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Abstract

The nuclear envelope (NE), which is a critical barrier between the DNA and the cytosol, is capable 

of extensive dynamic membrane remodeling events in interphase. One of these events, interphase 

NE rupture and repair, can occur in both normal and disease states and results in the loss of 

nucleus compartmentalization. NE rupture is not lethal, but new research indicates that it could 

have broad impacts on genome stability and activate innate immune responses. These observations 

suggest a new model for how changes in NE structure could be pathogenic in cancer, 

laminopathies, and autoinflammatory syndromes, and redefine the functions of nucleus 

compartmentalization.

Introduction

The nuclear envelope (NE) surrounds the nucleus and is comprised of two membrane sheets 

fused at the nuclear pore complexes enclosing a lumen that is contiguous with the 

endoplasmic reticulum. The other main components of the NE are the nuclear pore 

complexes (NPCs) and the underlying nuclear lamina, a meshwork of lamin intermediate 

filament and transmembrane proteins that connect the chromatin to the inner nuclear 

membrane. The structure and composition of the NE regulates many aspects of nucleus 

biology, including nucleus morphology, response to mechanical stress, heterochromatin 

binding, gene expression, and nuclear functions, such as DNA damage repair, which led to a 

model of the NE as a scaffold [1,2]. Recently, a new model of NE structure has emerged that 

highlights an essential requirement for interphase NE remodeling in many cell processes and 

behaviors [3]. Most of these dynamics preserve nucleus compartmentalization [2]. The 

exception is NE rupture, which results in the loss of nucleus compartmentalization and can 

be corrected by NE repair or lead to persistent chromatin mislocalization [4–7].
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Added note
A recently published paper (Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. 
Nature 553, 467–472 (2018)) suggests that cGAS-STING activation by micronucleus formation and rupture may be critical for the 
initiation of metastasis, through STING-dependent upregulation of pro-metastatic genes. Activation of specific cell signaling 
pathways, i.e. non-cannonical NFκB, is thus a third consequence of nuclear membrane disruption, in addition to increased genome 
instability and induction of pro-inflammatory responses.
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Analysis of the current examples of NE rupture indicates that this process can have both 

protective and pathogenic consequences, depending on the biological context. Transient NE 

rupture during cell migration is thought to release intranuclear pressure [8], which could 

facilitate nuclear deformation and migration through small pores. However, it is also 

correlated with increased genome instability and nucleus fragmentation [9–11]. Similarly, 

NE rupture in micronuclei can generate highly rearranged chromosomes [12], but may also 

stimulate senescence and clearance of aneuploid cells from tissues [13,14]. Finally, 

induction of pro-inflammatory responses after NE rupture may have a dual nature, triggering 

autoinflammatory disease in some contexts [15], but also able to cause systemic anti-tumor 

responses after irradiation [13,16]. These observations raise new questions about the 

function of nucleus compartmentalization and the importance of regulating NE remodeling 

to prevent disease.

Interphase NE rupture and repair

Interphase NE rupture is defined as the loss of nucleus integrity due to membrane rupture in 

interphase and is characterized by rapid mislocalization of nuclear and cytoplasmic proteins 

in the absence of chromatin condensation [4–6]. Ruptures in the nuclear membranes 

typically occur at a single spot, often at sites of chromatin herniation [4–6]. Transient NE 

rupture, where membrane repair occurs within a few minutes to a few hours, has been 

observed in several conditions in vitro [9,10,17–21] (Figure 1). NE rupture without repair 

occurs frequently in micronuclei [7], small nuclei that form in addition to the primary 

nucleus as a result of chromosome missegregation. Micronuclei are distinct from nuclear 

buds, which often resemble micronuclei in shape but are connected to the primary nucleus 

via a thin chromatin bridge [22]. Micronuclei arise from many causes, including unrepaired 

DNA damage, defects in spindle assembly, and chromatin bridge breakage [23]. Persistent 

NE rupture in micronuclei has been observed in cultured cells after missegregation of whole 

chromosomes or acentric fragments, due to spindle misassembly or DNA damage, and in 

tumor cells and embryos in vivo [7,13,15,24,25]. In cycling cells the chromatin from 

disrupted micronuclei is not lost, but persists in the cytosol and frequently reincorporates 

into the primary nucleus in the next cell cycle [7,26].

