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Abstract

Chronic hepatitis B virus infection is a significant risk factor for cirrhosis and hepatocellular 

carcinoma. The HBx protein is required for virus replication, but the lack of robust infection 

models has hindered our understanding of HBx functions that could be targeted for antiviral 

purposes. We briefly review three properties of HBx: its binding to DDB1 and its regulation of cell 

survival and metabolism, to illustrate how a single viral protein can have multiple effects in a cell. 

We propose that different functions of HBx are needed, depending on the changing hepatocyte 

environment encountered during a chronic virus infection, and that these functions might serve as 

novel therapeutic targets for inhibiting hepatitis B virus replication and the development of 

associated diseases.

Graphical abstract

Introduction

The human hepatitis B virus (HBV) is a major human pathogen. An HBV infection can be 

acute or chronic, with the latter affecting over 240 million patients worldwide and leading to 

Corresponding author: Slagle, Betty L. (bslagle@bcm.edu), Mailstop BCM-385, One Baylor Plaza, Houston, TX 77030-3411 USA, 
Tel: 713-798-3006, FAX: 713-798-5075. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Virol. Author manuscript; available in PMC 2019 June 01.

Published in final edited form as:
Curr Opin Virol. 2018 June ; 30: 32–38. doi:10.1016/j.coviro.2018.01.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cycles of liver inflammation and significant deaths from liver failure and hepatocellular 

carcinoma (HCC) ([1] and reviewed in [2]). The HBV lifecycle is complex (Fig. 1) 

(reviewed in [3,4]). Upon entering hepatocytes, the partially double-stranded virion DNA 

genome is converted into viral covalently closed circular DNA (cccDNA), which serves as 

the transcriptional template. cccDNA is very stable, is considered to be a cause of viral 

persistence, and is one target of the HBV regulatory HBx protein (reviewed in [5]). The 

purpose of this brief review is to summarize functions of the HBV HBx protein that might 

contribute to maintenance of a persistent HBV infection and could therefore be potential 

therapeutic targets for the interruption of chronic HBV replication. Although numerous HBx 

activities that could affect persistent HBV replication have been reported, we focus on three 

HBx functions. We apologize to colleagues who have defined other HBx activities that 

might also be important for persistent HBV replication but could not be described due to 

space limitations.

Natural history of chronic HBV

Chronic HBV infection is thought to occur in four sequential stages that can be defined by 

specific serum markers and histological examination of liver tissue [4,6] (Fig. 2). The first 

stage, immune tolerance, is characterized by high-titer HBV DNA, expression of the HBV 

HBeAg, a marker of active HBV replication, and normal levels of alanine aminotransferase 

(ALT), a marker of potential liver damage. Liver tissue shows mild to no inflammatory 

changes, although events contributing to cirrhosis and HCC may still be occurring during 

this stage (reviewed in [7]). The second stage, immune clearance, features variable and 

declining levels of HBV DNA, concomitant spikes in ALT levels, and active liver 

inflammation (hepatitis). There may also be a conversion from HBeAg-positivity to anti-

HBeAg-positivity. The third stage, the inactive carrier stage, is marked by the presence of 

anti-HBeAg positivity, low-to-undetectable HBV DNA, normal ALT levels, and a return to 

minimal hepatitis. In the fourth or reactivation stage, there are again spikes of HBV 

replication, increased ALT, and active hepatitis. Repeated cycles of reactivation and 

inflammation may lead to cirrhosis and HCC. Chronic HBV infection lasts for decades, and 

the virus-host interactions underlying progression through various stages of the infection 

remain incompletely understood. The HBV HBx protein is presumed to be expressed 

throughout chronic HBV infection based on detection of the analogous WHx protein in 

woodchucks chronically infected with the woodchuck hepatitis virus (WHV), a member of 

the same virus family as HBV [8]. HBx likely has multiple functions that could vary 

depending on the specific stage of chronic infection and the cellular factors encountered by 

the virus. These functions may be reflected in the numerous activities that have been 

ascribed to HBx in different experimental models.

