
Linear Self-Motion Cues Support the Spatial Distribution and 
Stability of Hippocampal Place Cells

Ryan E. Harvey1,2, Stephanie A. Rutan1, Gabrielle R. Willey1, Jennifer J. Siegel3, Benjamin 
J. Clark2, and Ryan M. Yoder1

1Department of Psychology, Indiana University-Purdue University Fort Wayne, Fort Wayne, 
Indiana, 46805

2Department of Psychology, University of New Mexico, Albuquerque, New Mexico, 87131

3Center for Learning and Memory, The University of Texas, Austin, Texas, 78712

In Brief

Harvey et al. describe how place cells from otoconia-deficit mice become unstable over sessions 

and show a tendency to form place fields along environmental boundaries.
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Summary

The vestibular system provides a crucial component of place cell and head direction cell 

activity [1–7]. Otolith signals are necessary for head direction signal stability and associated 

behavior [8,9], and the head direction signal’s contribution to parahippocampal spatial 

representations [10–14] suggests place cells may also require otolithic information. Here, we 

demonstrate that self-movement information from the otolith organs is necessary for the 

development of stable place fields within and across sessions. Place cells in otoconia-

deficient tilted mice showed reduced spatial coherence and formed closer to environmental 

boundaries, relative to those of control mice. These differences reveal an important otolithic 
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contribution to place cell functioning, and provide insight into the cognitive deficits 

associated with otolith dysfunction.

Results and Discussion

We first investigated the impact of otoconia deficiency on basic firing measures of place 

cells in session 1. Place cells from tilted mice exhibited higher peak firing rates, lower 

spatial coherence, smaller field widths, and higher outfield firing rates than place cells from 

control mice (all p<.038), while average firing rates, number of active bins, sparsity, spatial 

information content, and infield firing rates were similar between groups, (all p>=0.09; 

Table S1).

Tilted place cells had higher peak firing rates overall, compared with control mice, 

(F(1,146)=6.96, p=.009, Figure 1C). It is possible that increased running speed in tilted mice 

accounts for their higher firing rates, as demonstrated previously [15]. However, the opposite 

pattern was observed – while control and tilted groups had similar correlations between 

firing rate and running speed, (t(147)=−1.08, p=0.283), control mice had greater speeds 

compared to tilted mice, (t(151)=5.00, p<0.001, CI[0.82, 1.90], d=0.70). Thus, higher firing 

rates in tilted mice were not associated with increased running speed.

Many neurons in the hippocampus are theta-modulated [16]. We determined the extent of 

theta modulation in our sample by computing spike-train temporal autocorrelations for 

individual cells in session 1 and examined the degree of modulation by computing a theta 

index [17]. Control and tilted cells were similarly modulated by theta (Z=0.09, p=0.927), 

and theta modulated cells from both groups shared similar peak theta frequencies, 

(t(56)=1.2, p=0.237, Figure S3), which suggests that differences observed in tilted mice may 

not be due to differences in theta modulation.

Spatial Specificity and Coherence of Place Cell Firing in Tilted Mice

Tilted mice lack otolithic representation of linear acceleration, and may have deficits in 

accurately perceiving their velocity, thus resulting in abnormal firing fields. Accordingly, 

field widths, defined as contiguous bins where the cell fired ≥20% of its peak rate, were 

smaller for the tilted group than for the controls, (F(1,146)=10.6, p=.001, Figure 1D). 

Despite the smaller field widths in the tilted group, the number of active bins, defined as the 

total number of bins ≥20% of the peak rate, were similar between groups, (F(1,146)=1.72, 

p=0.19, Table S1). The combination of smaller field widths and equal numbers of active bins 

suggests that the contiguity, or smoothness, of place fields might be disrupted in tilted mice. 

As expected, tilted mice showed decreased spatial coherence compared to controls overall, 

(F(1,137)=36.99, p<0.001, Figure 1E), similar to findings in rats with complete vestibular 

inactivations [4]. Figure 1B illustrates place field examples from control and tilted mice, and 

Figure S2 illustrates where these examples reside in respect to our population of place cells. 