Analysis of NE rupture has identified two significant contributors to NE stability – nuclear 

lamina organization and mechanical stress (Figure 1). Membrane rupture occurs at the site of 

gaps in the nuclear lamina, which can appear after mitosis or form during mechanical stress 

[4,5,7,9,10,18–20,27]. In addition, membrane rupture can be inhibited by overexpressing 

lamin proteins [7,18,27], and occurs more frequently in cell types characterized by altered 

lamina structure [20] [28], indicating that nuclear lamina disorganization is required for NE 

rupture. NE rupture is frequently observed in nuclei experiencing significant mechanical 

stress [9,10,18–20,28,29], and a current model is that external force on the nucleus triggers 

chromatin herniation and membrane rupture at sites of nuclear lamina breaks. One exception 

to this model is micronucleus disruption, where membrane rupture frequently occurs hours 

after the appearance of lamina gaps and does not depend on actin-based forces [7,19]. The 

ESCRT-III membrane remodeling complex, which seals the NE after mitosis and in response 

to nuclear pore defects [30–32], is transiently recruited to sites of NE rupture and increases 

the efficiency of NE repair [9,10]. Nuclear lamina proteins are also recruited to the rupture 
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site and persist after membrane resealing [10,33]. Although significant progress has been 

made on the mechanism of NE rupture and repair, many questions remain about the 

molecular and mechanical details of these processes, including how the membrane ruptures, 

how repair proteins are targeted to the membrane breaks, and whether membrane stability 

can be fully restored.

NE rupture and genome instability

The loss of nucleus integrity can have several impacts on genome stability, including altered 

nucleotide sequence, chromosome structure, and chromosome number (Figure 2). Several of 

these consequences were first described in micronucleus disruption. NE rupture without 

repair terminates many nuclear processes, including transcription and DNA replication 

[7,34], which can result in both temporary and heritable aneuploidy [12]. In addition, NE 

rupture during DNA replication in micronuclei is thought to cause extensive DNA damage, 

specifically double-stranded DNA breaks (DSBs), that cannot be repaired due to the loss of 

DNA damage repair proteins [7,12,26,34–36]. Consistent with multiple DNA breaks, 

micronucleated chromatin frequently appears fragmented in mitotic spreads [26,37,38]. 

However, NE disruption may not be required for this fragmentation. Cells containing intact 

micronuclei frequently enter mitosis before DNA replication has finished [26], which could 

cause chromosome fragmentation by a process called premature chromatin condensation 

[39]. In support of a mitotic damage mechanism, missegregation of the Y chromosome into 

micronuclei results in a high frequency of DNA fragmentation in mitosis, even though NE 

disruption frequency in interphase is low [38].

Transient NE rupture in the primary nucleus can also cause DNA damage. Direct evidence 

of this process comes from analysis of chromatin bridge resolution after telomere fusion. 

Bridge breakage in this system is facilitated by DNA fragmentation by cytoplasmic 

nucleases, including TREX1, that gain access to the chromatin through NE rupture and 

cause DSBs [18]. Inhibiting NE rupture decreases the amount of ssDNA in the bridge, which 

is likely a key step in this process [18]. NE rupture and repair frequently precedes DSBs in 

migrating cells [9,10], but it is unclear whether this is the primary cause of DNA damage in 

these cells as nucleus deformation is also sufficient to induce DSBs [10]. Similar to 

persistent NE rupture in micronuclei, NE rupture in migrating cells may inhibit DNA 

damage repair by causing mislocalization of repair proteins to the cytoplasm [11]. These 

models of DNA damage after transient NE rupture raise several interesting questions. First, 

TREX1 is not required for bridge resolution, it only accelerates the timing of resolution [18], 

indicating that additional mechanisms for chromatin bridge resolution exist and may occur 

independently of NE rupture. In addition, DNA damage appears to be restricted to chromatin 

in the bridge in cells with telomere fusions [18], but frequently occurs all over the nucleus 

during confined migration [9,10]. This suggests two interesting possibilities: that the ability 

of NE rupture to cause DNA damage depends on pre-existing conditions in the nucleus, or 

that the consequences of NE rupture can be mitigated by undefined protective mechanisms.

DNA damage due to NE rupture is thought to be a critical initiating event for chromothripsis 

and kataegis, two “all at-once” complex genome alteration mechanisms frequently found 

together in broad array of cancer types [40–42]. In chromothripsis a subset of chromatin, 
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e.g. a single chromosome arm up to a few chromosomes, becomes fragmented and is 

randomly religated [43]. In addition to DNA rearrangement, chromothripsis causes gene 

amplification by fragment circularization and gene loss by fragment deletion [44]. NE 

rupture in micronuclei and chromatin bridges is highly correlated with chromothripsis in 

human cells [12,18]. Chromothripsis also occurs after micronucleus induction in 

Arabidopsis thaliana [45], suggesting that chromosome rearrangement is a conserved 

consequence of micronucleation. Chromatin bridge resolution is also correlated with 

kataegis [18], a type of clustered hypermutation associated with APOBEC3 cytidine 

deaminase activity [46], suggesting that bridge breakage could be a mechanism linking 

chromothripsis and kataegis in cancer. Breakpoint analysis and DNA repair enzyme 

depletion experiments indicate that both non-homologous end-joining and microhomology-

mediated pathways can contribute to chromosome reassembly [12,18,38,43,45] and further 

analysis of these pathways in chromothripsis is the subject of an excellent recent review 

[47]. One major question about these models is whether or not NE rupture is required for 

chromothripsis or kataegis. Analysis of genome stability after repeated rounds of confined 

migration suggest a link between conditions that increase NE rupture and changes in 

chromosome copy number [11], but additional studies will be important to define a causal 

connection between NE rupture, DNA damage, chromothripsis, and kataegis.

