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Abstract

Immune tolerance is a vital component of immunity, as persistent activation of immune cells 

causes significant tissue damage and loss of tolerance leads to autoimmunity. Likewise, unwanted 

immune responses can occur in inherited disorders, such as hemophilia and Pompe disease, in 

which patients lack any expression of protein, during treatment with enzyme replacement therapy, 

or gene therapy. While the liver has long been known as being tolerogenic, it was only recently 

appreciated in the last decade that liver directed adeno-associated virus (AAV) gene therapy can 

induce systemic tolerance to a transgene. In this review, we look at the mechanisms behind liver 

induced tolerance, discuss different factors influencing successful tolerance induction with AAV, 

and applications where AAV mediated tolerance may be helpful.

Introduction

The basis of gene therapy is the delivery of a functional copy of the disease causing gene 

that is missing or deficient in patients. Viruses are commonly used in the field of gene 

therapy for many reasons: 1) abundance, 2) easily manipulated, and 3) they have naturally 

evolved to deliver their genetic payload to target cells or tissues. Within the field of gene 

therapy, adenovirus, adeno-associated virus, retrovirus, and lentivirus have enjoyed the most 

success. The choice of viral vector system is based on several factors: widespread versus 

localized transduction, long-term vs short-term transgene expression, packaging capacity, 

and immunogenicity. Of all the viral based vector systems used for gene therapy, adeno-

associated virus (AAV) has become one of the most commonly used today.

AAV is a parvovirus that contains a single stranded DNA genome of ~4.7kb. AAV is unable 

to replicate without a helper virus and is non-pathogenic in hosts, including humans. 

Recombinant AAV (rAAV) retains the inverted terminal repeats (ITRs) of the wild-type 

genome allowing rAAV to have a packaging capacity of up to 5kb. rAAV vectors have 

several important properties that make them well suited for gene therapy. They can infect 
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non-dividing cells, vector genomes are minimally integrative and are maintained episomally, 

come in a wide array of serotypes with a specific tropism for a certain tissue, and 

importantly, have low immunogenicity [1–3]. Nevertheless, there remains a risk for immune 

responses. For example, when treating an inherited disorder in which there is no protein 

expression, the therapeutic protein can be seen as non-self and may trigger a T and B cell 

mediated immune response [4].

It is widely accepted that AAV liver directed gene therapy can harness the tolerogenic nature 

of the liver and induce systemic immunological tolerance to transgene products [5–8]. 

Tolerance is defined as the failure of the body to mount an immune response to an antigen 

whether it be to ‘self’ or a foreign protein. Regulatory T cells (Tregs) are known to play a 

crucial role in the induction and maintenance of tolerance. Tregs suppress immune responses 

in the periphery through a number of mechanisms including direct and indirect suppression 

of antigen presenting cells, B lymphocytes, and T effector cells (Fig. 1) [9–14]. By 

leveraging this unique ability to induce immune tolerance to transgene products, it is 

possible to develop lasting treatments for a multitude of diseases (for a more complete 

listing of diseases which have been treated using gene therapy see the article by Roncarolo, 

et al. within this issue).

Multiple tissues have been investigated for inducing transgene tolerance including 

hematopoietic stem cells, thymus, muscle, and liver (for a more complete review see [15]). 

This review will primarily focus on AAV gene transfer to the liver, the current understanding 

of specific cellular interactions between resident liver and immune cells, and mechanisms of 

tolerance induction. We will highlight key factors to consider for successful and durable 

tolerance induction and provide an overview of pre-clinical data supporting AAV mediated 

tolerance induction in several different disease models, as well as discuss potential 

limitations for translation into humans. Finally, we will discuss a novel application of AAV 

gene therapy, using transgene tolerance induction to treat an autoimmune disease.

Immune tolerance and Tregs

A deleterious immune response to an AAV delivered transgene is a potential complication 

associated with long-term correction of disease. This response becomes more prominent in 

cases where the therapeutic gene being delivered is completely absent, not just mutated [4]. 

In this case, the transgene product could be recognized as non-self and trigger the activation 

of both humoral and cell-mediated immune responses which rely heavily on the activation of 

CD4+ T cells for optimal effectiveness. In the case of humoral responses, CD4+ T cells 

provide help for the maturation of B lymphocytes and production of high affinity antibodies 

specific for the transgene product [14]. In the case of cell-mediated responses, CD4+ T cells 

are not directly required for the activation of CD8+ responses, although, the speed and 

strength of the CD8+ T cells activation, as well as the formation of a CD8+ memory T cell 

response, is in fact dependent on a CD4+ T cell help.

One approach for mitigating such adverse responses is through the induction of tolerance 

driven by transgene specific Tregs. Tregs are a unique subset of CD4+ T cells expressing 

Forkhead box P3 (FoxP3) that help maintain immune homeostasis, and for this review will 
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be defined as CD4+CD25+FoxP3+ T cells. In addition to preventing excessive inflammatory 

damage to tissues, Tregs suppress self-reactive T cells that have escaped thymic selection 

and are considered one of the most important regulators of peripheral tolerance. Tregs are 

capable of suppressing other cell types in both a contact–dependent and –independent 

manner, through the ligation of cell surface antigens such as: cytotoxic T lymphocyte 

antigen 4 (CTLA-4), lymphocyte activation gene 3 (LAG-3), CD18, Neuropilin-1 (Nrp-1), 

lymphocyte function-associated antigen 1 (LFA-1), and CD39, or by releasing anti-

inflammatory cytokines IL-10 and TGF-β, as well as perforins and granzymes [16]. As such, 

Tregs have the capacity to prevent immune responses in both an antigen-specific and non-

specific fashion [17].

