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Abstract

Neuroinflammation is a potential factor speculated to underlie Alzheimer’s disease (AD) 

etiopathogenesis and progression. The overwhelming focus in this area of research to date has 

been on the chronic upregulation of pro-inflammatory cytokines to understand how 

neuroinflammatory mechanisms contribute to neurodegeneration. Yet, it is important to understand 

the pleiotropic roles of these cytokines in modulating neuroinflammation in which they cannot be 

labeled as a strictly “good” or “bad” biomarker phenotype. As such, biomarkers with more precise 

functions are needed to better understand how neuroinflammation impacts the brain in AD. 

Neuronal pentraxins are a concentration- dependent group of pro- or anti- inflammatory cytokines. 

There is contradictory evidence of these pentraxins as being both neuroprotective and potentially 

detrimental in AD. Potential neuroprotective examples include their ability to predict AD-related 

outcomes such as cognition, memory function and synaptic refinement. This review will briefly 

outline the basis of AD and subsequently summarize findings for neuropathological mechanisms 

of neuroinflammation, roles for traditional pro-and anti-inflammatory cytokines, and data found 

thus far on the neuronal pentraxins.
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1. Introduction

Alzheimer’s disease (AD) is clinically characterized by global cognitive impairment, 

memory decline, loss of activities of daily living, a neural accumulation of tau and amyloid, 

and neuronal death manifesting as profound atrophy in important brain regions. There is a 

current rise in AD prevalence, with research projecting that by the year 2050 one new case 

of AD will develop every 33 seconds and nearly 1 million new people will develop it 

annually in the United States [1]. The first signs of atrophy appear in the hippocampus and 

medial parietal lobe, with subsequent degeneration in the inferolateral region of the temporal 

lobe and the frontal lobe [2]. Currently, it is thought that Aβ plaques, and tau-based 

neurofibrillary tangles (NFT) are the main progenitors of the disease and thus are pathogenic 

hallmarks used for clinical diagnosis post-mortem [3–5]. This classification relies on a 

method that takes into account the age of the individual with the number of plaques and 

tangles that are present [4]. However, new proteomics research has suggested a different 

paradigm to better understand the multitude of factors that mechanistically contribute to the 

etiopathogenesis and progression of AD, which may complement or act downstream of 

amyloid and tau pathology [6–9].

AD is typified by progressive medial temporal lobe (MTL) atrophy and memory decline 

[10,11]. Some proposed mechanisms that trigger these etiopathogenic effects include but are 

not limited to oxidative stress [12], insulin resistance [13–17], and mitochondrial 

degradation [18–25] which cause cell damage via release of reactive nitrogen and oxygen 

species (RNS, ROS) [26,27]. In 2015, the emergence of neuroinflammation as a potential 

contributing factor for the cause of AD prompted the Alzheimer’s Association Roundtable to 

meet and analyze its mechanistic contributions to the disease [28]. They concluded that there 

is a very present need for scientific research to advance the understanding of the molecular 

patterns of neuroinflammation that underlie the various stages of AD, and to find novel 

biomarkers of inflammation and innate immunity that could be used in the therapeutic 

prevention and treatment of AD [29–35].

2. Neuroinflammation

Chronic neuroinflammation can induce cellular damage through inflammatory cell 

proliferation, ROS production, and extensive DNA alterations [36–38]. Physiologically, the 

process of neuroinflammation is most commonly initiated in response to some sort of a cue 

such as infection [39], brain injury [40], stress [41], or aging [42], prompting microglia to 

become activated [43].

