 3 depicts the estimated overall correlations between the 8 risk factors 

produced by Model H. It shows that many factors were correlated and some correlations 

were fairly high. Hence, ignoring the within-study correlations could lead to fairly different 

estimated overall log odds ratios; the unknown within-study correlations need to be carefully 

considered in MVMA-MF.

The priors in the above real data analyses were specified in Section S1.2 of the Supporting 

Information; specifically, uniform priors U(0, 10) were assigned for the between-study 

standard deviations. We examined the results’ sensitivity to prior specification by changing 

U(0, 10) priors to U(0, 3), U(0, 100), and U(0, 1000). In addition, we altered the order of the 

8 risk factors in the data analysis; this basically changed the priors assigned to the 

correlation matrices in Models H and M0 (see Section S1 in the Supporting Information). 

Table S3 in the Supporting Information presents the results. In sum, changing priors had 

little impact on the risk factors occupation type, smoking status, and education attainment, 

which were reported in at least ten studies. When the priors for the between-study standard 

deviations varied from U(0, 3) to U(0, 100), the point estimates of the overall log odds ratios 

of all 8 risk factors remained nearly unchanged. The CrIs for risk factors use of sunglasses 
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and latitude of residence noticeably became wider. Compared with other risk factors, since 

the data for these two factors were limited, the priors had larger influence on their posteriors. 

When the priors for the between-study standard deviations varied from U(0, 100) to U(0, 

1000), most results did not change. Changing the priors for the correlation matrices in 

Models H and M0 had some impact on the CrIs for the risk factors that were reported in no 

more than six studies. Nevertheless, the CrIs produced by Model H were still narrower than 

those produced by Models M0 and U. For more details, see Section S3 in the Supporting 

Information.

We also performed additional sensitivity analyses to investigate the impact of risk factor 

selection on the estimated overall log odds ratios. We considered two scenarios for the set of 

risk factors to be included in MVMA-MF: (i) sub-dataset consisted of the k most frequently 

reported risk factors; and (ii) sub-dataset consisted of the k least frequently reported risk 

factors (k = 2, …, 8). For example, when k = 2, the sub-dataset under scenario (i) contained 

the risk factors (1) occupation type and (2) smoking status; the sub-dataset under scenario 

(ii) contained the risk factors (7) use of sunglasses and (8) latitude of residence. Model H 

was implemented to analyze these sub-datasets.

Figure 4 shows the 95% CrIs of the overall log odds ratios under both scenarios; the labels 

of risk factors used in this figure can be found in Table 3’s first column. In scenario (i), 

starting from the two most frequently reported risk factors, infrequently reported risk factors 

were iteratively added to the MVMA-MF. Figure 4(i) shows that the estimated overall log 

odds ratios of risk factors 4 and 5 had some changes as new factors were added to the sub-

datasets. The 95% CrIs of the three most frequently reported risk factors 1–3 changed little. 

This might be explained by two reasons. First, the correlations between these three factors 

were weak (Figure 3), so the addition of risk factor 3 had little impact on estimating the 

effect sizes of factors 1 and 2. Second, the later added factors 4–8 provided much fewer 

information (no more than six studies) compared with factors 1–3, which were reported in 

more than ten studies, so the correlations contributed little to the effect size estimation for 

factors 1–3.

Compared with scenario (i), Figure 4(ii) shows larger changes of estimated overall log odds 

ratios in scenario (ii). Under this scenario, starting from the two least frequently reported 

risk factors, more frequently reported factors were iteratively added to the MVMA-MF. The 

95% CrIs of infrequently reported risk factors, such as 5 and 6, became narrower as more 

reported risk factors were included in the MVMA-MF. This illustrates the benefit of jointly 

modeling multiple factors: the inference on infrequently reported factors can be strengthened 

by borrowing information from frequently reported factors through the correlations between 

them.

7. Discussion

This article has introduced MVMA-MF with application to the pterygium data. In contrast to 

the tradition of meta-analyzing each single factor separately, this article encourages 

researchers to collect all possible factors and analyze them jointly to enhance the estimation 

of overall effect sizes. A Bayesian multivariate hybrid model has been introduced to 

Lin and Chu Page 9

Res Synth Methods. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



implement MVMA-MF in which within-study correlations are usually unknown. The 

simulations have shown that, when many factors are missing not at random, Bayesian 

MVMA-MF can use the information across multiple factors to impute missing data and thus 

can produce better estimates than separate meta-analyses. Our results are consistent with 

those produced by Kirkham et al.14 using frequentist bivariate and univariate meta-analyses; 

that is, “borrowing of strength” from the correlations between factors can reduce bias under 

the setting of missing not at random. For example, consider two highly correlated factors 

with a correlation coefficient close to one, and the results for factor 1 are fully observed. 

