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Abstract

A split feasibility formulation for the inverse problem of intensity-modulated radiation therapy 

(IMRT) treatment planning with dose-volume constraints (DVCs) included in the planning 

algorithm is presented. It involves a new type of sparsity constraint that enables the inclusion of a 

percentage-violation constraint in the model problem and its handling by continuous (as opposed 

to integer) methods. We propose an iterative algorithmic framework for solving such a problem by 

applying the feasibility-seeking CQ-algorithm of Byrne combined with the automatic relaxation 

method (ARM) that uses cyclic projections. Detailed implementation instructions are furnished. 

Functionality of the algorithm was demonstrated through the creation of an intensity-modulated 

proton therapy plan for a simple 2D C-shaped geometry and also for a realistic base- of-skull 

chordoma treatment site. Monte Carlo simulations of proton pencil beams of varying energy were 

conducted to obtain dose distributions for the 2D test case. A research release of the Pinnacle3 

proton treatment planning system was used to extract pencil beam doses for a clinical base-of-

skull chordoma case. In both cases the beamlet doses were calculated to satisfy dose-volume 

constraints according to our new algorithm. Examination of the dose-volume histograms following 

inverse planning with our algorithm demonstrated that it performed as intended. The application of 

our proposed algorithm to dose-volume constraint inverse planning was successfully 

demonstrated. Comparison with optimized dose distributions from the research release of the 

Pinnacle3 treatment planning system showed the algorithm could achieve equivalent or superior 

results.
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1 Introduction

Intensity-modulated radiation therapy (IMRT) with photons or intensity-modulated proton 

therapy (IMPT) are rapidly evolving techniques for planning and delivering radiation 

therapy to solid tumors. For many tumor sites, IMRT with photons has superseded standard 

radiation therapy (RT) techniques and is becoming the new standard in RT delivery [1, 2, 3, 

4, 5]. At existing proton centers, IMPT in combination with active pencil beam scanning is 

increasingly being used, replacing older passively scattered and collimated proton therapy 

techniques as a means for more accurately delivering high doses to the target volume and 

sparing of organs at risk (OARs) as indicated by dosimetric studies [6, 7, 8, 9, 10].

Instead of using a single upper dose bound for OARs and single lower dose bound for the 

target volumes, it has become a common practice in clinical trials and off-trial photon IMRT 

treatments to specify more than one dose-volume constraint (DVC), allowing a certain 

percentage of volume to violate to a certain extent a given bound. This additional DVC, 

which could be single or multiple, rely on accumulated clinical experience with conformal 

RT techniques. For example, Gulliford et al. [11] performed a detailed dose-volume analysis 

of the incidence of clinically relevant late rectal toxicities in patients treated with high-dose 

photon IMRT for prostate cancer and found that the incidence of moderate-to-severe rectal 

toxicity for any of six late-toxicity endpoints decreased incrementally for patients whose 

treatment plans met increasing numbers of DVCs from the set of V30 ≤ 80%, V40 ≤ 65%, 

V50 ≤ 55%, V60 ≤ 40%, V65 ≤ 30%, V70 ≤ 15%, and V75 ≤ 3%. Here, VX ≤ Y corresponds 

to a dose-volume constraint that Y% of the volume cannot receive more than X Gy. These 

and similar DVCs for OARs have found their way into clinical trial protocols and practice 

guidelines over the years, see, e.g., [12].

Most modern inverse planning algorithms attempt to incorporate DVCs by defining 

subvolumes with different dose objectives applied to each sub-volume. The multiple 

objectives are then combined into a single cost function to be minimized. Minimization in 

RT inverse planning with DVCs has been performed with a number of different approaches. 

Spirou and Chui [13, Section F] used gradient descent to seek a vector of ray intensities that 

minimized a cost function representing the sum of all dose constraints violations. However, 

incorporating DVCs directly into the cost function of the minimization process often renders 

the objective function non-convex and non-differentiable. This has the disadvantage of 

potentially resulting in local minima and thereby sub-optimal treatment plans. Cho et al. [14] 

used a similar concept but applied simulated annealing for minimization. Simulated 

annealing is less susceptible to non-convexity and non-differentiability but is less 

computationally efficient than gradient descent. Romeijn et al. [15, 16] adopted a linear 

programming approach to handle what they called partial-volume constraints. However to 

make the problem tractable for computation, they replaced the familiar concept of DVCs by 
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a closely related, but not identical notion of conditional value-at-risk (C-VaR). Zhang and 

Merritt [17] proposed a new least-squares model to handle DVCs while retaining 

differentiability at the expense of having to deal with a nested double minimization problem. 

Therefore, an inverse planning algorithm for DVCs that is computationally efficient, robust 

to non-convexity and non-differentiability yet without simplifying the problem statement has 

yet to be developed.