Neuroinflammation has consistently been associated with both normal brain aging and AD 

neurodegeneration [44,45]. Chronic neuroinflammation can begin to degrade tissue and the 

Blood Brain Barrier (BBB), causing activated microglia to release proinflammatory 

cytokines to act on peripheral immune cells, generating an immunological response through 

inflammatory modulation [46]. Chronic neuroinflammation causes a sustained cytokine 

release, which can ultimately compromise brain tissue through inflammatory, atrophic 

effects on brain volume [47]. This process leads to neurodegeneration and cognitive deficits 

[48,49], which are known to be associated with AD [10,11,50].
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Traditionally, most research has focused on the role of neuroinflammatory mechanisms that 

potentiate AD-related pathogenesis [51] and neurodegenerative processes [52–54]. There are 

two main areas of thought as to how this neuropathologic inflammatory cascade of events 

occurs: 1) the “inflammation hypothesis” indicates that neuroinflammation is caused by Aβ 
and tau species [27,55]; or 2) that inflammation-activated microglia cannot properly 

phagocytose Aβ, leading to plaque accumulation rather than plaque clearance, thereby 

contributing to Aβ-induced neurodegeneration [56,57]. Yet, it has been proposed that 

chronic neuroinflammation could precede Aβ and tau pathology in late-onset AD [27,58–

60]. Longitudinal brain atrophy in AD is mediated by increased levels of the cardinal pro-

inflammatory cytokines, including tumor necrosis factor- α (TNF-α), Interleukin-1β 
(IL-1β), Interleukin-6 (IL-6) [56], as well as their downstream effectors (Griffin et al., 

1989). The majority of these cytokines are released from microglia, as well as astrocytes, 

brain endothelial cells (BECs), and neurons [51,56,62,63]. Regardless of how 

neuroinflammation and both Aβ and tau tie together, there is an overwhelming consensus on 

their adverse impacts. It has been firmly established that increased levels of 

neuroinflammation are mechanistically detrimental and can potentiate hippocampal atrophy 

and memory decline over time [27,64,65]. Furthermore, microglia are thought to play 

opposing roles in this process, in that they can clear Aβ yet also continually release pro-

inflammatory cytokines based on their pleiotropic nature [66]. Next, it is worthwhile to 

expand on what roles microglia play in acute and chronic neuroinflammation [67].

3. Microglia and Neuroinflammation: Beneficial and Detrimental Roles

Microglial activation in AD is most often thought to be potentiated by Aβ peptides, tau, and 

neuronal cell degradation [67–71]. Microglia also have prominent roles in the homeostatic 

regulation of synaptic plasticity and neuronal pathways [72–75], including the activation of 

the nuclear factor-kappa B (NF-kB) pathway in neurodegenerative disorders [76]. This is 

important as many chronic diseases are found to be associated with the dysregulation of the 

NF-kB cellular response pathway due to its explicit functions in gene expression, immunity, 

modulation of inflammation and disease progression [77]. Microglia also act as an important 

component of the healthy central nervous system (CNS), when they are unchallenged, 

through their role in neurogenesis [78].

Yet, microglial cells are a “double-edged sword” based on their level of activation. For 

example, neurodegenerative disorders are related to microglia retracting and instigating 

phagocytosis, causing them to no longer maintain homeostatic regulation of synaptic 

processes [35,79,80]. Microglial cells show phenotypic alterations and become “primed” in 

the presence of pro-inflammatory cytokines, morphing from a M2c repair oriented 

phenotype to an active M1 phenotype [81]. This shift identifies a change in the microglia 

from a protective state of repairing tissue and resolving inflammation to a pro-inflammatory 

state [82]. In a study that looked at young and aging transgenic mice, it was concluded that 

in contrast to a healthy, young brain, the aging brain is found to have elevated levels of 

activated microglia that are associated with an increased expression of classic pro- and anti-

inflammatory cytokines biomarkers such as TNFα, IL-1β, IL-6, and IL-10 [83].
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Microglial activation also induces expression of inflammatory genes, accounting for the 

pervasive upregulation of pro-inflammatory cytokines and enzymes as well as pro-

inflammatory adhesion molecules of the immune system [84]. It has been corroborated that 

microglia can be primed toward a pro-inflammatory state by the C3 receptor [85]. An in vivo 
study that continually induced a microglial inflammatory phenotype in mice, using 

lipopolysaccharide (LPS), showed an activation of the microglial complement-phagosome 

pathway that subsequently induced neurodegeneration [86].

