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Abstract

Background—The purpose of this study is to clarify the source distribution patterns of
magnetoencephalographic (MEG) spikes correlated with postsurgical seizure-free outcome in
pediatric patients with focal cortical dysplasia (FCD).

Methods—Thirty-two patients with pathologically-confirmed FCD were divided into seizure-
free and -persistent groups according to their surgical outcomes based on Engel's classification. In
each patient, presurgical MEG was retrospectively reviewed. Dipole sources of MEG spikes were
calculated according to a single dipole model. We obtained the following quantitative indices for
evaluating dipole distribution: maximum distance over all pairs of dipoles, standard deviation of
the distances between each dipole and the mean coordinate of all dipoles, average nearest neighbor
distance, the rate of dipoles located within 10 mm, 20 mm, 30 mm from the mean coordinate, and
the rate of dipoles included in the resection. These indices were compared between the two patient
groups.

Results—Average nearest neighbor distance was significantly smaller in the seizure-free group
compared to the seizure-persistent group (p=0.008). The rate of dipoles located within 10 mm, 20
mm, 30 mm from the mean coordinate were significantly higher in the seizure-free group
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(p=0.001, 0.001, 0.005, respectively). The maximum distance, standard deviation and the resection
rate of dipoles did not show a significant difference between the two groups.

Conclusions—A spatially-restricted dipole distribution of MEG spikes is correlated with
postsurgical seizure-free outcomes in patients with FCD. The distribution can be assessed by
quantitative indices that are clinically useful in the presurgical evaluation of these patients.

Keywords
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Introduction

Focal cortical dysplasia (FCD) is a major cause of medically-intractable epilepsy in the
pediatric population but may be amenable to surgical treatment!: 2, Previous studies have
shown that complete removal of the anatomical/electrophysiological abnormality is an
important prognostic factor of postsurgical seizure freedom3: 4. Therefore, investigation of
epileptic discharges, including interictal spikes, is critical for planning epilepsy surgery in
pediatric patients with FCD.

Magnetoencephalography (MEG) is a non-invasive tool that records neuromagnetic fields
from the brain, and is useful for localizing epileptic discharges in presurgical evaluation.
Previous studies have investigated interictal MEG spikes by using a single dipole model in
FCD patients, showing the intrinsic epileptogenicity of the lesion as compared with MRI and
intracranial EEG>2. Several researchers observed dipole distribution in a restricted cortical
area, which is called a 'dipole cluster'l® 11, They suggested that removal of the cluster is
correlated with a favorable surgical outcomel® 11 however, postsurgical seizure-freedom is
not always achieved. In the past studies, the dipole cluster was subjectively detected by
visual inspection of dipole distribution maps8 9, or by applying predefined criteria, such as
'six or more spike sources with 1 cm or less between adjacent sources% 11, The basis of
these criteria is still unclear: no studies have revealed how closely the dipoles should be
located for determining the dipole cluster that is clinically relevant. Revisiting the concept of
dipole cluster beyond the subjective, predefined criteria is necessary for better planning of
epilepsy surgery.

The purpose of this study is to objectively and quantitatively reveal the dipole distribution
that is useful for estimating postsurgical outcomes. We investigate 1) the spatial patterns of
dipole distribution by using numerical indices, and 2) the relation of these indices with the
surgical outcome in patients with FCD. We hypothesize that these indices showing a
spatially-restricted dipole distribution are correlated with postsurgical seizure freedom and
provide the basis of clinically-relevant dipole cluster.
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Patients and Methods

Patients

We retrospectively studied 32 pediatric patients (18 males, 14 females, age 1-18, mean 11
years old) who underwent an MEG as a part of clinical evaluation and subsequent epilepsy
surgery in 2003-2016. All patients had a histopathological diagnosis of FCD. There were 11
patients diagnosed according to the classification proposed by Palmini et al.12 (Patients 4-7,
9, 18, 21-25), and 11 patients with the International League Against Epilepsy
classification13 (Patients 8, 10-13, 15-16, 26, 28-29, 32). The pathology reports of 10
patients (Patients 1-3, 14, 17, 19-20, 27, 30-31) only indicated FCD without further
stratification. We included patients with isolated FCD and with associated principal lesions,
such as encephalomalacia, infarction and cyst, therefore, the patients were not characterized
by a single pathology. Six patients had previous surgery, which showed cortical dysplasia/
malformation without further classification (Patients 15, 17, 25, 27 and 32) and ganglion cell
tumor (Patient 20) in pathology.