In the current work, feasibility-seeking methods, as opposed to minimization algorithms, are 

applied to RT inverse planning with DVCs. Within the proposed feasibility-seeking approach 

issues of convexity and differentiability of the cost function do not arise at all because no 

cost function is used. While the DVCs do require a constraint that is not convex (the 

sparsity-norm constraint set), we are able to incorporate it into the projection method that we 

use to solve the feasibility-seeking problem. This is possible because we have devised a way 

to calculate the projection onto this set in spite of it being non-convex.

Another general advantage of the feasibility-seeking approach has to do with the availability 

of a class of highly efficacious feasibility-seeking projection methods. These methods refer 

to iterative algorithms that use projections onto sets while relying on the general principle 

that when a family of, usually closed and convex, constraints sets is present, then projections 

onto the individual sets are easier to perform than projections onto other sets (intersections, 

image sets under some transformation, etc.) that are derived from the individual sets. 

Furthermore, projection methods may have algorithmic structures that are particularly suited 

for parallel computing, such as block-iterative projections (BIP) or string-averaging 

projections (SAP). They also demonstrate desirable convergence properties and good initial 

behavior patterns. See, for example, the 1996 review [18], the recent annotated bibliography 

of books and reviews [19] and its references, and [20].

We recently showed that IMPT inverse planning is possible with a fully-discretized, 

feasibility-seeking approach by iteratively projecting solution vectors in the beam intensity 

vector space onto half-spaces representing dose constraints in target and OAR volumes [21]. 

In our preliminary work, we demonstrated that with these iterative projection algorithms, 

feasible solutions meeting the planning objectives can be found that meet target and normal 

tissues dose bounds, in particular, if the constraints are not too challenging and/or the 

treatment modality is very conformal (e.g., by using protons).

In this paper, we use the fully-discretized feasibility-seeking approach applicable to either 

photon IMRT or IMPT inverse planning which leads to a mathematical feasibility problem. 

The upper and lower bounds on the doses to the various structures define the linear 

inequality constraints of the feasibility problem, which is solved by feasibility-seeking 

projection methods without attempting to minimize any cost function. Within this setup, we 

propose and investigate a novel method for allowing the feasibility-seeking inverse planning 

algorithm to automatically account for DVCs.

In the next section, we rigorously define the notion of percentage-violation constraint 

(PVC), which does not seem to have been used in the mathematical optimization community 

until now. A PVC injects integers into the problem which makes it difficult to solve. To 

Penfold et al. Page 3

Phys Med Biol. Author manuscript; available in PMC 2018 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



circumvent this difficulty, we reformulate the PVC with the aid of a sparsity norm that 

counts the number of non-zero entries in a vector. This enables us to replace the original 

feasibility problem with PVC by another feasibility problem that includes non-convex 

constraints for the sparsity norm. For the resulting feasibility problem with this non-convex 

sparsity norm induced constraint we develop a new iterative projection algorithm which is a 

combination of the CQ-algorithm [22] and the automatic relaxation method (ARM) [23].

2 Methods

2.1 Linear feasibility with percentage-violation constraints

Given p closed convex subsets Q1, Q2, ⋯, Qp ⊆ Rn of the n-dimensional Euclidean space Rn, 

expressed as level sets

Q j = x ∈ Rn f j(x) ≤ v j , for all j ∈ J : = 1, 2, …, p , (1)

where fj : Rn → R are convex functions and vj are some given real numbers, the convex 

feasibility problem (CFP) is to find a point x* ∈ Q := ∩j∈JQj. If Q = ∅ where ∅ is the empty 

set then the CFP is said to be inconsistent.

Denoting the inner product of two vectors in Rn by a, b : = ∑i = 1
n aibi, we consider the 

following linear feasibility problem (LFP) with percentage-violation constraint (PVC).

Problem 1 Linear Feasibility with Percentage-Violation Constraint (PVC)—
Given a CFP as in (1) with fj (x) = 〈aj, x〉 and two real numbers 0 ≤ α ≤ 1 and 0 < β < 1, find 

a vector x* that solves the system

a j, x ≤ v j, for all j ∈ J (2)

subject to the additional PVC constraint that:

In up to a fraction α i . e . , 100α% of the total number of inequalities
in (2) the right‐hand side bounds v j may be potentially violated
by up to a fraction β i . e . , 100β% of their values .

(3)

A PVC is an integer constraint by its nature. It changes the CFP to which it is attached from 

being a continuous feasibility problem into becoming a mixed integer feasibility problem. In 

the field of intensity-modulated radiation therapy (IMRT) treatment planning dose-volume 

constraints (DVCs) are traditionally used to evaluate treatment plans. DVCs are percentage-

violation constraints but without properly incorporating them into the algorithm itself it is 

not possible to a priori guarantee that a solution will indeed obey them.
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In this paper we propose a novel way to incorporate PVCs via the notion of a sparsity norm 

and derive a tractable model and algorithmic approach, along with detailed implementation 

instructions for using it, to solve DVCs feasibility problems for inverse planning in IMRT.