Evidence continues to confirm that in the aged and neurodegenerative brain, there is a 

primed microglial state that elicits an “aggressive phenotype” in response to the 

inflammatory changes that occur in the microglial environment, resulting in a local 

production of pro-inflammatory cytokines [87]. Experimental in vivo results have shown 

that it is the microglia that links the periphery to the brain and stimulates inflammation in 

the CNS, which is similar to the inflammatory responses evoked in aging and AD [88]. In 

this novel experiment, LPS treatments induced systemic inflammation and upregulated the 

expression of pro-inflammatory cytokines including pentraxin 3. This resulted in increased 

neuronal death in ME7 mice and an inflammatory cascade of events thought to potentiate 

neurodegeneration [88].

Since many molecules of the immune system can demonstrate pleiotropic functions, 

characterizing neuroinflammatory proteins as a pro- or anti-inflammatory species provides 

little information on the actual role of brain inflammation in AD pathology [27,89,90]. 

While classic pro-inflammatory cytokines such as IL-1β and IL-6 can potentiate brain 

atrophy, they are not necessarily ideal AD biomarkers due to their pleiotropic nature. For 

example, pro-inflammatory cytokines at lower concentrations induce and maintain 

hippocampal long term potentiation (LTP), neural plasticity, brain homeostasis, plaque 

clearance via activated microglia, and tissue repair (Ben Menachem-Zidon et al., 2011; 

Goshen and Yirmiya, 2009; Griffin et al., 1989; Mrak and Griffin, 2005), where at higher 

concentrations these effects are diminished [59,93–99]. Therefore, the expression of pro-

inflammatory cytokines by microglia in the brain cannot necessarily be classified as a “bad” 

phenotype [100–102] as these cytokines elicit multiple effects, based upon concentration, 

with considerable differences in levels in individuals [103].

Furthermore, the levels at which these cytokines have specific inflammatory effects are 

context-dependent, and vary from person to person, indicating their multifunctional 

modulation of the innate immune system [103,104]. Recent research has suggested that a 

more effective treatment in neurodegenerative pathology would be to re-balance 

inflammatory signals to limit AD progression [62,102,105]. These paradigms highlight the 

difficulty in finding effective biomarkers to detect and track AD development and 

progression. When analyzing the potential use of immunological biomarkers, it is important 

to understand their mechanistic roles in order to fully grasp their underlying 

neurophysiology and subsequent effects on the brain.
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4. Neurodegenerative Pathology and Neuroinflammation

Neurodegenerative processes that contribute to atrophy and memory decline occur in 

specific brain areas like the neocortex and limbic system and are characterized by synaptic 

damage and neuronal death, with these changes corresponding to the classical cognitive 

impairment and memory loss associated with AD [9,106–110]. In experiments looking at 

multiple sclerosis (MS), an inflammatory disease characterized by extensive demyelination, 

it has been found that neuroinflammation has detrimental effects on synaptic transmission, 

particularly in the hippocampus, further elucidating the hippocampal cognitive deficits and 

attenuation of synaptic plasticity that result in pathologies due to CNS inflammation 

[111,112]. AD neurodegeneration has also been found to result in decreased synaptic 

plasticity and neurogenesis, which reveals that the etiopathogenesis of AD on the brain 

could affect two neurophysiological factors: a degradation of mature neurons and a 

decreased generation of new, functional neurons [110,113–116].