Patients were post-operatively followed to 12-92 months (mean 32 months). Surgical
outcomes were evaluated by Engel's classification at the time of last follow-up!#, and we
divided the patients into two groups: Seizure-free (Class la outcome, 16 patients) and
seizure-persistent (other outcomes, 16 patients). All aspects of the study were approved by
the institutional review board and were performed in accordance with the Declaration of
Helsinki. Informed consent was obtained from all patients and their guardians. Table 1 gives
an overview of the clinical profiles of the patients.

MEG recording

MEG was recorded with a 306-channel, whole-head MEG system (Elekta-Neuromag,
Helsinki, Finland). The sampling frequency was 600 Hz (Patients 1-8, 17-27) or 1000 Hz
(Patients 9-16, 28-32) with a band-pass filter of 0.1-200 Hz. We recorded spontaneous
activity for 50-60 min in each patient. Patients were recorded in supine position and
instructed to rest or sleep. Antiepileptic medications were maintained without tapering and
no sedation was performed at the time of MEG study. We collected scalp EEG
simultaneously with MEG by using a 70-channel electrode cap. The EEG findings are
shown in Table 1. The data were low-pass filtered at 40 Hz for the analysis. The details of
the MEG recording have previously been described!®.

In all patients, anatomical MRI data were acquired with magnetization-prepared rapid
acquisition gradient-echo sequences (MPRAGE; TE=3.37 ms, TR=2000 ms, voxel
size=1x1x1 mm) with a high-resolution 3T scanner (TIM TRIO, Siemens AG, Erlangen,
Germany). Post-surgical MRI was also obtained with MPRAGE, T1- or T2-axial/coronal/
sagittal sequences.

MEG analysis

We visually examined MEG data and identified interictal spikes. Equivalent current dipoles
(ECDs) were calculated at the peak of each spike using a single-dipole model without
selecting a region of interest (i.e., all 306 sensors were used for the analysis). ECDs with

Pediatr Neurol. Author manuscript; available in PMC 2019 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Tanaka et al.

Statistics

Results

Page 4

goodness of fit >70 % and dipole moment <500 nAm were considered adequate as spike
sources. The mean coordinate of all ECDs was obtained in each patient. Then we calculated
the following indices for evaluating the spatial distribution of ECDs: (1) maximum distance:
the largest distance over all pairs of ECDs; (2) SDD: standard deviation of the distances
between each ECD and the mean coordinate; (3) average nearest neighbor distance: mean
distance between each ECD and its nearest ECD; (4)—(6) within 10 mm, within 20 mm and
within 30 mm: the rate of ECDs located within 10 mm, 20 mm and 30 mm from the mean
coordinate, respectively; (7) resection rate: the rate of ECDs located in the resection. We
coregistered the postsurgical MRI to the presurgical images and visually determined whether
each ECD was removed or not.

We compared all seven indices as defined above between the seizure-free and - persistent
groups by using Mann-Whitney tests. Since the numbers of ECDs are different according to
the number of spikes recorded in each patient, we tested the correlations between the
numbers of ECDs and indices (1)—(7) by means of Spearman's correlation coefficient for
understanding its effect on these indices. We also investigated the correlations between (1)-
(6) and the resection rate to test whether the ECD distribution affects the removal of ECDs.
P value<0.01 was considered significant.

Table 2 summarizes the results of each patient. The average nearest neighbor distance was
significantly smaller in seizure-free group than in seizure-persistent group (p=0.008). The
seizure-free group also showed larger values of within 10 mm, within 20 mm, within 30 mm
(p=0.001, 0.001, 0.005). We did not find any significant difference in other indices between
these patients groups.