Note that the fields from tilted mice appear to lack smoothness. These findings suggest that 

place cells from tilted mice covered a similar surface area of the arena to that of controls, but 

their fields had decreased coherence compared to control fields.
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Spatial Distribution of Place Cell Firing

Given that self-motion processing is disrupted in tilted mice, we hypothesized that place 

cells would be reliant on boundaries of the environment, resulting in an altered spatial 

distribution of place fields. Place fields from control mice were normally distributed 

throughout the arena, but most place fields from tilted mice formed along the walls of the 

environment (Figure 2A). The mean field-to-wall distance (Figure 2B) and the peak firing 

bin-to-wall distance were shorter in tilted mice compared to control mice, (t(152)=3.61, 

p<0.001, CI[0.53, 1.82], d=0.61; t(87)=5.09, p<0.001, CI[1.63, 3.73], d=0.93), suggesting 

that fields in tilted mice clustered near boundaries, whereas fields from control mice were 

normally distributed across the environment. We then calculated a border score (−1 to 1 with 

1 representing fields in direct proximity to a boundary). Fields from tilted mice had higher 

border scores than control fields, (Z=−3.23, p=0.001, d=−0.56), had a larger proportion of 

border scores above 0 than controls, (X2 (1,154)=12.87, p<0.001), and were more likely to 

form close to boundaries than those from control mice overall, (F(1,146)=32.93, p<0.001, 

Figure 2B), and this difference was stable across sessions within groups, (F(4,585)=1.42, 

p=0.227). Together, these findings suggest that place cells from tilted mice are more likely to 

form along boundaries, which is likely due to the disruption in self-motion processing.

One possible explanation as to why fields from tilted mice form near boundaries is that tilted 
mice may disproportionally explore near boundaries while neglecting the center of the arena. 

To rule out sampling biases, we analyzed environmental exploration and found that both 

groups occupied similar regions of the cylinder, (t(32)=0.21, p=0.835; Figure 2D,E). 

Another possible explanation may be that tilted cells disproportionally form fields near the 

cue card, however after analyzing the spatial location of each firing field, we found a non-

significant trending bias in firing locations, (χ2(1,154)=13.72, p=0.056, Figure 2C).

Landmark Control

The ability of place cells to consistently fire in relation to external cues is thought to be 

derived from the head direction cell system [18–21] and the preferred firing locations/

directions of place cells and head direction cells remain coupled to each other even when 

they become uncoupled from external landmarks [22]. Because head direction cell activity 

and landmark navigation is known to be disrupted in tilted mice, [7,9] we assessed landmark 

control over place cell activity by rotating the cue card in session 2 and measuring the degree 

to which place cells were anchored to that cue.

Place cells from both groups were influenced by the 90° cue rotation, but tilted mice showed 

more variability than controls (central median test: P=0.005, p=0.943, med=90°; test for 

equality of concentration parameters: control κ =3.06 and tilted κ =1.11; Fr=17.01, p<0.001; 

Figure 3A). Figure 3B depicts the proportion of cells that rotated coherently with the 

landmark, the proportion that did not rotate, and the proportion that rotated in a direction 

inconsistent with the cue. The majority of cells in both groups maintained fields that rotated 

in the same direction as the cue. However, a smaller proportion of tilted cells rotated with 

the cue, relative to control cells (control = 88%; tilted = 61%, X2(1,N=141)=19.19, 

p<0.001). Sub-populations of fields in both groups failed to rotate with the cue, or rotated to 

a different direction from the expected 90 degrees following the cue rotation. In control 
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mice, 6% failed to rotate and another 6% rotated in a different direction from the cue. 

However, 13% of tilted cells did not rotate with the cue, and 26% rotated in a different 

direction. These proportions were significantly different, (X2(1,N=141)=11.90, p=0.002). 

Additionally, spatial cross-correlations between session 1 and 2 suggest that place cells in 

tilted mice lacked spatial stability following the cue rotation. Specifically, spatial 

correlations between session 1 and 2, corrected for field rotation, from tilted mice were 

lower than those from controls, (t(152)=3.38, p=0.001, CI[0.04, 0.17], d=0.57, Figure 3C). 

Together, greater rotation variation, coupled with less accurate rotations with the cue, 

suggests that landmark control over place fields is impaired in tilted mice.

Spatial coherence was also affected by the cue rotation in tilted mice (Figure 1E). Coherence 

from tilted mice decreased throughout the first three sessions (F(1,142)=34.99, p<0.001), 

showed additional decreases from sessions 1 to 2, (F(1,143)=33.17, p<0.001), and this 

decrease persisted through session 3, (F(1,142)=25.75, p<0.001). In contrast, coherence of 

control fields was stable throughout these sessions, (F(1,51)=1.27, p=0.26). This finding 

further suggests that place fields from tilted mice were less reliable across sessions, 

compared to control mice.

The increased variability in tilted place cells following the cue rotation may have resulted 

from reduced visual gaze control. Otoconia-deficient head tilt mice are known to have 

attenuated vestibulo-ocular reflex [23], and this deficit may be present in tilted mice. 

However, previous studies show that tilted mice are able to rely on their visual system to 

navigate to cues, and their performance suffers to a greater extent in non-visual 

environments or when visual cues are sparse [9,24,25].