2.2 IMRT problem statement

We consider the following linear interval feasibility problem (LIFP) which is the basic 

model for the inverse problem in the fully-discretized approach to IMRT treatment planning 

[24, 25, 26]:

Problem 2 Linear Interval Feasibility: the basic model for the inverse problem 
in the fully-discretized approach to IMRT treatment planning—Find x* ∈ Rn for 

which the following hold:

0 ≤ A1x ≤ b1, (4)

b3 ≥ A2x ≥ b2, (5)

0 ≤ A3x ≤ b4, (6)

x ≥ 0, (7)

where A1 ∈ R+
m1 × n

, A2 ∈ R+
m2 × n

, A3 ∈ R+
m3 × n

 are given matrices, b1 ∈ R+
m1, b2, b3 ∈ R+

m2, 

b4 ∈ R+
m3 are given vectors. (The subscript + denotes the nonnegative orthant.)

In IMRT the row inequalities of (4) represent voxels of an organ at risk (OAR) whose 

permitted absorbed doses should not exceed bt
1 for each voxel t in this structure. The row 

inequalities of (6) represent voxels of another OAR whose permitted absorbed doses should 

not exceed bt
4 for each voxel t in this structure. The row inequalities of (5) represent voxels 

of a planning target volume (PTV) whose permitted absorbed doses should be above bt
2, but 

should not exceed bt
3, for each voxel t in this structure.

Our tool to “translate” the integer constraint (3) into a “continuous” one is the notion of 

sparsity norm, called elsewhere the zero-norm, of a vector x ∈ Rn which counts the number 

of nonzero entries of x, that is,
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x 0: = xi xi ≠ 0 , (8)

where |·| denotes here the cardinality, i.e., the number of elements of a set. This notion has 

been recently used for various purposes in compressed sensing, machine learning and more. 

The “lower + operation” on a vector x ∈ Rn means that, for all i = 1, 2, …, n,

(x+)
i
: max (0, xi) =

xi, if xi > 0,
0, if xi ≤ 0 . . (9)

Obviously, x+ is always a component-wise nonnegative vector. Hence, ||x+||0 counts the 

number of positive entries of x and is defined by

x+ 0: = xi xi > 0 . (10)

To incorporate a DVC related to (4) into the LIFP of Problem 2 we formulate another 

feasibility problem as follows.

Problem 3 Linear Interval Feasibility with DVC for the inverse problem in the 
fully-discretized approach to IMRT treatment planning—Find x* ∈ Rn for which

0 ≤ A1x ≤ (1 + β)b1, (11)

b3 ≥ A2x ≥ b2, (12)

0 ≤ A3x ≤ b4, (13)

x ≥ 0, (14)

(A1x − b1)+ 0
≤ αm1, (15)
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where A1, A2, A3, b1, b2, b3 and b4 are as in (4)–(7), and β > 0 and α ∈ [0, 1] are given real 

numbers.

In this problem (11) allows the doses to voxels of this structure to “overflow” by β. (13) 

represents an OAR to which we do not attach a DVC for now. (12) represents a PTV to 

which we do not attach a DVC for now. (14) are the nonnegativity constraints on the solution 

vector of intensities.

The novelty of the model lies in (15). It says that since we demanded originally A1x ≤ b1 in 

(4) we must look at the “plussed difference vector” (A1x − b1)+. It is nonnegative and has a 

nonzero component exactly and only in components that belong to row inequalities in (11) 

for which (4) is violated.

The zero-norm of (A1x − b1)+ is thus equal to the number of those violations and (15) 

restricts this number to be not greater than αm1 where m1 is the total number of row 

inequalities (i.e., voxels) in the OAR described by (11). Thus, (15) guarantees that the 

number of violations up to β in (11) remains at bay under the number αm1. In the following 

we propose to use an efficient iterative projections method to solve Problem 3.

2.3 Projection methods for feasibility-seeking

Projections onto sets are used in a wide variety of methods in optimization theory but here 

projection methods refer to iterative algorithms that use projections onto sets while relying 

on the general principle that when a family of, usually closed and convex, sets is present, 

then projections onto the given individual sets are easier to perform than projections onto 

other sets (intersections, image sets under some transformation, etc.) that are derived from 

the given family of individual sets.

Projection methods may have different algorithmic structures, such as block-iterative 

projections (BIP) or string-averaging projections (SAP) of which some are particularly 

suitable for parallel computing, and they demonstrate nice convergence properties and/or 

good initial convergence patterns. This class of algorithms has witnessed great progress in 

recent years and its member algorithms have been applied with success to many scientific, 

technological and mathematical problems. See, e.g., the 1996 review [18], the recent 

annotated bibliography of books and reviews [19] and its references, the excellent book [27], 

or [20].

For the LIFP of Problem 3 one can use any of a variety of projection methods to handle 

linear inequality constraints. The most famous of those might be the Agmon-Motzkin-

Schoenberg (AMS) cyclic feasibility-seeking algorithm [28, 29]. In this paper we adopt a 

projection method of a particular nature, namely, the automatic relaxation method (ARM) 

for solving interval linear inequalities of [23, Algorithm 1].