Tregs are divided into two broad categories: 1) natural Tregs (nTregs) which are developed 

in the thymus and 2) inducible Tregs (iTregs) which are developed from peripheral CD4+ T 

effector cells. While functionally similar, iTregs are considered to be more plastic showing 

transient FoxP3+ expression, while nTregs have stable FoxP3+ expression [18]. Phenotypic 

differentiation of nTregs from iTregs can be difficult. Both Helios and Neuropilin-1 

expression have been suggested as markers of nTregs [19, 20], although others have argued 

that they are not suitable for distinguishing the two populations [21–23].

Tregs are not the only regulatory cells found within the body. Type1 regulatory (Tr1) cells 

are suppressive T cells that are also found within the liver. Tr1 cells are characterized as 

being CD3+CD4+CD25−FoxP3−LAG3+CD49b+ as well as producing IL-10 and TGF-β 
[24–26]. Though no conclusive link has yet been established, the fact that Tr1 cells are 

found within the liver and produce two cytokines common in the tolerogenic liver suggests 

that these cells play a role in the induction of tolerance following AAV hepatic gene transfer 

[27]. While there are other immune regulatory cells such as Th3 cells, CD8+Tregs, and 

regulatory B cells, their roles in tolerance following AAV hepatic gene transfer are outside 

the scope of this review.

AAV Induced Liver Tolerance

There is substantial evidence demonstrating that AAV hepatic gene therapy induces antigen 

specific Tregs that modulate immune tolerance [6, 8, 14, 28–31]. To date, most studies 

supporting liver induced tolerance have utilized mouse models, especially when focusing on 

the mechanisms behind the induction of tolerance. Unfortunately, the genetic variances 

between strains of mice make understanding the process more challenging. For example, 

C57BL/6 mice suppress cytotoxic lymphocyte (CTL) responses to systemic AAV delivery, 

however the same is not true for BALB/c mice which show impaired tolerance induction and 

are susceptible to the clearance of transduced hepatocytes through a CTL-mediated 

mechanism [32]. Studies conducted in dogs and non-human primates (NHP) show that AAV 

mediated liver induced tolerance is more complex and is dependent not only on the 

transgene, but on whether a species-specific transgene is used [33–38]. While such results 

are encouraging, it is currently unknown if this is true in humans.

The liver has long been known as the organ responsible for detoxifying the body of foreign 

antigens as well as metabolizing many drugs and nutrients. Roughly 30% of the body’s total 
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blood volume passes through the liver each minute [39]. The liver’s anatomical location 

results in roughly 80% of the blood being delivered directly from the intestines via the portal 

vein and 20% coming from arteries [40]. Blood traveling from the intestines inundates the 

liver with nutrients, bacterial products from the gut, gram-negative bacteria (and 

lipopolysaccharides (LPS) found on their cell walls), and cellular debris. Yet, these 

potentially immunogenic antigens fail to elicit immune responses in the liver [41, 42] as the 

liver has developed a means to locally regulate adaptive immunity.

The ability of the liver to induce tolerance was first recognized in 1969 by Calne et al. where 

they demonstrated that porcine liver allo-transplantation was capable of preventing rejection 

of a secondary transplanted organ from the same donor [43]. This concept has been extended 

to show that reduced organ rejection is seen when cells from the organ donor are injected 

into the recipients liver prior to transplantation [44]. Given this unique characteristic of the 

liver, it is an ideal target for tolerance induction via AAV. Studies in animal models show 

that tolerance is dependent on classical antigen presenting cells (APCs) within the liver [45] 

and that restricted expression to hepatocytes enhances tolerance [5]. However, the precise 

mechanisms of tolerance induction via liver directed AAV gene therapy is still unclear.

The tolerogenic effects produced by the liver are controlled, in a large part, by resident 

APCs. Liver APCs consist of both non-conventional and conventional types. In contrast to 

conventional APCs, like dendritic cells (DCs), the non-conventional hepatic APCs consist of 

Kupffer cells (KCs), liver sinusoidal endothelial cells (LSEC), hepatocytes, and hepatic 

stellate cells that express low-level of major histocompatibility complex (MHC)-I/II and co-

stimulatory molecules during steady state [42, 46]. Although the composition of T 

lymphocytes found within the liver is much different compared to lymph nodes, spleen, and 

peripheral blood, they also play a role in the induction and maintenance of tolerance.

Kupffer Cells

KCs are the largest population of resident macrophages representing between 80%–90% of 

all macrophages found in the body [41, 47] and ~35% of the non-parenchymal cells within 

the liver. KCs are responsible for the phagocytosis of particulate material, elimination of 

cellular debris, and clearance of pathogens from the liver. However, the life span of these 

cells remains unclear. Studies on this topic are conflicting with some reporting these cells 

are replaced as often as every 1–2 weeks [47], while others show KCs to be long-lived 

lasting 3 months to 1 year [48].