The average nearest neighbor distance was correlated with the number of ECDs (Rs=—0.88,
p<0.001). There were also correlations seen in the maximum distance (Rs=- 0.62, p<0.001),
SDD (Rs=-0.59, p<0.001), within 10 mm (Rs=0.54, p<0.001), within 20 mm (Rs=0.55,
p=0.001) and within 30 mm (Rs=0.53, p=0.002) with the resection rate.

Fig. 1 shows the typical patterns of dipole distribution in seizure-free and - persistent groups.
Fig. 2 plots the rate of seizure-free patients to within 10 mm, within 20 mm, within 30 mm
(Fig. 2-upper) and the average nearest neighbor distance (Fig. 2-lower). The trend shows
more dipoles within 10 mm, 20 mm, 30 mm from the mean coordinate result in a higher rate
of seizure-free patients, and larger average nearest neighbor distances result in a lower
seizure-free rate.

Discussion

In this study, we investigated the spatial patterns of dipole source distribution obtained from
interictal epileptiform discharges recorded using MEG in patients with FCD. The results
suggest that a spatially-restricted dipole distribution is correlated with seizure-free surgical
outcome, as shown by the significantly smaller average nearest neighbor distance and the
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higher rate of dipoles located within 10 mm, 20 mm and 30 mm from the mean coordinate in
the seizure-free group compared to the seizure-persistent group of patients.

Previous MEG studies have observed a pattern of dipole distribution in a restricted cortical
area, which is described as a 'dipole cluster' in patients with epilepsy6-20. Dipole clusters
are considered to guide a resection volume and predict a good outcome in epilepsy
surgery?l, However, these studies predefined the criteria to determine a dipole cluster
variably, as described by 'six or more spike sources with <1 cm between adjacent

sources'10: 11.16,18,22-28 10 or more ECDs located contiguously within neighboring
gyri29, '10 or more spike sources with 15 mm or less between adjacent sources'®, or ‘at least
5 dipoles within a 1-cm? region'?L: 30, No studies have demonstrated objective and
quantitative basis of these criteria. Moreover, there is evidence suggesting that FCD
represents specific features in MEG spikes and their source distribution, as compared with
astrocytic inclusions?’ or other lesions3L. The patterns of dipole clusters may be useful for
diagnosing FCD distinctive from other etiologies when they are defined based on
quantitative observation. Recent studies classified the dipole cluster into 'tight' and 'loose’
clusters at a lobar/sublobar level and suggested that tight clusters are characteristic in FCD
patients20: 32, Our results may be informative for quantitatively determining the criteria of a
dipole cluster that is clinically relevant in patients with FCD by using numerical indices of
dipole distribution. More specifically, the mean values of average nearest neighbor distance
were 6.5 mm and 10.0 mm in seizure-free and -persistent groups, respectively. The criteria
of dipole clusters, such as '<1 cm between adjacent sources' and '15 mm or less between
adjacent sources', include most of the dipole distributions seen in both of our patient groups,
and may not be useful for estimating postsurgical outcomes. In fact, the rate of seizure-free
patients is only 62 % and 55 % at the threshold of 10 mm and 15 mm for average nearest
neighbor distance in our patients (Fig. 2-lower). Considering the average nearest neighbor
distance was correlated with the number of dipoles, the distance between dipoles may not be
appropriate for the criteria of dipole cluster. Alternatively, all patients who had 30 %, 90 %
and 100 % of dipoles within 10 mm, 20 mm and 30 mm from the mean coordinate became
seizure-free after surgery (Fig. 2), suggesting that these indices provide a strong basis of
clinically-relevant dipole cluster and a good indicator for estimating postsurgical outcome.