ARM has two advantages over other projection methods applicable to this problem: (i) it 

handles in each iteration an interval constraint and does not need to handle the right-hand 

side and left-hand side inequalities of an interval separately, (ii) additionally, it automatically 

implements a relaxation strategy for the projections which takes into account how far from 

the hyperslab, defined by an interval constraint, is the point that needs to be projected on it 
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and automatically and continuously adjusts the relaxation parameter for the projection 

accordingly. The ARM generalizes the algebraic reconstruction technique ART3 [30] and is 

further discussed in Subsection 5.10 of Censor and Zenios [31].

2.4 Algorithmic approach

First we observe that Problem 3 is a split feasibility problem. Split feasibility problems were 

introduced first in [32] and further studied in [33, 34] and many other publications. The 

constraints (11)–(13) can be collectively described by c ≤ Ax ≤ b, where A is an (m1 + m2 + 

m3) × n matrix composed from blocks

A: =

A1
A2
A3

, (16)

b is an (m1 + m2 + m3) vector given by

b: =
(1 + β)b1

b3

b4
, (17)

and c is an (m1 + m2 + m3) vector given by

c: =
0
b2

0
, (18)

and they, along with (14) all reside in the space Rn of intensity vectors x. On the other hand, 

the sparsity constraint (15) takes place in the space R
m1 where the vectors of doses in the 

OAR (4) are, namely, the vector b1 and the vectors y = A1x. Therefore, we must use not 

plain feasibility-seeking methods but feasibility-seeking methods for split feasibility 

problems.

In the space Rn of intensity vectors we define the set

C: x ∈ Rn c ≤ Ax ≤ b ∩ R+
n (19)

where A, b and c are as in (16), (17) and (18), respectively, and R+
n  is the nonnegative orthant 

of Rn. In R
m1, the space of dose vectors of the OAR structure represented by (4), we define 

the set
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Q: = y ∈ R
m1 (y − b1)+ 0 ≤ αm1 (20)

with b1 and αm1 as in (11). If a point y = A1x is in Q then it is guaranteed to fulfil (15). So, 

our split feasibility problem is to find a point x* ∈ C such that A1x* ∈ Q, precisely 

describing Problem 3 above.

Common feasibility or split feasibility problems deal with convex sets but here we observe 

that Q is not a convex set. However, we show below how to project onto it orthogonally, thus 

enabling to use a feasibility-seeking projection method for our Problem 3.

To solve the split feasibility formulation of Problem 3 we propose to use the CQ-algorithm 

[22] for the sets C and Q given by (19) and (20), respectively. It has the advantage that it 

does not require to calculate the inverse A1
−1 of A1 in order to “go back” from R

m1 to Rn 

within the iterative process. Instead, it uses the transposed matrix A1
T which is readily 

available. The CQ-algorithm [22, Algorithm 1.1] is in fact a projected Landweber method 

for the split feasibility formulation of Problem 3.

In the sequel PΩ(z) denotes an orthogonal projection of a vector z onto a set Ω. All data 

quantities mentioned below are as in Problem 3. Since Q is not a convex set there might be 

more than one point for PQ in (21) below, therefore, the symbol ∈ therein means that xk+1 

could be any projection point onto Q of the vector in the parentheses whose projection onto 

Q is sought after, and can be arbitrarily chosen from those if more then one exists.

Algorithm 4 The CQ-Algorithm for the Split Linear Feasibility Problem with a 
DVC

Step 0: Take an arbitrary x0 ∈ Rn, and set k = 0.

Step 1 : For a current iterate xk calculate A1xk and compute the next iterate by

xk + 1 ∈ PC(xk + γA1
T(PQ(A1xk) − A1xk)) . (21)

If a stopping criterion applies then stop, otherwise go back to the Step 1 with k ⇐ k 
+ 1.

Next we explain how to do the projections onto C and onto Q, and how to choose the 

parameter γ in (21). Since Q of (20) is not convex, the projection PQ may by multivalued. 

Nevertheless, for any z ∈ R
m1, we can calculate PQ(z) by using the following formula

PQ(z) = PQ(z − b1) + b1 (22)

where
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Q: = y ∈ R
m1 y+ 0 ≤ αm1 . (23)

Hence the projection of a point z ∈ R
m1 onto the set Q of (20) is obtained by projecting the 

shifted point (z − b1) onto the set Q and adding b1 to the result. The proof of this fact can be 

found in the Appendix.

Therefore, the problem reduces to computing a projection onto Q. This is done according to 

the following recipe: First count how many components of (z − b1) are positive, say ℓ. Then,

PQ(z − b1) =
(z − b1), If ℓ ≤ αm1,
w, If ℓ > αm1,

(24)

where w is the vector obtained from (z − b1) by replacing its ℓ − αm1 smallest positive 

components by zeros and leaving the others unchanged. If ℓ ≤ αm1 then the point (z − b1) is 

already inside Q, thus PQ(z − b1) = (z − b1). We will use the above for z = A1xk in (21).