Unlike other macrophages in the body, KCs do not actively patrol the parenchyma 

scavenging for pathogens. Instead, KCs remain stationary, attached to the luminal surface of 

LSECs and act as an immune sentinel as they are exposed to the circulating blood. Their 

function is to detect, bind, and phagocytose pathogens and other foreign materials, as well as 

release cytokines and chemokines, thereby alerting the rest of the immune system to the 

presence of harmful materials [39, 41, 47]. At steady state, KCs are known to exist in an 

anti-inflammatory, M2 activation state. This may be due, in part, to the fact that under 

physiological conditions, KCs are exposed to a constant supply of LPS in the range of 100 

pg/mL to 1 ng/mL [49]. While it may seem counter intuitive, constant LPS exposure 

promotes KCs to produce high amounts of IL-10, TGF-β, and arachidonic acid metabolite 
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prostaglandin E2 (PGE2), all of which promote an anti-inflammatory macrophage state [50–

54].

In many cases, hepatic gene transfer results in the expression of a secreted transgene. KCs 

play an important role in the induction of tolerance to soluble antigens [55]. Recent studies 

have shown that KCs can drive expansion of CD4+CD25+FoxP3+Treg cells in the liver via 

IL-10 [27, 45, 56]. They also showed that KCs were capable of further expanding Tregs by 

converting antigen-specific Teff into Tregs [56]. The reports went on to show that this 

phenomenon was only seen when KCs possessed a tolerogenic signature, which is marked 

by program death ligand-1 (PD-L1) expression and IL-10 production. Whereas, the loss in 

IL-10 resulted in a failure to convert immunogenic Teff into Tregs [56]. Others have also 

shown that the secretion of IL-10 is crucial for tolerance induction to hepatocyte expressed 

antigens [29]. It was found that the administration of AAV to the liver resulted in the 

production of IL-10 by KCs in response to the transgene and not the capsid. Furthermore, 

the authors demonstrated that IL-10 production by KCs was critical for Tregs, and the 

maintenance of tolerance [27, 29]. These findings are paramount as most AAV tolerance 

induction protocols rely on hepatocytes being the cell transduced.

While KC derived IL-10 may play a major role in tolerance induction within the liver, this is 

not the only mechanism. At homeostasis, KCs express low amounts of both MHC I and 

MHC II [51]. This low MHC expression reduces the ability of the KCs to present antigen 

and provide signal 1 to the T cells. This incomplete activation results in either anergy or 

Treg induction [51]. Additionally, KCs are known to express high amounts of PGE2, 15-

deoxyΔ12,14prostaglandin J2 (15d-PGJ2), indoleamine 2,3-dioxygenase (IDO), and arginase 

[57–59]. All of which are also capable of inhibiting the induction of antigen specific T cell 

activation by dendritic cells [29, 55, 60]. Lastly, KCs have been shown to express the 

immune suppressive protein, PD-L1, which once bound to its receptor PD-1, induces anergy 

or cell death in PD-1 positive Teffs, thus promoting the expansion of Tregs [56, 61].

Liver Sinusoidal Endothelial Cells

LSECs are the most prominent non-parenchymal cells of the liver, strategically positioned in 

the liver, lining the sinusoid creating a physical barrier between the space of Dissè and the 

intraluminal space [46, 62]. LSECs are the most efficient endocytic cells in the body and are 

responsible for the transportation of molecules from the bloodstream to hepatocyte surfaces 

via transcytosis [63–65]. Interestingly, LSECs have been shown to directly interact with 

hepatocytes, thereby acquiring hepatocyte-derived antigens and inducing Tregs [66]. This 

sampling of hepatocyte antigens by LSECs may prove to be an important and/or crucial step 

in the induction of tolerance via liver directed AAV gene therapy.

LSEC are one of the first cells within the liver to contact lymphocytes and play a role in 

lymphocyte recruitment. It has been shown that LSECs can present secreted antigens to 

CD4+ T cells in such a manner that results in a tolerogenic state and not immunity [67]. 

Recently, Merlin et al. used a lentivirus vector to deliver clotting factor VIII (FVIII) to LSEC 

which resulted in the induction of tolerance in a hemophilia A mouse model [68]. The 

tolerogenic nature of LSECs is mediated through a verity of mechanisms. Due to high local 

levels of IL-10, MHC and co-stimulatory molecules CD80/CD86 expression is maintained at 
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very low levels which is inefficient for priming of T cells [69, 70]. LSECs are also capable 

of inducing cytokine production in T cells, but due to the lack of IL-12 priming, these CD4+ 

T cells turn in to IL-10/IL-4 producing cells [49], which were shown to have suppressive 

effects even though they lacked the classical Treg markers, FoxP3 and CD25 [71]. More 

recently, Xu et al. have shown that LSECs are responsible for inducing tolerance to auto-

reactive CD4+ cells by converting them into FoxP3−LAG+CD49b− Tr1 cells [72]. This 

suggests that LSEC may be responsible for the induction of Tr1 like cells as opposed to 

Tregs. Others have shown that LSEC are in fact capable of inducing FoxP3+Tregs through 

the conversion of FoxP3− non-Tregs into FoxP3+Treg cells in a TGF-β dependent manner 

[66]. It was also found that the LSEC are in fact the most efficient cells for making this 

conversion when compared to DCs and KCs [66]. These findings show LSEC can induce 

two different regulatory cell subsets that both contribute to immunological tolerance, but 

further studies are needed to fully elucidate the conditions that result in each cell type, and 

the exact role LSECs play in the induction and maintenance of tolerance induced by liver 

directed AAV gene therapy.