It has also been concluded that aging is a crucial factor in the development and progression 

of AD, leading to inhibitory regulation of synaptic genes in the biological pathways of AD 

including inflammation, oxidative stress, energy homeostasis and synapse transmission 

[117–120]. Both pathological cognitive disorders and age-related cognitive decline seem to 

be similarly related to levels of synaptic plasticity that decrease over time, with the same 

neurobiological mechanism that occurs in AD paralleling what happens in normal aging, just 

to a greater extent [121,122]. Gene expression microarrays have revealed that the 

mechanism of normal aging is associated with inflammation, mitochondrial dysfunction, 

oxidative stress and altered protein processing, causing effects on neuronal activity and 

growth and leading to an inflammatory cascade of events in which impairments to neurons 

and glial function ultimately result in decreased cognition and memory [123].

Changes in synaptic strength are attributed mostly to astrocytes, as they regulate synaptic 

plasticity and transmission through the release of gliotransmitters and the expression of 

transporters/receptors on their extracellular surface, which alters neuronal physiology [124–

127]. Microglia can act as “sensors” that shift among activation states due to physiological 

alterations in the brain environment and thus elicit specific effects on synapses and synaptic 

transmission [128]. One study found that stimulating pro-inflammatory cytokines in aged 

rats resulted in decreased LTP, where there was an inverse association of increased IL-1β 
concentration and decreased LTP [129]. Therefore, there is a current need to elucidate 

prominent cytokines with mechanistic roles in neuroinflammation and the underlying 

neurodegenerative processes of AD, such as pentraxins.

5. Pentraxins

The pentraxin family is a unique and highly conserved group of acute, immunological 

proteins known for their “pentraxin signature,” a specific sequence of eight amino acids 

found within a pentraxin domain that is characterized by a carboxy-terminal made up of 

roughly 200 amino acids [130]. They are divided into two biochemical classes: short 

pentraxins and long pentraxins, the latter of which have a long N terminal domain [131–
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133]. Pentraxins are a group of humoral pattern recognition receptors that specifically 

modulate innate, humoral immunity [134].

The long-form pentraxins (NP1, NPTX2, PTX3) and the pentraxin receptor (NPR) have 

been proposed to function similar to acute phase proteins in response to inflammatory 

stimuli by activating the complement system and binding and clearing extracellular 

pathogens, synaptic debris and toxins from the neurons which further elucidates their role of 

protection and modulation of synaptic plasticity [113,114,134]. Pentraxins have the ability to 

recognize damaged cells and instigate apoptosis to clear away cellular debris [135–139]. 

Neuronal pentraxins have been implicated to play an early role in the postnatal brain by 

refining synaptic sites, yet in NP knockout (KO) mice it has been concluded that there is no 

effect on hippocampal LTP and long term depression (LTD) [140]. New research has 

illustrated the pentraxins ability to play a role in regulating the immune system through 

complement pathway activation and neutralization, as well as their role in regulating 

inflammatory pathways through complement modulation and clearance of cellular debris by 

apoptosis [131,139,141,142].

It is also known that neuronal-activity regulated protein (NARP) has been linked to the 

pentraxin C-reactive protein (CRP) of the acute phase response due to many similarities in 

structure and its function as a calcium-dependent lectin [142]. In comparison to the limited 

amount of research that has been done on NARP and pentraxins in general, the function of 

CRP is well known in the field of immunology and inflammation. CRP, a pro-inflammatory 

regulatory protein and a known activator of the complement C system in the acute phase 

response of immunity [143], is speculated to have a mechanistically protective role as it is 

able to modulate and balance inflammatory reactions via activation or deactivation of the 

complement system [144]. CRP, notably the first pattern-recognition molecule (PRM) to be 

discovered, is an immunological pentraxin of humoral innate immunity that can lead to an 

activation of adaptive immunity and tissue repair [131,139,145]. There are pentraxins that 

act as a novel immediate-early gene (IEG) which may play a role in neuronal synaptic 

plasticity and LTP [142,146,147]. It has also been established that synaptic plasticity in 

MTL is partly regulated by the pentraxin superfamily, such as NPTX2 [148].