Following the seminal CQ-algorithm [22], designed for the case when both sets C and Q are 

convex, we propose that the parameter γ in (21) will be user-chosen from the open interval 0 

< γ < 2/θ where θ is pre-calculated once. To do so we employ [35, Corollary 2.3] by using 

the squared Frobenius matrix norm A1 F
2  and defining

θ: = A1 F
2 = ∑

i = 1

m1
∑
j = 1

n
ai j

2, (25)

where for i = 1, 2, …, m1 and j = 1, 2, …, n, the entries of Al are aij.

In the practical implementation we replace the projection onto C (21) by a sequence of 

projections onto the individual inequalities of the constraints (11)–(13) that are collectively 

described by c ≤ Ax ≤ b with where A, b and c are as in (16), (17) and (18), respectively, 

according to a feasibility-seeking projection method of our choice. All of the above leads to 

our proposed Dose-Volume Split-feasibility (DVSF) Algorithm.

Algorithm 5 The Dose-Volume Split-feasibility (DVSF) Algorithm

Step (−1): Read all data from Problem 3 and calculate (once) the transposed matrix 

A1
T, the value of θ according to (25), and choose a parameter γ in the open interval 0 

< γ < 2/θ.

Step 0: Take an arbitrary x0 ∈ R+
n , and set k := 0.
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Step 1: Project A1xk onto Q as follows:

Step 1.1 : For the current iterate xk compute A1xk, count the coordinates of (A1xk − 

bl) that are positive and denote their number by ℓ.

Step 1.2: Calculate (using (24) with z = A1xk)

vk: = PQ(A1xk − b1) . (26)

Step 1.3 : Calculate a projection of A1xk onto Q (following (22)–(23)):

PQ(A1xk) = vk + b1 . (27)

Step 2: Calculate uk ∈ Rn by the formula

uk = xk + γA1
T(PQ(A1xk) − A1xk) . (28)

Step 3: Instead of projecting uk onto C as required in (21), use uk from Step 2 as an 

initial point and perform a sweep (or several sweeps) of a feasibility-seeking 

projection method for the inequalities of (11)–(14). When stopping this sweep (or 

several sweeps) take the resulting vector as the next iterate xk+1.

Step 4: If a stopping criterion applies then stop, otherwise go back to the Step 1 with 

k ⇐ k + 1.

Algorithm 5 is a general scheme that is made specific by choosing a feasibility-seeking 

projection method to be used in its Step 3. Consult Bauschke and Borwein [18] for a review 

of such algorithms, see Censor and Cegielski [19] for an annotated bibliography of books 

and reviews on the subject and Censor et al. [20] for a review with experimental results.

We adopted here the automatic relaxation method (ARM) for feasibility-seeking [23]. We 

give a generic description of this algorithm by considering the problem of solving iteratively 

large and possibly sparse systems of interval linear inequalities of the form

w j ≤ a j, x ≤ v j, j = 1, 2, …, p, (29)

where aj ∈ Rn are given, for all j, and w = (wj) ∈ Rp, and v = (vj) ∈ Rp are given too. 

Assuming that the system is feasible, an x* ∈ Rn which solves (29) is required. 

Geometrically, the system represents p nonempty hyperslabs in Rn, each being the nonempty 

intersection of a pair of half-spaces. If we are willing to ignore the slabs structure of the 

problem it could be addressed as a system of 2p linear one-sided inequalities and solved by 

the Agmon-Motzkin-Schoenberg (AMS) algorithm [28, 29]. The ARM takes advantage of 

the interval structure of the problem by handling in every iterative step a pair of inequalities 

and it also realizes a specific relaxation principle (see [23] for details) in an automatic 
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manner. External relaxation parameters are available on top of the built-in automatic 

relaxation principle.

For every hyperslab of the system (29) denote by

H j: = x ∈ Rn a j, x = v j and H j: = x ∈ Rn a j, x = w j (30)

its bounding hyperplanes. The median hyperplane will be

H j: = x ∈ Rn a j, x = 1
2(v j + w j) , (31)

and the half-width ψj of the hyperslab is

ψ j =
v j − w j

2 a j , (32)

where ||·|| stands for the Euclidean 2-norm. The signed distance of a point z ∈ Rn from the j-
th median hyperplane Hj is given by

d(z, H j) =
a j, z − 1

2 (v j + w j)
a j . (33)

Denoting dj(k) := d(xk, Hj(k)), the automatic relaxation method is as follows.

Algorithm 6 The Automatic Relaxation Method (ARM)

Initialization: x0 ∈ Rn is arbitrary.

Iterative step: Given a current iterate xk calculate the next iterate xk+1 by

xk + 1 =
xk,     i f d j(k) ≤ ψ j(k),

xk −
λk
2

d j(k)
2 − ψ j(k)

2

d j(k)

a j(k)

a j(k) ,     otherwise .
(34)

Control: The control sequence j(k) k = 0
∞  according to which hyperslabs are picked 

during iterations is cyclic on {1, 2, …, m}, i.e., j(k) = k mod m + 1.