Dendritic Cells

Under steady-state conditions, there are more DCs found within the mouse liver than any 

other parenchymal organ [73]. DCs in the liver are found predominately in the perivascular 

region, portal space, beneath the Glisson’s capsule, and scattered throughout the parenchyma 

[74]. Unlike other APCs in the liver, DCs are highly motile with migration rates from the 

liver being ~105 DCs per hour [75]. In the liver, DCs patrol the tissue and engulf antigens. 

However, DCs within the liver, similar to KCs, are not as efficient at presenting antigens 

when compared to DCs from other tissues [76–78].

In steady-state conditions, hepatic DCs have an immature (iDC) phenotype and are poor 

activators of Teff cells and tend to be more tolerogenic. This preference for tolerance over 

immunity by iDCs is due in part to their low expression of MHC II on their cell surfaces. 

Further, while iDCs do express the co-stimulatory molecules CD40 and CD80/86, they are at 

such low levels they are nearly impossible to detect. Hepatic DCs also secrete PGE2, an ant-

inflammatory prostaglandin that results in the up-regulation of IDO in DCs as well as 

enhances their IL-10 production, resulting in an increased capacity to induce Treg [79, 80]. 

High levels of IL-10 and low levels of IL-12 result in an antigen-independent hypo-

responsiveness that shifts Th1 cells to a Th2 phenotype, thereby reducing the likelihood of 

immunity and promoting development of Tregs [81, 82]. IL-10 is also responsible for the 

expansion of Tregs as the ligation of IL-10 to its receptor on a T cell overrides co-

stimulatory signals and prevents the recruitment of phosphatidylinositol 3-kinase, which has 

been shown to be necessary for the formation of Teff cells [83, 84].

The second mechanism, through which hepatic DCs can induce or maintain tolerance, is 

through the direct deletion of Teff cells. In addition to a reduced expression of IL-12, 

tolerogenic DCs within the liver have an increased amount of IL-18 production [85]. This 

increased production of IL-18 results in the expression of Fas-L (CD95L, CD178) by hepatic 

dendritic cells. This expression of Fas-L in turn allows for the direct deletion of Teff cells 

through a Fas (CD95)/Fas-L manner, as Fas is constitutively expressed on Teff cells within 
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the liver [85]. A second mechanism through which hepatic DCs induce Teff cell deletion is 

through a PD-L1/2/PD-1 mechanism. Within the liver, both PD-L1 and PD-L2 are expressed 

by DCs [86]. Simultaneously, Teff cells within the liver up-regulate PD-1 in response to 

constant stimulation. This allows for the deletion of PD-1 expressing Teff cells through the 

blockade of phosphoinositide 3-kinase (PI3K) [87]. Finally, hepatic DCs can delete Teff 

cells through the expression of IDO, which is secreted by predominately plasmacytoid DCs 

within the liver resulting in the degradation of tryptophan around Teff cells. This response is 

seen in conjunction with the production of toxic metabolites resulting in the apoptosis of 

Teff cells [88]. All of these factors show a mechanism through which DCs help promote an 

overall tolerogenic environment within the liver which is paramount to the success of 

tolerance induction via liver directed AAV gene therapy.

Hepatocytes

Hepatocytes are the most common cell type within the liver comprising ~80% of all cells. 

Their primary role includes metabolism, detoxification, synthesis and secretion of proteins. 

While it has been shown that hepatocyte restricted transgene expression enhances tolerance 

induction, it is unclear if hepatocytes directly or indirectly contribute to Treg induction. 

Hepatocytes are unique to parenchymal cells as they exhibit antigen-presenting capabilities 

[89, 90] and circulating T cells can directly interact with hepatocytes through the 

fenestrations of the LSEC [91]. Under steady state conditions, hepatocytes express low 

amounts of MHC-I and Intercellular Adhesion Molecule 1 (ICAM-1, CD54). However, 

given the large size of the hepatocytes and that MHC-I and ICAM-1 are concentrated to the 

perisinusoidal cell membrane, it is possible for hepatocytes to prime CD8+ T cells [91, 92].

Under steady state conditions, hepatocytes do not have detectable surface expression of 

MHC-II [93, 94], raising doubt in the long-held belief that the induction of tolerance 

following liver directed AAV gene therapy is dependent on the transduction of hepatocytes. 

However, MHC-II can be induced during inflammation, such as in hepatitis [89]. Even 

though lymphocytes can directly interact with hepatocytes through the fenestrae, it is unclear 

if hepatocytes directly present antigen to CD4+ T cells. Burghardt et al. found that following 

expression of an antigen by a hepatocyte, FoxP3+ Tregs were induced in a Notch-dependent 

pathway [95]. In work by Lüth et al., they suggest a different mechanism where induction of 

antigen specific Tregs was dependent on the expression of the antigen in the liver and 

occurred by TGF-β–dependent peripheral conversion from conventional non-Tregs [96]. 