HBx and virus replication

The HBV genome encodes four overlapping open-reading frames (ORFs) including the X 
ORF that encodes HBx. HBx is required to initiate and maintain HBV replication in 

HepaRG cells [9] and human-liver-chimeric mice [10], and WHx is required for WHV 

replication in woodchucks [11,12]. In plasmid-transient-transfection assays with a greater-

than-unit length HBV, or a similar HBV lacking HBx expression, HBx is required for 
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maximal virus replication [13–15]. HBx localizes to both a Triton X-100 detergent-soluble 

and insoluble (cytoskeletal) fraction, where its half-life is 15-30 minutes or 3 hours, 

respectively [16–19]. In the nucleus, HBx interacts with cccDNA [20] and basal 

transcriptional machinery and activates transcription (reviewed in [21–23]). In the 

cytoplasm, HBx stimulates signal transduction pathways to benefit virus replication, 

including factors that affect cell survival, metabolism, proliferation, and transcription 

pathways (reviewed in [21–24]). A fraction of cytosolic HBx localizes to the outer 

mitochondrial membrane and interacts with the voltage-dependent anion channel [25]. 

Technical considerations for working with HBx, as well as comprehensive reviews of HBx 

activities, have been published [21–23,26,27]. Here we review a few more recent findings of 

HBx activities that are likely of relevance during chronic HBV infection.

HBx and DDB1

Viruses with limited genetic information frequently usurp cellular pathways to facilitate their 

replication and interact with cellular proteins to mediate their role(s) in viral replication. It is 

clear that the binding of HBx to damaged DNA binding protein 1 (DDB1) [28,29] is critical 

for virus replication in both woodchucks [30] and in the HBV-plasmid, HepG2-replication 

model [31,32]. DDB1 was originally identified as a cofactor in the recognition step of 

nucleotide-excision repair (NER) [33]. More recently, DDB1 was shown to be an adaptor 

protein for the Cullin 4A RING E3 Ligase (CRL4) and acts by binding DDB1 Cullin 

Accessory Factor (DCAF) receptors that recruit substrate proteins for ubiquitination and 

degradation [34,35] (Fig. 3). In this way, CRL4 regulates diverse cellular processes such as 

damaged-DNA repair (DDR), the cell cycle, and innate immunity (reviewed in [36]). Of 

significance, HBx is a viral DCAF receptor [32,37] and is proposed to impact downstream 

DDB1-DCAF pathways (Fig. 3).

Activation of the DDR by viruses is a common strategy to provide factors needed for virus 

replication (reviewed in [38,39]). HBV (or HBx) can both activate and inhibit DDR 

pathways. Incubation of human liver HL7702 cells with HBV-positive serum activated 

(phosphorylated) Ataxia telangiectasia-mutated (ATM)-Rad3-related (ATR) [40]. A similar 

activation of ATR was reported in HBx-inducible, immortalized-murine hepatocytes cultured 

in low serum [41,42]. HBx also stimulates the DNA helicase activity of the TFIIH subunits 

[43] and utilizes the host DNA-repair enzyme TDP2 when synthesizing viral cccDNA [44]. 

Some studies, however, support the idea that HBx inhibits the NER portion of the DDR. 

HBx inhibits NER in HepG2 cells [45–47] and in primary mouse hepatocytes [48,49]. It also 

inhibits base-excision repair [50]. During chronic HBV infection, HBx may need to both 

activate and inhibit DDR, depending on the hepatocyte environment and the specific DDR 

function needed to benefit that stage of virus replication. Existing chemical inhibitors of 

ATR, and the related ataxia telangiectasia-mutated (ATM) pathways of DDR, are potential 

antiviral agents [51], but more studies of HBx function in authentic HBV-infection models 

are needed.

Several viruses target CRL4 and recruit cellular substrates whose degradation benefits virus 

replication (reviewed in [52–54]). An early study concluded that HBx inhibits proteasome 

function to preserve a factor needed by the virus [55]. More recently, an opposing view has 
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emerged from studies showing that HBx binds to the cellular DDB1-containing E3 ligase 

and promotes the degradation of the structural maintenance of chromosomes (Smc) complex 

Smc5/6 [56,57]. Smc5/6 normally inhibits transcription from the HBV cccDNA template, 

and degradation of Smc5/6 eases the transcriptional repression, leading to increased viral 

mRNA synthesis (reviewed in [58]). This function of HBx requires co-localization with 

Nuclear Domain 10 (ND10) [59]. Other HBV restriction factors are under investigation 

(Table 1), some of which may also be targeted for degradation, although the mechanism(s) 

by which this occurs may differ (see Table 1 and references therein). Since HBx binds over 

100 cellular proteins [68], it is likely that additional HBV restriction factors will be 

discovered. The presence of antiviral restriction factors is predicted to vary at different times 

during a chronic virus infection and could act at any stage of the virus lifecycle.