Relaxation parameters: External relaxation parameters λk k = 0
∞  available on top of 

the built-in automatic relaxation principle are confined, for all k ≥ 0, to
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ε1 ≤ λk ≤ 2 − ε2, for some user‐chosen arbitrarily small ε1, ε2 > 0 . (35)

2.5 Performance Testing

Performance tests with two different geometries were carried out to verify the functionality 

of the proposed algorithmic structure for IMRT. Applications to IMPT are presented in the 

current work. However, the algorithm is not proton specific, and is equally applicable to any 

form of IMRT. Only the values of the matrix A differ when different forms of radiation are 

used.

2.5.1 Simplified 2D C-shaped geometry—A 2D test geometry was defined to simulate 

an axial cross-section of a tumour volume surrounding an organ at risk. The test geometry is 

illustrated in Figure 1. Structure pixels were defined with a resolution of 1 mm, also 

coinciding with the dose grid.

A proton pencil beamlet spacing of 2 mm, evenly distributed throughout the PTV structure, 

was used. Three beam angles were used to deliver dose to the PTV area. Each beam 

contained 146 proton pencil beamlets. The dose deposited by each pencil beamlet in the 

dose grid was calculated with the Monte Carlo toolkit Geant4 [36] and recorded in a text 

file.

The simulated beamlets were uniform circular proton beams of 2 mm diameter. A 

preabsorber made of 5.5 cm of polyethylene was inserted in the beams at 5 cm in front of the 

irradiated geometry in order to smooth the Bragg peaks and avoid dose distribution ripples 

due to beamlet spacing. The beamlet energies for each aiming point were extracted from a 

calibration curve. The energy used ranged from 118.5 MeV to 153 MeV with a resolution of 

0.5 MeV. The material of all the structures of the irradiated geometry was assumed to be 

water.

The standard electromagnetic physics (G4EmStandardPhysics) and hadron physics models 

(G4HadronPhysicsQGSP_BIC_HP) were used for proton tracking. Hadron elastic scattering 

physics, stopping physics, ion physics and decays models were also activated. A range cut of 

0.1 mm was set for all particles. For each beamlet, 106 events were simulated and the mean 

absorbed dose per proton was calculated at each pixel of the dose grid.

A series of dose-volume constraints (DVCs) were defined to verify the functionality of the 

algorithm. These included:

• dose only constraints (DOCs) applied to both the PTV and OAR structures

• a single DVC associated with a single structure (the OAR structure)

• multiple (two) DVCs associated with a single structure (the OAR structure)

• DVCs associated with multiple structures (the PTV structure and the OAR 

structure)
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At this point it is instructive to reconcile the dose-volume terminology used in the current 

work and the terminology commonly used in the literature. Let us consider an example 

where a prescription has been made to an OAR such that only 20% of the volume can 

receive more than 40 Gy and none of the volume can receive more than 50 Gy. Using the 

terminology of the current work, this would correspond to values of α = 0.2, b1 = 40 Gy, and 

β = 0.25 in Problem 3. Using the common terminology, this would correspond to D20% ≤ 40 

Gy and Dmax = 50 Gy.

Table 1 lists the combination of DVCs enforced in the current work, using the common 

terminology of IMRT DVCs. The dose prescriptions and percentage volume violations were 

chosen to allow for a demonstration of the functionality of the algorithm.

The initial pencil beam intensity vector before inverse planning was set to unity. The dose 

distribution resulting from the initial intensity vector is shown in Figure 2(a). The proposed 

algorithm was run for 2000 cycles for each prescription listed in Table 1. In this terminology, 

one cycle corresponds to one complete processing of all DVCs and DOCs applied to each 

pixel within both the PTV and OAR structures.

2.5.2 Clinical 3D geometry—In keeping with the 2D geometry, a base of skull chordoma 

IMPT treatment plan was chosen due to the challenging constraints imposed by a target 

structure surrounding an avoidance structure. The Philips Pinnacle3 treatment planning 

system (Philips Healthcare, Koninklijke Philips N.V.) was used to contour the PTV and 

brainstem. The exported DICOM RT (structure) files were imported into a MATLAB (The 

MathWorks, Inc.) script and the brainstem and PTV contours were mapped over the CT 

coordinates. A dose grid was created in MATLAB to match that defined in Pinnacle3. The 

dimensions were 42 × 43 × 9 voxels with resolutions of 2 mm, 2 mm and 3 mm in the x, y 
and z dimensions, respectively. The dose grid was twice as large as the CT pixel size in the x 
and y dimension and equivalent to the CT resolution in the z dimension. A reduced number 

of slices (9) was required due to memory restrictions encountered during the export of pencil 

beamlet doses.