While the two groups suggest different mechanisms for the induction of Tregs, there is no 

reason that the two are mutually exclusive. In fact, Burghardt et al. found that TGF-β 
significantly increased the amount of Tregs produced in their system while Lüth et al. did 

not look at Notch signaling. Both mechanisms may play a role in the induction of Tregs with 

one possibly being necessary and one being enhancing [95, 96].

The induction of FoxP3+ Tregs is not the only means through which hepatocytes induce 

tolerance. In a study using AAV hepatic gene transfer, it was found that Teff cells were 

directly removed in a Fas/FasL dependent manner [97]. In this work, an AAV8 vector, 

expressing a nuclear-targeted form of β-gal, nLacZ, was used to transduce the livers of both 

wild type and Faslpr/lpr mice. It was found that upon AAV8 liver transduction, a significant 
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increase of FasL was seen on hepatocytes [97]. Further, they found that in AAV8 treated 

mice, there was a large population of Fas expressing lymphocytes found in the liver which 

were missing from the naïve mice [97]. These studies suggest that AAV hepatic gene 

transfer can be used to induce tolerance through a multifaceted approach: the induction of 

antigen-specific Tregs to the transgene as well as the selective deletion of transgene specific 

Teff cells through a Fas/FasL dependent pathway.

Factors that Impact the Immune Response to the Transgene

AAV liver gene transfer results in the induction of transgene specific Tregs which can play a 

major role in the suppression of cellular and antibody responses and the induction of 

tolerance. However, there are several factors which contribute to the induction of these 

antigen specific Tregs, as well as the maintenance of tolerance.

A threshold level of transgene expression is required for tolerance

In the context of gene replacement therapy, the transgene needs to be expressed above a 

threshold level to ensure immune tolerance induction, as expression below this threshold can 

induce adverse immune responses [5, 98]. Kumar, et al., demonstrated in mice that as little 

as a half-log difference in vector dose resulted in the activation of a transgene-specific CD8+ 

T cell response and clearance of transduced hepatocytes (unpublished data and [98]). 

Whereas, in mice receiving a sufficient tolerogenic vector dose, several overlapping 

pathways were found to be involved in suppressing CD8+ T cell responses, including Treg, 

FasL, and IL-10 induction [98]. This is supported by a previous study indicating that higher 

transgene expression levels suppress humoral immunity and is dependent upon both Treg 

and Fas-FasL mediated killing of CD4+ T effector cells [5].

Another factor to consider is if the transgene product is retained within the cell or secreted. 

Using the model antigen ovalbumin, Perrin et al. demonstrated that a log increase in vector 

dose was required to induce a comparable frequency of ova specific Tregs using cytoplasmic 

bound ova compared to secreted ova [45]. Regrettably, much of the mechanistic studies into 

AAV induced immune tolerance have utilized secreted transgenes. The data supports 

induction of both peripheral and central Tregs due, at least in part, to the fact that secreted 

transgenes can reach the thymus via the circulatory system [27, 31, 45, 99]. However, non-

secreted transgene products may be limited to peripheral Treg induction. More studies will 

be needed to fully determine if this is sufficient to regulate transgene immune responses. In 

support of this concept, recent work by our group demonstrated that hepatic directed AAV 

gene therapy can be used to induce tolerance to myelin oligodendrocyte (MOG) protein, a 

membrane bound protein (discussed below) suggesting that tolerance induction is not 

dependent on secreted transgene products [100].

AAV serotype selection

In mice, AAV8 has the highest reported natural tropism for murine hepatocytes independent 

of the delivery route [101, 102]. Although AAV8 also has superior hepatocyte transduction 

in humans compared to AAV2, it may not be the best serotype for liver directed gene therapy 

in in the clinical setting. This is supported by data from Lisowski et al. [103] and 
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Vercauteren et al. using mice with chimeric livers comprised of human and murine 

hepatocytes [104]. Independently, both studies concluded that AAV3 derived from either 

library selection or an AAV3 variant had the highest affinity for human hepatocytes. One 

caveat of these studies is that chimeric mice lack other cells and tissues of human origin and 

may overestimate the specificity of AAV3 for human hepatocytes. Ironically, AAV3 has long 

been ignored as a candidate serotype due to its extremely poor transduction efficiencies in 

murine liver, underscoring that what works great in mouse may not always translate to other 

species, including humans [105].

Following AAV administration, neutralizing antibodies specific to the serotype are formed, 

preventing vector re-administration of the same and potentially alternative capsid serotypes 

[106–109]. However, a recent study demonstrated the use of a highly divergent AAV, 

serotype 5, is permissive to re-administration with AAV1 without the development of cross-

reactive neutralizing antibodies [110]. While re-administration has been successfully 

performed before in non-human primates [111], this is the first study to show successful re-

administration despite high titer neutralizing antibodies formed in response to the initial 

AAV administration. This work is promising as it demonstrates the potential for a secondary 

treatment is possible without the need for immune suppression. Albeit, it may preclude the 

use of an optimal liver targeting serotype as the primary or secondary treatment, and will 

likely require dose optimization for each serotype used.