Stability of Firing Characteristics

Intra-trial stability was assessed through spatial correlations on rate maps from the first and 

second halves of each session (Figure 4A). Tilted place fields had lower intra-trial stability 

compared with controls overall, (F(1,147)=82.59, p<.001, Figure 4B), suggesting that fields 

from tilted mice are unstable during short time scales. To further assess the stability of place 

cell firing characteristics, standard sessions 1, 3, and 5 were separately analyzed as these 

sessions lacked the experimental interventions of sessions 2 and 4. However, sessions 3 and 

5 were conducted directly after experimental stimulus control sessions, and place fields may 

show carry-over effects from the preceding manipulations.

Control mice had stable coherence and peak bin-to-wall distances, and both groups had 

stable average firing rates, infield firing rates, number of active bins, information content, 

field-to-wall distances, and border scores across the three standard sessions (all p>=0.11; 

Table S1). However, place cells from tilted mice differed from controls in their peak firing 

rates, (F(2,150)=3.74, p=0.026, Figure 1C). Cells in both groups similarly increased in firing 

rate from session 1 to 3 (F(1,151)=0.02, p=0.897), but tilted cells decreased in firing rate 

from session 3 to 5 compared with controls, (F(1,151)=6.50, p=0.001). These observations 

indicate that instability of firing rates occurred specifically after the dark session, but did not 

occur after the cue rotation sessions.
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Field width of tilted place cells varied between standard sessions, compared to controls, 

(F(2,150)=3.24, p=0.041, Figure 1D). Field widths from tilted cells decreased from session 3 

to 5, while field widths from control cells increased, (F(1,151)=6.51, p=0.011), suggesting 

that the dark session differentially affected place field width between the two groups. 

However, both groups appeared slightly affected by the cue rotation session and showed a 

similar, (F(1,151)=1.23, p=0.269), trending decrease (after Bonferroni correction) in field 

size between the first and second standard session, (F(1,151)=4.82, p=0.029). Place fields 

from control mice recovered by session 5, (F(1,53)=0.90, p=0.346), while place fields from 

titled mice further deteriorated in size, (F(1,99)=9.71, p=0.002). Coupled with an overall 

decreased coherence, the data suggest that place fields from tilted mice became unstable 

over sessions even with repeated exposure to the same environment.

Spatial coherence of tilted place fields differed across standard sessions relative to controls, 

(F(2,141)=5.64, p=0.004; Figure 1E). Coherence of tilted fields decreased from session 1 to 

3 while coherence from controls stayed the same (F(1,142)=7.02, p=0.008), suggesting that 

the cue rotation session differentially affected coherence among both groups. Further, 

coherence in the tilted group remained low through standard session 5, (F(1,143)=8.71, 

p=0.003), which further suggests that the lack of self-motion cues causes decreased place 

cell stability over sessions.

Place cell stability degrades in darkness

Accurate navigation depends on non-visual external sensory information as well as internal 

self-motion cues [25,26]. External sensory input can be derived from spatially arranged odor 

cues left behind during exploration [27], and place cells are able to maintain their field 

location in the dark on the basis of self-motion information [28]. Odor cues during 

exploration in the dark session were present in our experiment, however, we expected a 

reduction in place field stability in our tilted group due to their decrease in self-motion 

information.

Place cells between sessions 3 to 5 indicated differential changes in coherence in tilted cells, 

(F(2,137)=4.59, p=0.011, Figure 1E). Surprisingly, control mice had a greater decrease from 

session 3 to 4, (F(1,51)=10.66, p=0.001), compared with tilted mice who had no change in 

coherence, (F(1,86)=1.96, p=0.164). There was also a similar finding in intra-trial stability 

where while control mice had a decrease in stability from session 3 to 4 (F(1,50)=27.20, 

p<0.001), tilted mice exhibited no change (F(1,97)=1.03, p=0.311, Figure 4B). The greater 

number of stable tilted cells may have resulted from a general reduction in stability, as place 

cells in tilted mice were already unstable in light before assessment during darkness. A 

similar conclusion was reached concerning head direction cells from tilted mice in darkness 

[7]. This finding may also suggest that tilted mice are more reliant on other cues than vision, 

such as boundary information. Because self-motion cues in tilted mice might be generally 

unreliable in all conditions due to their inability to properly perceive linear acceleration, they 

may rely more on external cues such as scents and tactile cues along boundaries and so were 

less affected by darkened conditions.
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Effect of Otoconia Deficiency on CA1 & CA3 Neurons