Many viruses encode proteins that function, in part, by deregulating cell-cycle checkpoints 

to benefit virus replication (reviewed in [69,70]). HBx can induce cells from G0 to G1, but 

then cause cells to stall at the G1/S border (reviewed in [22,24,71]). The CRL4 associated 

with DCAF receptor CDT2 (CRL4CDT2) has been implicated in cell-cycle progression 

(reviewed in [72]), and this is accomplished via the degradation of p21/CIP/WAF1 and of 

DNA-replication-licensing factor Cdt1 (reviewed in [73]). Interestingly, p21 levels are 

reduced in the regenerating liver of HBx-transgenic mice [74], and HBx promotes DNA re-

replication in immortalized murine hepatocytes [42] but not in HeLa cells [75]. Thus, the 

ability of HBx to promote and/or inhibit cell-cycle progression may be context specific and 

important during different stages of chronic infection.

HBx and cell survival

HBx has been reported to activate, inhibit, or have no effect on cellular apoptosis pathways; 

some studies have also suggested that HBx may sensitize cells to other factors that regulate 

cell survival (reviewed in [76,77]). These seemingly contradictory observations probably 

reflect cell-specific consequences of HBx expression and are likely to be relevant to 

differing HBx effects at various steps of the viral lifecycle or different stages of a chronic 

HBV infection (Fig. 2). While many early studies of HBx regulation of apoptosis were 

conducted in immortalized or transformed cells, more recent studies in ex vivo models of 

primary hepatocyte systems have shown that HBx has a dual role in regulating apoptosis 

[78,79]. HBx was shown to be anti-apoptotic in these systems via activation of the 

transcription factor NFkB, an activator of anti-apoptotic signals [78]. In contrast, when 

NFκB was inhibited, HBx was pro-apoptotic. Additional studies in primary hepatocytes 

showed that HBx also activates the anti-apoptotic factor AKT; this HBx activity promoted 

hepatocyte survival at the expense of high levels of HBV replication [79]. Inhibition of AKT 

stimulated HBV replication but also led to HBx-induced apoptosis. These observations are 

also consistent with data showing that HBx sensitizes cells to apoptotic signals [80–83] and 

suggest that HBx pro-apoptotic effects are normally masked by its activation of NF-κB or 

AKT but could become apparent when other pro-apoptotic signals are present. Studies in 

HBV- and HBx-transgenic mice and in liver-derived cell lines suggest that HBV and HBx 

elevate expression of pro-apoptotic BAX and lower expression of anti-apoptotic Bcl-xL, 

which could sensitize hepatocytes to pro-apoptotic signals while not directly inducing 

apoptosis [83,84]. HBx localization to mitochondria, a cellular signaling hub that controls 
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cell survival, might also affect apoptotic signals [25,78,85–88]. The results of one study 

showed that HBx expression elevated reactive oxygen species (ROS) levels, which typically 

come from mitochondria, decreased expression of mitochondrial oxidative phosphorylation 

enzymes, and sensitized cells to pro-apoptotic signals [81]. HBV and HBx also induced 

mitophagy in liver-derived cells, and inhibition of mitophagy in these cells induced 

apoptosis [86]. In this scenario, activation of mitophagy served to protect cells. Overall, the 

results of recent studies suggest that noncytopathic, persistent HBV replication is linked to 

HBx activation of anti-apoptotic signals that also lower the levels of HBV replication; when 

HBx anti-apoptotic signals are blocked, HBV replication is elevated but HBx pro-apoptotic 

signals kill the infected cells [79]. Whether HBx pro- or anti-apoptotic activities influence 

specific steps of the HBV lifecycle, or specific stages of an HBV infection, remains to be 

determined.

HBx and metabolism

The possible role for HBx-mediated alterations in hepatocyte metabolism, and the 

consequences for persistent HBV replication, is an emerging area of investigation [89]. 