Engineered and library selected capsids

Altering AAV capsids is a common technique that has been used to improve transduction 

efficiencies and subsequent expression levels. A seminal study by Zhong et al. found that 

AAV2 particles are marked for proteasomal degradation through the phosphorylation of 

tyrosines within the capsid [112]. A subsequent study by the same group showed that when 

tyrosines at positions 444, 500, and 730 were changed to phenylalanine, a 30-fold increase 

in transduction was seen, in vivo [113]. More recently, the tyrosine-phenylalanine mutated 

capsid was shown to result in a reduced CD8+ response, a key limitation of AAV therapy 

[114]. Alternatively, directed evolution has also been employed to identify capsids with an 

increased tropism for a target tissue, or to overcome other barriers to gene therapy using 

capsid library screens [115–119]. The success of this technique is highlighted by the 

development of AAV2 variants that can withstand significantly higher neutralizing antibody 

concentrations [108], as well as the development of variants that have enhanced antibody 

evasion, requiring ~20-fold higher antibody concentrations for neutralization [120]. Such 

variants would result in higher transduction efficiencies in patients with pre-existing 

neutralizing antibodies. However, the model may bias for the selection of capsid variants 

that do not translate well into other species and humans [105].

Specific engineering of the AAV transgene is another technique that is used to improve 

expression. It has been postulated that the presence of rare codons within a transgene may 

result in a reduction in protein expression due to translation being slowed. Codon 

optimization is a technique in which codon-usage frequency in the transgene is matched to 

tRNA availability in the target tissue and species. This technique has proven to be beneficial 

in significantly increasing expression levels of FVIII, resulting in phenotypic correction of 
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hemophilia A [121, 122], without leading to toxicity or an unfolded protein response [123]. 

In some instances, the increased expression levels have been dramatic with a 37-fold 

increase seen in FVIII expression levels [124], 21-fold increase seen with hFIX [125] and a 

~50-fold increase in human ornithine transcarbamylase (hOTC) expression levels in 

hepatocytes [126]. Recently, codon optimization has been used to correct Crigler-Najjar 

syndrome in Gunn rats and UGT1A1−/− mice at vector doses that were much lower than 

when non-optimized transgene was used [127–129]. However, caution must be used as 

current reports suggest that codon optimization may be tissue dependent [130].

Self-complementary AAV (scAAV)

Wild-type AAV and derived vectors have a single-stranded DNA (ssAAV) genome, forming 

DNA loops at the 5′ and 3′ ends of the inverted terminal repeats (ITR). Since the 

expression cassette is single-stranded DNA, synthesis of the complementary second strand is 

needed for mRNA transcription by DNA dependent RNA polymerase. Early studies with 

AAV2 vectors identified this as a rate limiting step [131]. One approach to overcome this 

limitation was engineered by mutation of one of the viral ITRs to direct the vector genome 

to package as double-stranded DNA, forming a self-complementary (scAVV) vector [132]. 

While the use of scAAV vectors eliminates the need for second strand synthesis and results 

in higher transgene levels as well as increased transgene expression levels in mice and NHP 

[125, 133–135], the packaging capacity of scAAV is approximately half (~2.3 kb) of ssAAV 

which excludes many different therapeutic transgenes. However, it should be noted that 

increased innate immune responses, via Toll-like receptor-9, have been seen in both muscle 

and liver in response to the use of scAAV as compared to ssAAV, though the response seen 

in the liver were directed at the capsid and not the transgene [136–138]. Although there is 

substantial evidence showing enhanced transgene expression with scAAV2 vectors, new data 

suggests that the degree of enhancement may be serotype dependent. Therefore, to decrease 

the activation of innate immunity by TLR9 sensing of the dsDNA of scAAV, one might 

consider using a ssAAV vector.

Induction of tolerance In Utero and in neonates

Since rAAV genomes persist episomally, most studies have focused on delivery to adult 

animals, to avoid dilution of vector genomes through hepatocyte expansion that occurs 

during development. However, certain diseases require early intervention and thus, studies 

have been conducted to explore the relationship between in utero and neonate AAV gene 

therapy and tolerance. One benefit to this approach is that it allows for the manipulation of 

the immune system at an early stage before the immune system has fully matured, thereby 

taking advantage of a ‘window of opportunity’ to induce tolerance with minimal, if any, 

side-effects. While this technique is less commonly utilized compared to liver directed AAV, 

it has enjoyed some success. In mouse and sheep pre-clinical models, it was found that in 
utero administration of AAV was capable of inducing tolerance to the transgene [139, 140]. 

However, there are longevity concerns associated with using AAV to induce tolerance in 
utero or in neonates. The fact that AAV genomes persist in the nucleus in concatemeric 

episomal forms, and does not generally integrate into the host genome [141], is compounded 

by AAV’s inability to replicate, suggesting that as the animal or individual grows, the 
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transgene will become increasingly more ‘diluted’ and ineffective over time. This concern 

was highlighted in a study where FIX expression in sheep was all but undetectable 6 months 

following in utero gene transfer [140]. With that said, a more recent report has shown 

renewed promise for AAV in this field. Hinderer et al. used a mucopolysaccharidosis type I 

model where AAV was administered to newborn dogs and rhesus monkeys which exhibited 

tolerance to the transgene without the development of neutralizing antibodies [142]. These 

results may provide a new avenue for in utero and neonatal administration of AAV for 

inducing tolerance.