Hippocampal areas CA1 and CA3 support distinct roles [29], which suggests that 

differences found in the present study may also differ between the regions. We therefore 

compared firing properties of place cells in session 1 between areas CA1 and CA3. First, 

coherence from tilted mice was lower in both sub-regions compared with controls, 

(p<0.014). Secondly, while CA1 place fields from tilted mice formed closer to boundaries 

compared with CA1 fields from controls, (field to wall, peak to wall, border score all 

p<0.018), CA3 place field from both groups did not differ in their field’s relation to 

boundaries, (field to wall, peak to wall, border score all p>0.118). Although these results 

from CA3 were not significant, means from each measure suggest a tendency for tilted fields 

from CA3 to form along the walls (Field to wall: control Mean=10.10±0.78; tilted 
Mean=8.64±0.53, Peak to wall: control Mean= 7.81±1.94; tilted Mean=4.92±0.75, Border 

score: control Mean= 0.23±0.13 tilted Mean=0.21±0.09). Future work is needed to better 

understand the contribution of CA1 and CA3 in the formation of firing fields following 

vestibular dysfunction.

Conclusions

The present study revealed four novel conclusions regarding the relationship between the 

vestibular system and hippocampal place cell function. First, hippocampal place cells in 

tilted mice express reductions in coherent firing activity, indicating a lack of smoothness of 

place field firing. Second, place cells in tilted mice fired in close proximity to environmental 

boundaries while control cells evenly represented the entire environmental space, suggesting 

a general reliance on cues associated with environmental boundaries in tilted mice. Third, 

tilted place cells showed decreases across a broad range of basic firing characteristics 

including firing rate and field width, and the stability of these measures across repeated 

experiences in the same environment. Finally, tilted place cells do not lose firing coherence 

in the absence of visual information, which suggests that they are more reliant on other 

inputs to maintain firing fields.

The present findings have many implications for spatial behavior and memory. It was 

previously reported that signals from the otolith organs are necessary for accurate homing 

performance in light and especially in darkness [25], for accurate navigational performance 

in radial environments [9], and for head direction cell stability [7]. The present results show 

that these signals are also crucial for place cell stability and provides an explanation for the 

spatial memory deficits and behavioral differences observed in previous behavioral 

experiments [9,25]. Therefore, tilted mice cannot integrate information about linear self-

motion, their spatial memory acquisition, retention, and recall suffers when other cues are 

not available to guide navigation.

Star Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Ryan Yoder (ryoder@coastal.edu).
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Experimental Model and Subject Details

All procedures involving live animals were approved by the Purdue Animal Care & Use 

Committee. Control (n = 3) and tilted (n = 7) adult male mice, age 3 mo. at the start of the 

study, were pseudo randomly selected from the descendants of mice purchased from Jackson 

Laboratories (Bar Harbor, ME). The initial stock of mice was bred to produce offspring that 

were homozygous (−/−) for the recessive mutation, or crossed with C57BL/6J mice to 

produce offspring that were heterozygous (+/−) for the mutation. The F1 +/− and −/− mice 

were then bred to produce +/− and −/− offspring, with a predicted 50% frequency of each 

genotype. A swim test was used to determine whether mice were +/− or −/−, as described 

previously [7,9,24,25,30]. Subsequent generations were produced by breeding +/− and −/− 

mice. All mice were 3–8 months of age at the time of surgery.

Method Details

Surgery—Mice were anesthetized with ketamine/xylazine (90 and 10 mg/kg, respectively) 

and positioned in a stereotaxic apparatus (David Kopf Instruments) with bregma and lambda 

in the same plane. The scalp was retracted and a hole was drilled above the hippocampus. 

Six additional holes were drilled in the frontal, parietal, and occipital bones to hold jeweler’s 

screws (Lomat Precision, Montreal, Quebec, Canada). These screws were reinforced to the 

skull with a drop of sterile cyanoacrylate. With the tetrode bundle positioned dorsal to 

hippocampus (1.5 mm posterior, 1.50 mm lateral, 0.5 mm ventral to bregma), the drive 

screws/cuff assemblies were fastened to the skull and jeweler’s screws with Grip Cement 

(Dentsply International). The scalp was sutured around the electrode drive and the wound 

was covered with Neosporin. Buprenorphine (0.015 mg/kg) was administered every 12 

hours as a postoperative analgesic for the following 48 hours, and the animal was allowed to 

recover at least 1 week before recording.

Electrodes—Electrode design was based on a design used previously with mice [7]. Each 

microdrive contained four tetrodes constructed from Teflon-insulated 16-μm nichrome 

wires, with gold-plated tips (tip impedence ~200 kΩ), and a single stainless steel ground 

wire (50 μm; California Fine Wire). The four tetrodes were encased by a 26 gauge stainless 

steel cannula, and each wire contacted one gold pin of an electrode interface board (EIB-18, 

Neuralynx, Bozeman, MT). The electrode interface board and wires were then cemented 

together with dental acrylic, and then attached to three drive screws. Custom-built threaded 

plastic cuffs were then threaded onto the drive screws. The tetrodes and cannula were then 

sterilized prior to surgical procedures.