NE rupture and innate immunity

Several conditions, including DNA damage and expression of autoinflammatory disease 

mutations, activate the DNA sensor cGAS (cyclic GMP-AMP (cGAMP) Synthase) and 

cause an inflammatory response [13,15,16,48]. Recent studies suggest that NE rupture in 

micronuclei may be the critical trigger of cGAS activation in both these situations [13,15]. 

Ionizing radiation and loss of RNAseH2b activity, a model for the autoinflammatory disease 

Aicardi-Goutières Syndrome, both cause an increase in micronucleus frequency and induce 

a cGAS-STING (stimulator of interferon genes) dependent interferon and inflammatory 

response specifically in micronucleated cells [13,15]. A current model is that NE rupture 

leads to cGAS accumulation on micronucleated chromatin, which activates cGAS to 

produce cGAMP and signal to the STING adaptor protein, leading to expression of 

interferons and pro-inflammatory cytokines [13,15,49] (Figure 3a). In support of the 

micronucleation model of innate immune induction, DNA damage alone is insufficient to 

activate the cGAS-STING pathway, but inducing micronucleation on its own is sufficient to 

induce a pro-inflammatory response [13,15]. Recent analysis of cGAS activity in senescent 

cells also supports this model. The secretion of pro-inflammatory cytokines by senescent 

cells, called the SASP (senescence-associated secretory phenotype), requires the formation 

of cytosolic chromosome fragments (CCFs), which bind cGAS and activate the cGAS-

STING pathway [49–51]. CCFs share many hallmarks of NE disruption with disrupted 

micronuclei, including γ-H2AX accumulation, loss of H3K9 acetylation, and loss of nuclear 

lamina proteins [7,52], but accumulate after the cells have stopped cycling and are thought 

to arise from NE budding [52]. Together, these results suggest that exposure of self-DNA to 

the cytoplasm by NE instability could be a widespread trigger of inflammation. cGAS also 

accumulates on exposed chromatin during transient NE rupture in the main nucleus 

[9,10,15,18], but whether this is sufficient to activate an inflammatory response is unknown.
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The current studies identify a strong correlation between micronucleus formation and innate 

immune responses, but additional work will help determine whether cGAS accumulation on 

disrupted micronuclei is sufficient for cGAS-STING pathway activation. One unresolved 

question is the contribution of other cGAS-STING activating conditions to the immune 

response in micronucleated cells. Micronuclei frequently co-occur with aneuploidy because 

they form as a result of chromosome missegregation, and micronucleus disruption 

contributes to aneuploidy by interrupting DNA replication and transcription [7,12]. Recently, 

aneuploidy has been shown to cause upregulation of the cGAS-STING pathway [14], which 

suggests an alternative mechanism for the pro-inflammatory response in micronucleated 

cells. In addition, ionizing radiation causes senescence, which could activate cGAS-STING 

through CCF formation [49,50]. Thus, it will be important for future studies to tease apart 

the relative contributions of aneuploidy, DNA damage, senescence, and micronucleus 

disruption in these models.

Another outstanding question is whether negative regulators of auto-inflammation, such as 

TREX1 or autophagy, affect cGAS-STING pathway activation after micronucleus 

disruption. Digestion of cytosolic DNA by TREX1 is thought to be a critical mechanism to 

prevent cGAS activation by self-DNA [48]. TREX1 localizes to chromatin bridges and 

disrupted micronuclei [18], but its effect on cGAS activation from exposed chromatin is 

unclear. In the presence of TREX1, the interferon response occurs several days after 

irradiation and is linked to the presence of micronuclei [13]. However, irradiation of cells 

lacking TREX1 increases the amount of cytosolic DNA and leads to an interferon response 

within one day [16], which complicates assessment of the role of TREX1 activity in the 

slower micronucleus-mediated cGAS activation. Targeting of self-DNA to the lysosome by 

autophagy also prevents cGAS activation after DNA damage [53]. Whether autophagy 

targets disrupted micronuclei is likely to be dependent on the cellular environment. 