Immune response to AAV transgene in other tissues

The liver is by no means the only tissue to which AAV transgenes have been delivered. 

Skeletal muscle has arguably been one of the most common targets of AAV gene transfer. 

The route of administration and the dose of the AAV can affect the immunogenicity of the 

vector and transgene. Intravascular and systemic routes have proved to be less immunogenic 

than intramuscular administration which can lead to the detection of T cell infiltrates in a 

dose dependent manner [143–145]. It has also been shown in a preclinical hemophilia B 

model that the local antigen concentration within the muscle plays a major role in the 

immunogenicity of the transgene [143]. In many cases, muscle gene transfer is administered 

in the context of neuromuscular disorders. These disorders are characterized by muscular 

inflammation which can affect the way the transgene is presented to the immune system 

thereby resulting in loss of expression instead of the sustained expression commonly seen in 

healthy muscle tissue [146–148]. However, there is some evidence of tolerance induction 

following AAV muscle gene transfer. In an rAAV1-AAT clinical trial in humans, Tregs were 

found in muscle biopsies up to 1 year following gene transfer and were speculated to be 

responsible for the control of the CD8+ T cell response, as well as the continued expression 

of the transgene [149]. One caveat is that the AAT protein has immune modulatory 

properties and thus, may have contributed to local Treg infiltration in muscle. Additionally, 

in a clinical trial, Tregs were seen following muscle gene therapy for lipoprotein lipase 

deficiency, though it should be mentioned that an immunosuppressant regimen was also 

administered along with the AAV which may have affected the gene transfer outcome [150].

The central nervous system (CNS) has traditionally been viewed as an immune privileged 

organ, protected from inflammation by the blood brain barrier (BBB). However, there is 

evidence that the CNS is not completely protected from inflammation, as evidenced in 

autoimmune diseases such as multiple sclerosis [151]. It has been proven that antigen 

presenting cells as well as T cells are capable of crossing the BBB and infiltrating the 

‘protected’ zone [151–154]. Several AAV serotypes have been identified or engineered to 

cross the BBB providing an opportunity to treat CNS diseases due to long-term expression 

in widespread areas of the brain, including neurons [155]. As a whole, AAV treatment 

within the CNS has been well tolerated as is evidenced in many clinical trials (reviewed in 

[156]). However, it should be noted that in large animal models, immune responses were 

seen in dogs and NHP when foreign or human proteins were expressed [157, 158]. It is still 

unclear as to what is the most effective route of administration and vector dose and how 

these will affect immune responses to transgene following CNS targeted AAV gene therapy.
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The eye is another organ that has been a popular target for AAV gene therapy with over a 

decade of clinical experience [159] focusing on administration to the subretinal space and 

the vitreous. Much like the liver and CNS, the eye is traditionally considered an immune 

privileged site. This ‘immune privilege’ is due in part to the blood-retina barrier, reduction in 

vascularity, and the lack of draining lymphatics. Further, antigens within the eye lead to an 

altered immune response, Anterior Chamber-Associated Immune Deviation. This ‘less 

robust’ immune response is characterized by TGF-β, Treg production, and skewing towards 

Th2 responses, leading to foreign antigen tolerance [160]. However, at least one study has 

seen inflammation following a dose of 1 × 1012 vg injected subretinally [161]. This finding 

suggests that, though the eye may be considered a tolerogenic environment, it is possible to 

deliver enough antigen to overcome immune deviation. The route of administration may also 

play a role in the immune response to AAV administered to the eye. In NHPs, it has been 

shown that a vector dose of 109 vg/eye administered intravitreal was safe with no signs of 

inflammation; whereas, a dose of 1010 vg/eye resulted in signs of inflammation in 78% of 

animals [162]. Similarly, a clinical study for Leber’s hereditary optic neuropathy showed 

that inflammation was seen in response to a dose of 1.8 × 1011 vg [146, 163]. These results 

clearly show that researchers should use caution when delivering AAV to the eye. Both, 

vector dose and the route of administration must be taken into consideration to avoid 

inflammation while also opening the possibility of reconsidering the eye as an immune 

privileged site.

Applications of AAV induced tolerance

Immunological tolerance induction to prevent or eliminate anti-drug antibodies

The need for immunological tolerance in gene therapy stems from historical data showing 

that patients can develop adaptive immune responses to therapeutic proteins after receiving 

enzyme replacement therapies. The formation of antibodies presents a challenge in enzyme 

replacement therapies. In the case of hemophilia, these antibodies are referred to as 

inhibitors and are responsible for increasing the risk of morbidity and mortality, due to break 

out bleeds and poor long-term control of hemostasis with bypassing agents. Hemophilia A 

patients, with factor VIII (FVIII) deficiency, can often successfully eliminate their inhibitors 

with an immune tolerance induction (ITI) protocol of high-dose and frequency 

administration of FVIII protein. However, hemophilia B patients with inhibitors often fail 

ITI due to adverse immune responses to ITI including anaphylaxis and nephrotic syndrome. 