Apparatus—The recording arena consisted of a black cylinder (61 cm diameter) 

positioned on a black formica tabletop (40 cm height). A white cue card covered ~90° of the 

wall surface, with the bottom edge ~10 cm above the floor to prevent mice from using the 

card as a tactile cue. For standard trials, the cue card was centered at the 9:00 position as 

viewed by the camera. The entire arena was located within a large wooden box (122.5 cm × 

122.5 cm × 191 cm high) with black walls and ceiling. Four dimmable incandescent lights 

(25W) mounted on the ceiling provided illumination.
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Recording procedure—Electrical activity was recorded daily from all tetrodes, across 

five recording sessions: (1) standard 1, cue card was positioned in the standard position; (2) 

rotation, cue card was rotated 90° clockwise (CW) or counterclockwise (CCW) from the 

standard location; (3) standard 2, cue card was returned to the standard location; (4) 

darkness, cue card was removed and overhead lights were extinguished; and (5) standard 3, 

white cue card was replaced at the standard location and lights were turned on (Figure 1A). 

Before the beginning of each session, the arena floor was cleaned with alcohol to discourage 

the use of olfactory cues. The mouse was then placed in an opaque container and the 

experimenter slowly rotated the animal in both directions to disorient the animal before it 

was lowered into the arena, [7]. Recording sessions were 15 to 30 minutes in duration, as 

necessary, to obtain adequate sampling of all locations within the arena. Each day at the end 

of recording, the tetrode bundle was advanced ~50μm to approach a putatively different set 

of neurons (tetrode penetrations shown for each animal in Figure S1). This process was 

repeated until well separated cells were no longer identifiable, and theta rhythm was not 

seen in the local field potential.

Signal processing—Thresholded waveforms from each tetrode were conducted to a 16-

channel head stage containing an operational amplifier (Neuralynx). A flexible cable 

connected the head stage to a 32-ch Digital Lynx data acquisition system (Neuralynx), 

where electrical signals were acquired at 32 kHz. An overhead color video camera was used 

to monitor the animal’s position at 30 frames/sec by tracking the position of one red light-

emitting diode (LED) attached to the animal’s head stage. The positions of the LED during 

adjacent 33.3 msec epochs were then interpolated to estimate the LED position at 16.67 

msec intervals, to mimic 60 frames/sec temporal resolution.

Tetrode signals were analyzed offline with SpikeSort 3D (Neuralynx). Signals from each 

tetrode were then evaluated for event parameters that correspond to the activity of a single 

neuron, using a procedure known as “cluster cutting” [31,32]. Timestamps associated with 

single-unit events were then matched to the associated 16.67 msec interval from the video 

record using custom analysis software.

Histology—At the end of electrophysiological recording procedures, mice were deeply 

anesthetized with isoflurane and electrode tip locations were marked by a small lesion 

created by applying constant current (15 μA, 20 s). Mice were then killed by transcardial 

perfusion with normal saline followed by 10% Formalin, and brains were then placed in 

Formalin overnight to ensure adequate fixation. Brains were then placed in 20% sucrose for 

cryoprotection before they were sectioned at 40 μm on a freezing microtome. Brain sections 

containing the hippocampus were mounted on gelatin-coated microscope slides and stained 

with Cresyl violet. Electrode position at the time of each recording was estimated relative to 

the site of the final electrode tip location (example tetrode penetrations shown in Figure S1A 

& reconstruction of electrode tracks from all mice shown in Figure S1B); we included only 

sessions where the electrode tip was estimated to be located between the dorsal limit of area 

CA1 and the ventral limit of CA3, or the dorsal and ventral limits of CA3. We then 

categorized the recordings to have occurred either from CA1 or CA3; however, it is 
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important to note the possibility that a small number of recordings may have included 

granule cells from the dentate subregion, given its proximity to CA3.

Quantification and Statistical Analysis

Spatial rate map construction—Rate maps were constructed and initial firing 

characteristics (average and peak firing rate, information content, and coherence) were 

calculated using custom scripts in Igor Pro (WaveMatrics, Portland, OR). The location-

specific activity of each single unit was assessed by first creating a two-dimensional firing 

rate map for each of the 5 trials on a given day (standard configuration, cue rotation, 

standard, dark condition, standard). Each firing rate map was created by dividing the camera 

image into a 64 × 48 array (2.44 cm per pixel) and calculating the average firing rate (total 

number of spikes/total dwell time) for each pixel of the array. Pixels with a dwell time <100 

ms were excluded from all analyses. Epochs in which spike data were recorded in the 

absence of position data (e.g., if a gap occurred in tracking due to rearing, for example) were 

excluded from analysis. The resulting firing rate maps were gently smoothed with a 

conditional algorithm using a 5 × 5 hybrid box filter (Igor Pro, WaveMetrics). If ≥100 spikes 

contributed to a given rate map the filter was passed five times; if <100 spikes were 

included, the filter was passed ten times. Passing the box filter additional times for low-

firing-rate cells better preserved the size and shape of the place fields compared to 

increasing the size of the smoothing kernel [33–35].