Even if the results for factor 2 are missing not at random, the missing results can be largely 

recovered through the high correlation between the two factors, so the bias in the estimate of 

factor 2 may be greatly reduced.

The hybrid model effectively reduces model complexity by specifying a common marginal 

correlation matrix for all studies. This model could be a proper tradeoff between goodness-

of-fit and model complexity in some situations; however, if the collected studies’ marginal 

correlation matrices differ a lot, the hybrid model may fit the data poorly. Future work is 

needed to generalize the hybrid model by allowing more degrees of freedom and select the 

best model using deviance information criterion.40

An important issue of MVMA-MF is to incorporate the effect size of a certain factor that has 

been adjusted for other factors. For example, in the original pterygium data presented in 

Serghiou et al.8, many collected studies only reported log odds ratios that were obtained 

using multivariate regression after adjusting different factors (e.g., age and gender), while 

log odds ratios without any adjustments were unavailable from these studies. We did not 

include such data in Table 1 due to the inconsistent adjustments. How to incorporate such 

data with different adjustments is of great interest to enrich the MVMA-MF and enhance the 

robustness and precision of the results.41,42 We leave this to future studies.

Another interesting but challenging problem is to identify the factors’ missingness 

mechanism and impute the missing factors more properly when the missingness is not at 

random. The factors could be missing completely at random, missing at random, or missing 

not at random.43 If the missingness of a factor does not depend on any observed or 

unobserved data, then this factor is missing completely at random. It is also possible that this 

factor is missing because of some observed data in some earlier studies; this is the case of 

missing at random. Bayesian inference under these two missingness mechanisms is valid 

when restricted to the observed data.38 However, the missingness not at random closely 

relates to publication and reporting bias, when some studies or factors were intended to be 

not published or reported due to their negative results.44,45 Although our simulations showed 

that the proposed hybrid model performed better than Models M0 and U when missingness 

was not at random, both its bias and 95% CrI coverage probability were expected to be 

further improved. Approaches to correcting publication or reporting bias have been 

introduced and widely used in univariate meta-analysis46; similar methods are highly needed 

for multivariate meta-analysis.
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Figure 1. 
Network plot of the pterygium data. The nodes represent the risk factors, and the edge 

between two nodes indicate that these nodes are simultaneously reported in common studies. 

The node size is proportional to the number of studies that report the corresponding risk 

factor, and the edge thickness is proportional to the number of studies that simultaneously 

report the corresponding two risk factors.
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Figure 2. 
Posterior density plots produced by Model H (accounting for both between- and within-

study correlations), Model M0 (only accounting for between-study correlations), and Model 

U (univariate model ignoring both between- and within-study correlations) for the overall 

log odds ratios of the 8 risk factors in the pterygium data.
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Figure 3. 
Plot of the estimated overall correlations between the 8 risk factors produced by Model H in 

the pterygium data. Darker color implies higher correlation.
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Figure 4. 
Bayesian estimates of overall log odds ratios produced by Model H based on subsets of the 

pterygium data. Each horizontal solid line represents 95% CrI of log odds ratio. The number 

placed at the median log odds ratio within each 95% CrI represents the corresponding risk 

factor’s label. The results of the sub-datasets that contain k = 2, …, 8 risk factors are 

accordingly listed from upper to lower, separated by the dotted lines.
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Table 3

The estimated overall log odds ratios (95% CrI) of the 8 risk factors in the pterygium data obtained by Model 

H (accounting for both between- and within-study correlations), Model M0 (only accounting for between-

study correlations), and Model U (univariate model ignoring both between- and within-study correlations) 

using the Bayesian method.

Risk factor

No. of
studies

Estimated overall log odds ratio

Model H Model M0 Model U

(1) Occupation type 23 0.65 (0.40, 0.92) 0.65 (0.41, 0.93) 0.66 (0.42, 0.91)

(2) Smoking status 16 0.10 (−0.07, 0.29) 0.10 (−0.07, 0.29) 0.08 (−0.07, 0.25)

(3) Education attainment 10 0.73 (0.40, 1.10) 0.74 (0.42, 1.07) 0.74 (0.46, 1.06)

(4) Use of hat 6 0.47 (−0.87, 1.62) 0.44 (−0.77, 1.55) 0.32 (−0.84, 1.41)

(5) Use of spectacles 6 −0.59 (−1.02, −0.09) −0.58 (−1.06, −0.06) −0.60 (−1.26, 0.05)

(6) Area of residence 5 1.04 (0.29, 1.78) 1.10 (0.22, 1.97) 1.24 (0.39, 2.11)

(7) Use of sunglasses 5 −0.36 (−1.53, 0.74) −0.51 (−1.64, 0.62) −0.57 (−1.76, 0.63)

(8) Latitude of residence 4 0.92 (−0.74, 2.72) 1.04 (−0.98, 3.10) 1.14 (−0.70, 3.37)
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