Several researchers have demonstrated that surgical removal of dipole cluster may predict
favorable surgical outcomes in patients with epilepsy, by investigating whether the dipole
cluster was completely or partially removed!?: 21. 33-36 ' A few studies suggested a higher
rate of dipole removal is correlated with favorable surgical outcomes3”: 38, while Kim et al.
39 reported no statistical relationship between these two measurements. For FCD patients,
Widjaja et al.10 found that the complete removal of a dipole cluster had a higher rate of
achieving Engel's Class | outcome than partial removal; however Wilenius et al.1! did not
find a significant correlation between the resection rate of dipoles and seizure-free outcomes
in patients with dipole clusters.

Our results failed to show a relationship between resection rate and postsurgical seizure-
freedom. Mislocalization of MEG spike sources may occur due to spike propagation?,
leading to a low rate of dipole resection in some patients of our seizure-free group. On the
other hand, the resection rate was correlated with the dipole distribution pattern as indicated
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by maximum distance, SDD, within 10 mm, within 20 mm and within 30 mm, suggesting
that a restricted dipole distribution correlates with a higher resection rate. The results also
differ depending on other factors, such as the existence of MRI-visible lesions3?; thus, the
significance of dipole removal is still unclear.

We did not consider the size of the patient's brain in our analysis, although it is different
depending on the patient's age. The brain size affects the correlation between the dipole
distribution and anatomical regions. For example, a certain distance, such as 30 mm, may
cross multiple gyri in younger patients, while it may be included in a single gyrus in older
patients. Applying an anatomical atlas to the source space would be useful for counting the
numbers of dipoles at a lobar or sublobar level and evaluating the dipole distribution
correlated with the anatomical regions. Similarly, the brain size may be a factor affecting the
resection rate, however, our patients did not show a significant difference in the resection
rate between seizure-free and -persistent groups even without patients under 5 years of age
(Patients 15, 16 and 30, P>0.01). There are only a small number of young pediatric patients
who show considerably small size of the brain in our study. Further investigations of such
patients will clarify the effect of brain size on the clinical relevance of dipole distribution.

This study has several limitations. First, the study design is retrospective, and a prospective
study is necessary for controlling the confounding factors. Second, we did not consider the
pathological classification of FCD, since the pathology findings were obtained by different
criteria. Moreover, our study included patients with different types of FCD pathology, such
as isolated and associated with principal lesions. Previous studies have suggested an impact
of FCD type in the clinical outcome2®: 32, Third, we investigated the dipole distribution
regardless of its location. Bilateral or distant dipole locations may reflect multiple dipole
clusters2?, in which a single mean coordinate is not feasible for analysis. Nakajima et al 28
reported the different patterns of dipole distribution in FCD patients depending on the lesion
location at the bottom of the sulcus or gyral surface. Further studies are necessary for
addressing these issues.

In conclusion, investigating the distribution patterns of spike dipole sources is informative
for understanding the clinical usefulness of MEG in patients with FCD. Dipole source
distribution in a restricted area suggests favorable outcomes of epilepsy surgery.
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Figure 1.
(A) Dipole distribution of a patient in the seizure-free group (Patient 16), projected on the

presurgical (Left) and postsurgical (Right) MRI. Most dipoles are tightly clustered (average
nearest neighbor distance=2.3 mm, within 10 mm=0.65) and located within the resection.
(B) Dipole distribution of a patient in the seizure-persistent group (Patient 23), projected on
the presurgical (Left) and postsurgical (Right) MRI. Most dipoles are loosely clustered
(average nearest neighbor distance=5.6 mm, within 10 mm=0.26) and located outside the
resection.
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(Upper) The rate of postsurgical seizure-free patients (%) is plotted corresponding to the
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threshold of within 10 mm (circle), within 20 mm (square), within 30 mm (triangle). The
trend shows that larger values of within 10 mm, within 20 mm and within 30 mm result in a
higher rate of seizure-free patients. (Lower) The rate of postsurgical seizure-free patients
(%) is plotted corresponding to the threshold of average nearest neighbor distance. The trend
shows that larger average nearest neighbor distances result in a lower seizure-free rate.
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