Information Content & Coherence—Two measures were used to evaluate the location-

specific activity of each rate map. First, spatial information (in bits/pixel) was calculated as 

previously described; I=[ΣPx(λx/λ)log2(λx/λ)] where λ is the mean firing rate of the cell, 

λx is the mean firing rate while the animal is occupying bin x, and Px is the probability of 

occupancy for bin x [36]. A high spatial information score indicated strong location-specific 

activity with little out-of-field spiking. Second, spatial coherence was used as a measure of 

rate map quality by calculating the correlation (Pearson r) between the average firing rate for 

each pixel of the smoothed rate map with the average of the surrounding 8 pixels (see Figure 

S3 for coherence measures calculated on the raw rate maps). Rate maps with place fields 

having smooth transition gradients with low out-of-field activity have high spatial 

coherence, while rate maps with packets of sporadic activity across the environment or that 

lack place fields will have low spatial coherence scores.

Sparsity—Sparsity, which indicates the relative proportion of the maze on which the cell 

fired, was calculated using formula: sparsity = Σ(Pi*Ri
2)/R2 where P, is the probability of 

occupancy of bin i, Ri is the mean firing rate in bin i, and R is the overall mean firing rate. A 

sparsity score of 0.10 would indicate that the cell fired on 10% of the maze surface.

Cell type identification—Only well-isolated units with at least 100 spikes during the first 

recording session were included in the study. Neurons were classified as place cells if they 

exhibited good spatial selectivity based on independent visual inspection of the rate map, 

and by using a combination of spatial information content score >=.60, and spatial 

coherence score >= .50. Two cells (1 from control and 1 from tilted animals) that had spatial 

information content and coherence values below the criteria in the first session were 
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classified as place cells, based on visual inspection of their rate maps, and were therefore 

included in the study. We confirmed that our sample of place cells did not contain fast 

spiking interneurons by identifying and eliminating interneurons based on short peak to 

valley spike widths (<200μs) and high average firing rates (>10hz) [37–39]. Example 

waveforms are shown in Figure S1. Out of the 422 neurons recorded neurons from control 

mice, 146 were classified as putative pyramidal cells and, of those, 54 met the criteria to be 

classified as place cells (36.99%). Out of the 1226 neurons recorded from tilted mice, 370 

were classified as putative pyramidal cells and, of those, 100 neurons met the criteria to be 

classified as place cells (27.03%). Example place cell rate maps from both groups shown in 

Figure 1B, Figure S2 illustrates where these examples reside with respect to the population 

of principle cells, and Figure S1 characterizes our full population of pyramidal cells in terms 

of coherence and information content.

Intra-Trial Stability—Intra-trial stability was assessed by calculating the correlation 

coefficient between rate maps created from the first and second halves of a session.

Mean Rate Maps—To create mean field occupancy maps for Figure 2A, all session 1 rate 

maps that passed the criteria for containing place fields were compiled. Maps were then 

normalized by their peak firing rate from 0 to 1 and all maps were averaged together for 

each group.

Environmental Occupancy—To assess each group’s ability to fully sample the circular 

environment, we first created binned (2.44 cm per bin) occupancy maps from the cumulative 

locomotor path for each group, shown in Figure 2D. Next, to quantify their occupancy along 

the edge versus the center of the enclosure, we first created an annulus with the same radius 

as the cylinder and calculated the proportion of path occupying the annulus and cylinder 

boundary. This initial calculation gave us a proportion of 0 as the distance between the 

annulus and boundary was 0 cm. We then reduced the annulus’s radius by 5% (3.05cm) and 

recalculated the proportion of path occupying that region of the cylinder. We repeated this 

process of increasing the distance between the edge of the annulus and cylinder boundary 

until the annulus had a radius of 0 cm. Thus, the resulting data represents the proportion of 

locomotor path as a function of distance from the environmental boundary, and this data is 

shown in Figure 2E.