An IMPT treatment plan was created in the Pinnacle3 research release of proton pencil beam 

scanning (PBS). Two beams were targeted at the PTV from angles of 80° and 280°, 

containing 574 and 564 beamlets, respectively. A range shifter of 7.5 cm thickness was used 

with both beams to ensure proximal PTV coverage. Distal and proximal margins for pencil 

beam placement were automatically calculated as a percentage of proton range. The dose 

grid resulting from each unit intensity beamlet was exported from Pinnacle3. Beamlet 

parameters were set to 80% layer overlap, a lateral spot resolution of 0.6 cm, a lateral target 

margin of 0.4 cm and 3 standard deviation dose spread during dose calculation. Dose was 

calculated with the analytical PBS algorithm which includes nuclear attenuation and an 

energy and material dependent multiple Coulomb scattering model.

For each structure A-matrices were created by combining the geometry defined by the 

DICOM RT structures and the dose grid obtained for each beamlet. Each 3D beamlet dose 

grid was rearranged to a 1D vector which became a column of an A-matrix. Each row of the 
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AOAR matrix corresponded to a voxel of the brainstem and likewise each row of the APTV 

matrix corresponded to a voxel of the PTV.

Two DVCs were tested for the base of skull chordoma IMPT treatment plan (see Table 2). 

The DVCs differed in the dose objectives for the brainstem while keeping the PTV 

objectives constant. The same DVCs were applied consistently for both the DVSF algorithm 

(Algorithm 5) and Pinnacle3.

Independent values for the parameter γ of (28) were used for the OAR and PTV and are 

denoted by γPTV and γOAR. These values were determined from the structure-specific 

calculation of θ in (25), denoted by θPTV and θOAR. The relaxation parameters λk of (34) 

are fixed throughout the iterations and represented by λPTV and λOAR.

3 Results

3.1 Simplified 2D C-shaped geometry

The dose distributions following inverse planning for Prescriptions 1 and 4 in Table 1 are 

shown in Figure 2(b) and 2(c). The dose-volume histograms following inverse planning for 

all cases listed in Table 1 are presented in Figure 3.

The dose distributions (Figure 2) allow for a qualitative assessment of the functionality of 

the DVSF algorithm (Algorithm 5). It is evident that the dose resulting from unit intensity 

pencil beamlets is successfully modulated toward the desired dose distribution. However, for 

a quantitative assessment the dose-volume histograms must be considered. When 

Prescription 1 DOCs were applied the dose objectives on the PTV structure could not be met 

(Figure 3(a)). Introducing the DVC on the OAR structure relaxed these conditions and 

resulted in satisfaction of the dose objectives on the PTV structure (Figure 3(b)). While the 

DVC on the OAR structure was not achieved in Prescription 2, continued iterations would 

have resulted in a dose distribution approaching the DVC more closely. The DVSF algorithm 

(Algorithm 5) was shown to function with multiple DVCs applied to a single structure 

(Figure 3(c)), and with DVCs applied to multiple structures (Figure 3(d)).

3.2 Clinical 3D geometry

Cumulative DVHs for Prescription 1 of Table 2 using the DVSF algorithm (Algorithm 5) 

and that produced by the Pinnacle3 inverse planning algorithm are shown in Figure 4. All 

constraints of the less challenging dose objectives were met by the DVSF algorithm 

(Algorithm 5) whereas Pinnacle3 exceeded the maximum dose for the OAR and did not 

satisfy the PTV minimum dose constraint. It should be noted that the Pinnacle3 inverse 

planning was run only once with unit weighting on all dose objectives. It is possible that 

alteration of the objective weightings by trial-and-error may have resulted in a more 

desirable dose distribution. However, the objective of the current work was to compare the 

inherent ability of the algorithms to satisfy the inverse problem, and as such, iterative plan 

refinement by altering objective weights was not considered. Dose distributions for 

Prescription 1 of Table 2 are shown in a single axial slice in Figure 5. The DVSF algorithm 

(Algorithm 5) showed higher conformality of the target structure.

Penfold et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2018 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cumulative DVHs for Prescription 2 of Table 2 are shown in Figure 4(b). It is clear that both 

the DVSF algorithm (Algorithm 5) and Pinnacle3 had more difficulty meeting the dose 

objectives in this case. The DVSF algorithm (Algorithm 5) was better able to meet the hard 

dose constraints when compared to Pinnacle3 but the latter was closer to meeting the D95 ≥ 

70 Gy DVC on the PTV. Dose distributions for Prescription 2 of Table 2 are shown in a 

single axial slice in Figure 6. Both dose distributions show cold spots in the target region.

4 Discussion and Conclusion

A new DVSF algorithm (Algorithm 5) based on feasibility-seeking has been successfully 

applied to IMPT inverse planning in the current work. The proposed DVSF algorithm 

(Algorithm 5) is based on a modification of the CQ-algorithm of Byrne [22] and is capable 

of directly incorporating the DVCs associated with radiation therapy prescriptions into the 

split feasibility-seeking problem statement. Our DVSF algorithm (Algorithm 5) is not 

restricted to IMPT and is equally applicable to other forms of IMRT inverse planning. Test 

cases consisted of a simplified 2D C-shape target surrounding an avoidance structure and a 

clinical base of skull chordoma abutting the brainstem.