HBx-mediated changes in hepatocyte metabolism have been analyzed in mouse livers, ex 
vivo hepatocyte culture systems, and liver-derived cell lines when HBx was expressed alone 

and in the context of HBV replication [90,91]. These studies suggest that HBx can elevate 

the expression of hepatic gluconeogenic factors, such as peroxisome proliferator-activated 

receptor gamma coactivator-1α and phosphoenolpyruvate carboxykinase, and can activate 

major metabolic signaling pathways including the PI3K/AKT, mammalian target of 

rapamycin complex 1 (mTORC1), and AMP-activated protein kinase (AMPK) pathways 

[90,91]. These HBx effects have been linked to control of HBV transcription and genome 

replication. Interestingly, in primary hepatocyte systems, HBx simultaneously activated the 

opposing mTORC1- and AMPK-signaling pathways. Activation of mTORC1 inhibited HBV 

replication, and activation of AMPK enhanced HBV replication [91]. The results of a study 

that analyzed PI3K/AKT and mTORC1 signaling in HBV-positive patient liver samples also 

demonstrated that mTORC1 and AKT levels were elevated [92]. The cumulative 

consequences of HBx-induced alterations of metabolic signaling pathways may be to 

provide lipids, proteins, and nucleotides required for HBV replication while also altering 

normal hepatocyte metabolism so as to promote or contribute to progression of HBV-

associated carcinogenesis.

Conclusions

Given the clinical importance of chronic HBV infection and liver disease, and the central 

role of HBx in HBV replication, it is important to consider the idea of targeting HBx to 

interrupt virus replication. We propose that HBx serves multiple functions during the various 

stages of chronic HBV infection. However, a recurring theme for known HBx-host 

interactions is that HBx can both promote and inhibit cellular pathways with which it 

interacts. HBx may need this flexibility in order to mediate its function(s) in the different 

cellular environments encountered during a decades-long chronic HBV infection. At present, 

it is challenging to identify a specific function of HBx that might be targeted. Moving 
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forward, more robust HBV-infection models are needed in order to study HBx functions 

relevant to virus replication in different physiological settings.
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Highlights

• HBV HBx is required for virus replication.

• Required HBx function(s) may vary with the stage of chronic HBV infection.

• HBx binding to DDB1 may impact several DDB1-regulated pathways.

• HBx effects on apoptosis and metabolism are likely vital for chronic HBV 

infection.

• DDB1 and cell survival and metabolism pathways are potential anti-HBV 

targets.
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Figure 1. 
HBV lifecycle. Virus particles containing partially double-stranded (ds) DNA (∼dsDNA) 

genomes enter the cell via the NTCP receptor. Following uncoating of surface antigen (small 

blue circles), the core particles (hexagons) deliver the genome to the nucleus. The ∼dsDNA 

is repaired by host factors and converted into covalently closed circular (ccc)DNA. The 

cccDNA serves as the template for HBx-mediated viral transcription. The viral mRNAs 

(shown in the nucleus) are transported to the cytoplasm for translation. The 3.5-kb 

pregenomic RNA and a copy of the viral polymerase (small black circles) is encapsidated 

and reverse transcribed (RT) into the negative-strand DNA, which is then copied into 

positive-strand DNA. Viral cores move through the endoplasmic reticulum and Golgi, where 

they acquire surface antigen (envelope) and bud from the cell. Cytoplasmic-core particles 

may alternatively recycle back to the nucleus.
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Figure 2. 
Four stages of a chronic HBV infection. Chronic HBV infection typically proceeds through 

four stages, .as described in the text. We propose that HBx activities may differ depending 

on the cellular factors present during the different stages of a chronic infection.
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Figure 3. 
HBx and DDB1. DDB1 (orange) is an adaptor protein of the Cullin 4A-DDB1 E3 Ligase 

(CRL4) and acts by recruiting DCAF-receptor proteins (R) that bind substrates (S) that are 

ubiquitinated (Ub) and degraded to regulate downstream pathways such as DNA synthesis, 

damaged-DNA repair, the cell cycle, and innate immunity. HBx is a viral DCAF and binds 

DDB1 as a required step in virus replication. HBx-DDB1 may recruit new substrates (S′) to 

the CRL4 or may alter downstream pathways regulated by CRL4. Other key proteins of the 

complex are the RING protein (Roc) that binds to the E2 enzyme.

Slagle and Bouchard Page 14

Curr Opin Virol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Slagle and Bouchard Page 15

Table 1
Putative HBV restriction factors

Protein Step of HBV replication inhibited Reference

Apobec3g Release from plasma membrane [56,57]

Smc6 Transcription from cccDNA [58,59]

Samhd1 Viral DNA synthesis [60,61]

Tln1 Transcription from cccDNA [62]

Ddx3 Post-encapsidation of pgRNA [63]

Ddx5 Transcription from cccDNA [64]

Zeb2 Transcription from cccDNA [65]
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