Place Field Clustering in Relation to Cue Card—To assess bias in place field 

clustering in relation to the cue card, we analyzed firing field clustering by dividing the 

arena into 4 quadrants shown in Figure 2C and labeling which quadrant fields were in. After 

firing field boundaries were identified, the four quadrants were divided and the numbers of 

bins from the firing field was summed per quadrant. The quadrant with the highest number 

of bins was considered the quadrant that contained the firing field. This process was repeated 

for all cells, and proportions per quadrant were calculated to assess if a bias existed.

Shuffling—Shuffled distributions and firing characteristics (firing field boundaries, border 

score, field rotation, field width, and field and peak distances to wall) were analyzed offline 

using custom scripts in Matlab (Mathworks, Natick, MA). We generated a shuffled 

distribution to assess a lower cut off for rotated field cross correlations. This procedure was 
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conducted as cells would sometimes become unstable during the cue rotation session. With a 

lower correlation cut-off of 0.17, 5.5% of control cells and 10% of tilted cells were not 

included in the subsequent analysis of cue rotation. Importantly, the proportion of cells 

eliminated did not differ significantly between groups, X2(1, N=154)=0.90, p=0.344. To 

carry out this procedure, bins from each rate map from the second session were randomly 

shuffled and then field rotation correlation was calculated (as described in Data analysis: 

Field Rotation). This procedure was carried out 400 times per cell and the resulting 

correlations were pooled to create a shuffled distribution from which a 95th percentile could 

be obtained. This percentile was then used as a lower cut off to assess field rotation as 

described above (Data analysis: Field Rotation).

Firing field Boundaries—Firing fields were located by first locating the peak bin and 

then expanding outwards while including bins at least 0.2 times that of the peak rate and 

repeating this process at each new bin included in the field. If any edge of the field came 

upon a bin that was not 0.2 times, that bin was not counted in the field. This recursive 

process was ended once no more contiguous bins passing that threshold were found. If the 

resultant field was less than 10 bins (24.402 cm) in total, the next highest peak bin was then 

defined and the procedure was repeated. This process was then repeated until an optimal 

field of all the above characteristics was defined. Important to note, only the maximum firing 

field from a cell with multiple fields was taken.

Border Score—To identify place cells with firing characteristics closely associated with 

the environmental boundaries, a border score was calculated from each rate map. A border 

score measures the firing localized to the boundaries of an environment as compared to the 

firing within the center of the environment [40]. First, firing field boundaries were identified 

as described above (Data analysis: Firing field boundaries). Next, the number of bins along 

the border that the firing field occupied was defined as the value CM. The mean firing 

distance dm was calculated as the average distance to the nearest wall of each bin in the 

map, weighted by its firing rate. Finally, the border score, given by b = [CM - dm / CM + 

dm], ranged from -1 for cells with central firing to 1 for cells with firing in close proximity 

to the environment’s boundaries.

Cue Card Rotation Test—We assessed the degree to which hippocampal place cells were 

controlled by environmental landmarks by rotating the cue card from its standard position by 

90°. To evaluate the effects of cue rotation on place fields, a cross-correlation method was 

used [10,41] in which the session 2 rate maps were rotated in 6° increments and cross 

correlated with the session 1 rate maps. The magnitude of rotation (in degrees) required to 

obtain the maximal correlation was considered to be the amount of rotation by the place 

field between session 1 and session 2. Proportion or field rotation was assessed by grouping 

the angular data in three groups: ± 45° around 90° indicating “rotation with cue”, ± 45° 

around 0° indicating “no rotation”, and ± 90° around 225° indicating “other”.

Spike-train Theta Modulation—Because most neurons in the hippocampus are theta-

modulated [16], we assessed the degree of theta modulation in the spiking patterns of place 

cells using spike-train temporal autocorrelograms similar to methods used by Yartsev, 
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Witter, & Ulanovsky, (2011). With a bin size of 10 ms, temporal autocorrelograms were 

computed between ± 500ms. The temporal power spectrum was then evaluated by 

computing a fast Fourier transform (FFT) of the autocorrelogram and calculating the square 

of the FFT magnitude. After smoothing the power spectrum with a 2-Hz rectangular 

window, the peak value in the 4–12 Hz theta band was identified. The mean power within 

1Hz of each side of the peak theta frequency was then divided by the mean power between 

0–50 Hz which resulted in an index similar to the theta index previously used in rat medial 

entorhinal cortex recordings to identify theta modulation of grid cells, [42–45]. To determine 

if cells where theta modulated, we performed a shuffling procedure on each spike-train. 

Cells with a theta index greater than or equal to the 95th percentile of their shuffled 

distribution where considered to be modulated by the theta frequency. This procedure 

determined that 30 of 54 control cells (56%) and 52 of 100 tilted cells (52%) were theta 

modulated. The peak theta frequencies, from theta modulated cells, was then compared 

between groups.