It is important to keep in mind that not all pro-inflammatory modulatory mechanisms induce 

chronic neuroinflammation. Nptx2b, the gene for NPTX2 in zebra fish, is able to modulate 

synaptic plasticity in hyporcretin/orexin (HCRT) neurons through circadian regulatory 

mechanisms [149], which are affected by both circadian clock balance and sleep deprivation. 

The concentration of NARP, the protein in rats homologous to NPTX2, is increased in the 

adult cortex and hippocampus of the brain with beneficial roles in neuronal growth, synaptic 

physiology and the associated LTP that arises from N-methyl-D-aspartate (NMDA) receptor 

activation [142]. Xu et al. concluded that NARP, as well as other associated pentraxins like 

NP1, interact and correspond to synaptic plasticity in the brain through associations with 

AMPA type glutamate receptors, from development through adulthood [150].

Messenger RNA expression of NPTX2 has also been found to be upregulated in neurons and 

glia of the substantia nigra and frontal cortex in Parkinson’s Disease (PD), another 
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neurodegenerative disorder, and is thought to play roles in PD dysfunction as a result of 

synaptic alterations in the cerebral cortex [151].

Pentraxins, in general, have physiological regulatory effects on the immune system, 

synapses, inflammation, homeostasis, and apoptosis [131,139,141,142,152,153]. NPTX2 is a 

novel pentraxin to utilize due to its pro-inflammatory biomarker potential. NPTX2 is a 

promising IEG that acts in the acute phase of immunity to aid in clearance of extracellular 

debris (Dodds et al., 1997), a known protective mechanism against neurodegeneration that 

allows for increased synaptic plasticity potential [148] and by extension, memory [147,155–

157]. New research corroborates this with findings concluding that NPTX2 predicts up to 

56% of variance in memory decline over 2 years across the Alzheimer’s disease spectrum 

[158]. This novel study analyzed a cohort of 285 subjects, including those that were 

cognitively normal, mild cognitively impaired or had AD, from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database and found that higher baseline cerebrospinal fluid 

(CSF) levels of NPTX2, a known marker of glutamatergic synaptic plasticity, corresponded 

to less brain atrophy and less memory decline over a two year span [159–161], suggesting 

that NPTX2 may have some neuroprotective effects.

Additional evidence has also suggested that NPTX2 has strong potential to predict 

progression of MCI to AD because this biological protein is a marker in CSF of both 

neuronal degradation and synaptic loss [159,162]. Furthermore, there is exciting new 

research to corroborate these findings regarding cognitive deterioration in AD including 

novel significant findings of the association between NPTX2 and AD neuropathological 

outcomes. A study that assayed NPTX2 levels with a western blot found that levels of this 

protein were downregulated in all cortical regions that are typically impacted in AD [163]. 

Another interesting finding in this study was that NPTX2 was able to predict GluA4, the 

AMPA type glutamate receptor indicative of neuronal circuitry, expression in both aged and 

AD subjects [163]. Results revealed that in normal aging there is a downregulation of 

NPTX2 expression that corresponds to decreased GluA4 expression, while in AD, GluA4 

becomes more extensively reduced due to simultaneous pathological amyloidosis effects on 

NPTX2 potentially leading to a greater decline in cognition as seen in neurodegenerative 

disorders like AD.

7. Discussion

More research needs to be conducted to determine how to prevent or treat cognitive 

impairment by repairing synaptic plasticity alterations that occur with age-related/AD-

related cognitive decline [164]. The pentraxins, specifically NPTX2, may be good 

biomarkers and mechanistic targets regarding AD neuropathology and their effects on 

synaptic plasticity [132,165–168]. Through our recent work looking at peptides of NPTX2 

as biomarkers [158], we find that peptidomics and other multiplex techniques may reveal 

novel immunological biomarkers of chronic neuroinflammation or other processes that best 

predict classical AD neurodegenerative pathologies.