Disrupted micronuclei in cycling cells have little association with autophagy markers 

[26,54], but in senescent cells similar material in CCFs frequently co-localizes with them 

[55]. Autophagy is thought be required to activate cGAS-STING in senescent cells, via 

generation of CCFs [55], but stimulating autophagy in RNAseH2b knockout cells inhibits 

cGAS activation, via depletion of cytosolic DNA [25]. Thus, TREX1 and autophagy 

proteins appear to interact with chromatin uncovered by NE rupture, but further studies are 

needed to identify what conditions enable them to inhibit auto-inflammation.

Conclusions

The recognition that the NE is capable of extensive membrane remodeling in interphase, and 

that this behavior is linked to changes in nuclear lamina organization, has opened up a new 

model for how altered NE structure can cause disease. The recent studies linking NE rupture 

to increased genome instability and innate immune responses identify new potential 

molecular mechanisms for cancer evolution, radiotherapy efficacy, laminopathy symptoms, 

and autoinflammatory syndromes. At the same time, we are just beginning to see whether 

NE rupture can facilitate normal cell behaviors, such as migration of immune cells through 

dense tissues [9]. In addition, there are likely additional consequences of NE rupture that 

have yet to be defined. Loss of membrane integrity causes removal of histone acetyl groups 

in micronuclei [7] and chromatin compaction in both micronuclei and the primary nucleus 
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[7,28]. These events could affect genome stability, gene regulation, and chromosome 

organization, but currently their consequences are unknown. Going forward, the challenge 

will be to determine which of the many consequences of nucleus integrity loss is responsible 

for persistent changes in the chromatin, the cell, and the organism. A second challenge will 

be to untangle the consequences of NE rupture from those of concurrent conditions, 

including karyotype changes and altered nuclear lamina structure. New studies on the 

mechanisms of NE rupture and repair will be critical to develop new tools to address these 

challenges. These types of studies will also add new information to fundamental questions in 

nuclear lamina biology, including how the lamin protein meshwork assembles, and how 

changes in lamina protein sequences can have multifaceted effects on the cell.
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Figure 1. Mechanism of nuclear envelope rupture
(a) Nuclear envelope rupture in cultured cancer cells occurs as a result of defects in nuclear 

lamina organization that give rise to gaps in the lamina meshwork. Confinement by actin 

bundles increases stress on the nuclear membrane and results in chromatin herniation and 

rupture of the nuclear membranes. After rupture, the nuclear membrane is resealed. Nuclear 

lamina defects and increased membrane stress are also associated with NE rupture in 

laminopathy mutations (not pictured) (b) increased actomyosin contractility, (c) cell 

migration through narrow channels, and (d) chromatin bridge resolution. In contrast, NE 

rupture in (e) micronucleus disruption requires nuclear lamina defects, but the role of 

membrane stress is unknown.

Hatch Page 10

Curr Opin Cell Biol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Nuclear envelope rupture and genome instability
(a) Micronucleus mechanism of chromothripsis. Micronucleation of a chromosome leads to 

DNA damage and fragmentation after DNA replication initiation, either by NE rupture in 

interphase, or by premature chromatin condensation in mitosis. Chromothriptic are visible in 

the next cell cycle, likely as a result of the chromatin being reincorporated in the nucleus and 

exposed to DNA damage repair proteins. (b) Chromothripsis and kataegis after chromatin 

bridge resolution. Chromatin bridge breakage is preceded by NE rupture and results in DNA 

damage and both chromothriptic chromatin rearrangements and APOBEC-associated 

kataegis. (c) Transient NE rupture in cells migrating through narrow channels is associated 

with increased DNA damage and mislocalization of DNA damage repair proteins. Repeated 

migration leads to increased genetic diversity. APOBEC = apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide-like. Chrt = chromothriptic chromosome rearrangements; 

DDR = DNA damage repair; Kat = kataegis; NEr = nuclear envelope rupture; PPC = 

premature chromosome condensation.
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Figure 3. Nuclear envelope rupture and innate immunity
(a) Micronucleus model of cGAS-STING activation. Disruption of the micronucleus NE 

causes accumulation and activation of cGAS, which initiates interferon and pro-

inflammatory responses via cGAMP production and STING activation. (b) Senescence 

model of cGAS-STING activation. Increased NE instability during senescence leads to 

budding off of nucleus material, association of chromatin with autophagosomes, and 

generation of cytoplasmic chromatin fragments that accumulate and activate cGAS, which 

initiates the senescence-associated secretory phenotype via STING. CCF = cytoplasmic 

chromatin fragments; cGAMP = cyclic GMP-AMP; cGAS = cyclic GMP-AMP Synthase; 

IFN = interferon response; Infl = pro inflammatory pathway activation; MN = micronuclei; 

NE = nuclear envelope; SASP = senescence-associated secretory phenotype; STING = 

stimulator of interferon genes.
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