Group Comparisons—For each sample distribution, a Kolmogorov-Smirnov (KS) test 

was used to test the null hypothesis that the z-scored sample was derived from a standard 

normal distribution. If the KS null hypothesis failed rejection, a two-sample t test was used 

to test the sample mean. For each between-group comparison, a two-sample t test for equal 

or unequal variance was used to test equality of means only if both sample distributions 

failed KS test rejection. If at least one group passed the KS test, a Wilcoxon rank sum test 

was used to test the sample median. Effect size for all between groups two-sample 

comparisons were estimated using Cohen’s D. All between groups comparisons of 

proportions were computed by Chi Square. Between groups and group by session 

comparisons were computed using mixed ANOVA. Simple effects were computed using 

either mixed or repeated measures ANOVA. Results of mixed ANOVAs are sometimes 

discussed separately. Multiple comparisons were corrected for the family-wise error rate 

with the Bonferroni procedure with a starting two-tailed alpha =0.05. The Central Median 

Test was used to test whether angular data were equally clustered around a central median, 

and the homogeneity of concentration test was used to test whether the angular shifts were 

distributed similarly between groups.

Data and Software Availability

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Ryan Yoder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Place fields from tilted mice have reduced coherence

• Nearly all place fields from tilted mice form near environmental boundaries

• Tilted cells show decreased stability over standard recording sessions
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Figure 1. Overview of experimental design, place cell examples, and basic firing characteristics
(A) Depiction of recording session design across five recording sessions: Session 1, cue card 

was positioned in the standard north position; Session 2, cue card was rotated 90° clockwise 

or counterclockwise from the standard location; Session 3, cue card was returned to the 

standard location; Session 4, cue card was removed and overhead lights were extinguished; 

and Session 5, white cue card was replaced at the standard location and lights were turned 

on.

(B) Representative place cells from control (cells 1–7) and tilted (cells 8–14) mice over 5 

sessions. Numbers residing in the top left of each rate map represent peak firing rate (hz). 

(also see Figure S2)

(C) Plot showing the peak firing rate (spikes/second) for each place cell recorded in tilted 
and control mice with values from all sessions included.

(D) Plot showing the field width (cm) for each place cell recorded in tilted and control mice 

with values from all sessions included.

(E) Plot showing coherence measures for each place cell recorded in tilted and control mice 

with values from all sessions included. (also see Figure S3)

(C–E): Shaded error bars represent SEM (also see Table S1)

Harvey et al. Page 17

Curr Biol. Author manuscript; available in PMC 2019 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Place Cell Firing by Tilted-Mice Is More Concentrated Near Environmental 
Boundaries
(A) Place field occupancy of all place cells recorded in control and tilted mice. Blue 

represents a lower place field occupancy and red represents a high place field occupancy. 

Note that place cells from tilted-mice appear to cluster closer to the cylinder boundaries 

compared to control mice.

(B) Field-to-wall measures (cm) for place cells from control and tilted mice. Note that place 

fields from control mice form further from environmental boundaries than tilted-mice. 

Shaded error bars represent SEM.

(C) Percentage of place fields from control and tilted mice in each of 4 quadrants of the 

circular arena.

(D) Occupancy of environmental sampling.

(E) Proportion of Exploration as a function of distance to the boundary. Note that tilted mice 

had similar occupancy compared to control mice, with the majority of exploration occurring 

near the boundary (within 10cm), as illustrated by dotted lines at the 50% point.
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Figure 3. Landmark control of place field following 90° cue rotation
(A) Polar plot depicting place field rotation, normalized by probability, in 6° bins (control in 

black, tilted in red). Place field rotation of 90° indicates that the cell’s activity precisely 

rotated with the cue. Left: Control mice. Right: Tilted mice.

(B) Pie charts depicting percent of field anchoring following cue rotation.

(C) Cumulative density functions of cross-correlation values (r) following 90° cue rotation 

for place cells recorded in control (black) and tilted (red) mice. Shown are correlations 

following the rotation that maximized the correlation between session 1 and 2 rate maps. 

Fields from cue rotation sessions were permutated to generate chance cross-correlations 

(gray line). The 95th percentile was then taken from the chance distribution and used as a 

threshold for evaluating the degree of field rotation in A (dashed gray line). Overall, tilted 
mice had lower cross-correlation values than control mice, indicating firing field instability 

following cue rotation.
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Figure 4. Intra-session stability
(A) The shown rate maps depict the stability (r) between the first and second half of the first 

session using 6 example cells from Figure 1. Note that tilted cells appear to be less stable

(B) Stability between groups over all sessions. Note that tilted mice have much lower 

stability compared to control mice over all sessions. Red: Tilted, Black: Control, shaded 

lines represent SEM
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