Thus, the induction of tolerance via liver directed AAV gene therapy may provide an 

alternative approach for treating inhibitors in hemophilia B patients. To test this hypothesis, 

we showed that AAV8-F9 liver gene transfer was capable of reversing pre-existing 

pathogenic antibodies to FIX and resulted in the long-term desensitization of anaphylaxis 

prone hemophilia B mice, even when protein replacement therapy was resumed [14]. In 

larger animal models, this finding has also been corroborated. Finn et al. showed that the 

administration of AAV-8 encoding FVII resulted in an initial increase in inhibitor 

concentrations followed by the eradication of inhibitors by day 550, in a dog model of 

hemophilia A [164]. In a dog model of hemophilia B, it was shown that the administration of 

AAV-8 FIX-Padua, a hyperfunctional form of factor 9, resulted in an initial spike in inhibitor 

titers at ~15 days following vector administration, followed by a decline in inhibitor titers 
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with a complete eradication seen by day 70 [36]. In both dog studies, tolerance was 

confirmed by the lack of an increase in inhibitors following a re-challenge with FVII and 

FIX, respectively.

In a mouse model of Pompe disease, liver directed AAV was successful at preventing 

antibody production to the transgene, acid alpha-glucosidase (GAA) [165]. Importantly, it 

was also demonstrated that the antibody response remained absent following several rounds 

of enzyme replacement therapy [166]. However, in the case of Pompe, the liver induced 

tolerance is not a sufficient therapy, as protein produced in the liver is unable to adequately 

cross the blood brain barrier and be taken up by neuronal tissue [167]. In an attempt to 

circumvent this issue, Doerfler et al. have designed a co-packaged AAV9, capable of 

transducing both liver and CNS, system for the simultaneous induction of tolerance and 

production of enzyme in neuronal tissue [168].

AAV liver gene immunotherapy for the treatment of autoimmune disorders

Another area that has garnered the attention of liver directed AAV gene therapy is in the 

treatment of autoimmune diseases. MS is generally considered a CD4+ based autoimmune 

disease, caused by the breakdown of immune tolerance to specific neuroprotein antigens. 

Our group has shown that liver directed AAV gene therapy can restore tolerance by inducing 

antigen specific Tregs that target the autoimmune inflammatory response [100]. In fact, we 

have found that with the AAV directed hepatocyte expression of the neuroprotein myelin 

oligodendrocyte glycoprotein (MOG), the onset of experimental autoimmune 

encephalomyelitis (EAE) can be completely prevented and is robust, capable of resisting a 

secondary insult [100]. More significantly, we have found that when AAV is given alone, or 

as part of a combined immunotherapy treatment, it is capable of reversing mild to severe 

pre-existing EAE disease [100]. This area of research is very exciting as it also opens the 

door for the discovery of other immune modulating therapies that may improve the efficacy 

of AAV at inducing tolerance.

Conclusion

Progress in AAV gene therapy has seen several impressive leaps in the last few decades. 

Preclinical studies in animal disease models have shown sustained therapeutic levels of 

transgene, even in disease models where the immune system normally mounts a response to 

the therapeutic protein. Tregs, induced by liver directed AAV gene therapy, are critical for 

the suppression of transgene immune responses and induction of systemic tolerance. 

Arguably, one of the more interesting target tissues for therapeutic transgene expression is 

the liver. Beyond being an ideal protein factory, the liver also modulates immune responses 

to dietary antigens, which is extended to gene therapy products. Although the precise 

mechanism is still unclear, immunological tolerance is dependent on multiple cells residing 

within the liver for antigen presentation and through skewing the local microenvironment 

towards conversion of CD4+ T effector cells into Treg. A successful protocol for inducing 

tolerance is dependent on several critical factors. For AAV gene transfer in the liver, animal 

models have shown that hepatocyte restricted expression and a threshold level of transgene 

expression is required. In addition, other factors such as serotype selection, vector 
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composition, dosing, and choice of immune modulation also play a role in shaping transgene 

immune tolerance. The field continues to move forward to develop new strategies to 

circumvent the anti-AAV humoral and cell mediated immunological barriers that have arisen 

in clinical trials. With continued safety and efficacy in treating inherited genetic disorders, it 

may be possible to extend AAV liver gene therapy as an immune modulatory therapy to treat 

autoimmune disease.
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Highlights

AAV gene therapy can harness the tolerogenic nature of the liver.

Tolerance is dependent on a threshold level of hepatic transgene expression.

Therapy induces antigen specific Tregs that can suppress and reverse existing 

immune responses.
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Figure 1. Mechanisms involved in the induction of tolerance via AAV directed gene therapy
The induction of tolerance within the liver relies on the integrity of the tolerogenic 

environment of the liver. The maintenance of this tolerogenic environment, as well as the 

induction of systemic tolerance, is the result of a cellular orchestration within the liver. 

Tg=Transgene, Ag=Antigen, KC=Kupffer cell, HSC=Hepatic Stellate Cell, DC=Dendritic 

Cell, HC=Hepatocyte
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