Additionally, it is crucial to focus on the pleiotropic and concentration-dependent roles of 

neuroinflammatory cytokines in both in normal aging and neurodegenerative populations. 
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These regulatory proteins cannot simply be labeled as a “good” or “bad” phenotype. These 

paradigms should be taken into account when selecting a mechanistic approach to detect and 

track AD pathogenesis. We propose that biomarkers with more circumscribed functions, 

such as neuronal pentraxins, are needed to better understand how neuroinflammation 

contributes to cognitive dysfunction and neurodegeneration, specifically in AD.

8. Conclusions

There is a current need of a disease-modifying therapy for AD [169–173]. Furthermore, due 

to the multifaceted etiopathology of AD, new proteomics research is needed to advance the 

understanding and diagnostic tools of this disease by looking at the molecular and 

neurophysiological mechanisms underlying AD [9,174–176]. Analysis of biochemical 

markers that can be used to diagnose the various stages of this disease, as well as elucidation 

of neurobiological changes that occur throughout AD, are vital to advancing this field.
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Table A.1

Summary of Biomarkers Under Investigation

Biomolecule/Biomarker Proposed Mechanism/Rationale

Pentraxins

Neuronal pentraxin 1 (NP1)
Neuronal pentraxin receptor 
(NPR)
Pentraxin 3 (PTX3)

NP1, PTX3, and NPR function similarly to acute phase proteins in response to inflammatory stimuli by 
activating the complement system and clearing extracellular pathogens, synaptic debris, and toxins from 
the neurons. This enables them to play a role in protection and modulation of synaptic plasticity 
[113,114,134]. Upregulated expression is associated with systemic inflammation that increases neuronal 
death and contributes to neurodegeneration [88].

C-reactive protein (CRP) CRP acts as an activator of the complement C system allowing it to play a protective role in modulating 
and balancing inflammatory reactions, repairing tissue, and increasing adaptive immunity 
[143,144,139,131,145].

Neuronal pentraxin 2 (NPTX2) NPTX2 acts in the acute phase of immunity to aid in clearance of extracellular debris which allows for 
increased synaptic plasticity potential and memory [154,148,147,157,156,155]. It is able to predict up to 
56% of variance in memory decline over 2 years with higher levels corresponding to less brain atrophy 
and memory decline. NPTX2 may hold some neuroprotective effects and potentially predict progression 
of MCI to AD [158,159,161,160,162]. Downregulated NPTX2 expression corresponds to extensively 
reduced GluA4 in AD potentially leading to greater cognitive decline, and NPTX2 may be a good 
biomarker and mechanistic target regarding AD [177,166–168,132,165].

Cytokines

Tumor Necrosis factor- α (TNF-
α)
Interleukin-1β (IL-1β)
Interleukin-6 (IL-6)
Interleukin-10 (IL-10)

Increased levels of the pro-inflammatory cytokines potentially occur before amyloid and tau, mediate 
longitudinal brain atrophy in AD, cause cellular potentiation of neuroinflammation, and elevate the 
levels of activated microglia in the aging brain [61,56,51,62,63,83]. Not necessarily ideal AD 
biomarkers due to their pleiotropic nature when found in differing concentrations [101,100,102,103]. 
Lower levels are connected to positive effects [61,91,64,92], where at higher concentrations these 
effects are diminished [95–98,94,59,99,93].

Other Proteins

Neuronal pentraxin 2b (NPTx2b) Found in zebrafish; rather than inducing neuroinflammation, this modulates synaptic plasticity in 
neurons through circadian regulatory mechanisms [149].

Neuronal activity-related pentraxin 
(NARP)

Protein in rats that is homologous to NPTX2. Increased concentration plays beneficial roles in neuronal 
growth, synaptic physiology, and LTP [142,150].

Complement Component 3 (C3) Can prime microglia toward a pro-inflammatory state which induces neurodegeneration [84–86].
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