The DVSF algorithm (Algorithm 5) performs orthogonal projections to satisfy both the 

DVCs and the lower and upper dose constraints. The AMS cyclic projection method [28] 

was implemented for single-sided inequality dose objectives and the ARM algorithm of [23] 

was implemented for interval inequalities (i.e., upper and lower dose bounds for a given 

structure).

A series of experiments were performed with 2D C-shaped geometry using varying DVCs to 

validate the functionality of our DVSF algorithm (Algorithm 5). While DVC aims were not 

met in all cases within the allowed number of iterations, the shape of the DVH curve verified 

that the algorithm was attempting to meet these objectives. Experimentation with user-

defined relaxation parameter values γ and λ was performed to investigate the effect of these 

settings on algorithmic performance. When λ was left at the fixed value of 1, it was found 

that γ values closer to the upper allowable limit of 2/θ were required to meet the DVC aims. 

Further work concerning automatic choice of these user-defined parameters is currently 

being undertaken and will be presented in future investigations.

A clinical 3D IMPT treatment geometry was also investigated. The performance of the 

DVSF algorithm (Algorithm 5) was compared to that of the research release of Pinnacle3 

with proton pencil beam scanning. The shape of DVHs differed for the two inverse planning 

algorithms. For the prescriptions investigated, our DVSF algorithm (Algorithm 5) was found 

to result in a more conformal dose distribution when assessing isodose contours and DVH 

distributions. It is acknowledged that the dose distributions obtained with Pinnacle3 may be 

improved with the addition of planning structures. However, to allow for a comparison of the 

inverse planning algorithms directly, no such structures were included in the treatment 

planning method.

While the implementation of the DVSF algorithm (Algorithm 5) was sequential in the 

current work, the structure of the algorithm lends itself to parallelization. For example, 
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block-iterative or string-averaging projection operators may be used when performing the 

orthogonal projections described in Step 3 of Algorithm 5. Such implementations will not 

only have benefits in computational speed, but may also result in superior dose distributions, 

as has been observed in the use of these algorithms in tomographic image reconstruction 

[37]. Further work will examine the potential of block-iterative and string-averaging 

algorithmic schemes for the DVSF algorithm (Algorithm 5).
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5 Appendix

Here is a proof of formula (22) for the projection calculation onto the non-convex set Q.

Proof

We show that the following translation formula

PQ(z) = PQ(z − b1) + b1 (36)

holds true for every z ∈ R
m1, despite the fact that PQ and PQ are set-valued, i.e., a point 

z ∈ R
m1 might have more than one projection onto the set. Note that

Q = Q − b1 . (37)

By the definition of projection of a point onto a set,

q0 ∈ PQ(z) if and only if q0 ∈ Q and z − q0 ≤ z − q , for all q ∈ Q . (38)

Similarly, (q0 − b1) ∈ PQ(z − b1) if and only if (q0 − b1) ∈ Q and

(z − b1) − (q0 − b1) ≤ (z − b1) − q (39)

holds for every q ∈ Q. Therefore, by (37), (38) and (39), we have the following equivalences
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q0 ∈ PQ(z) q0 ∈ Q and ∀q0 ∈ Q z − q0 ≤ z − q

(q0 − b1) ∈ Q and

∀q ∈ Q (z − b1) − (q0 − b1) ≤ (z − b1) − (q − b1)

(q0 − b1) ∈ Q and

∀q ∈ Q (z − b1) − (q0 − b1) ≤ (z − b1) − q

(q0 − b1) ∈ PQ(z − b1)

q0 ∈ PQ(z − b1) + b1,

(40)

which completes the proof. ■
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Figure 1. 
(a) Simplified 2D geometry simulating a tumour surrounding the brainstem. Arrows indicate 

the proton beam directions selected. (b) Magnified view of the target structure (PTV) and the 

avoidance structure (OAR). Dimensions are in millimetres. The yellow squares represent 

locations of delivered Bragg peaks from each beam.
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Figure 2. 
Isodose contours corresponding to (a) unit intensity pencil beams, (b) dose only constraints 

(Prescription 1), and (c) DVCs applied to both the PTV structure and the OAR structure 

(Prescription 4).
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Figure 3. 
Dose-volume histograms for each of the prescriptions tested in the 2D C-shaped geometry. 

(a) Prescription 1 (b) Prescription 2 (c) Prescription 3 (d) Prescription 4. Red lines 

correspond to the PTV and blue lines to the OAR. Crosses indicate the DVCs.
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Figure 4. 
(a) Prescription 1 of Table 2: DVH after 2000 cycles of the DVSF algorithm (Algorithm 5) 

(solid), using γPTV = 1.99/θPTV, γOAR = 1/θOAR, λPTV = λOAR = 1, compared to the DVH 

produced by Pinnacle3 (dashed) after 86 iterations and meeting a stopping tolerance of less 

than 10−7. (b) Prescription 2 of Table 2: DVH after 2000 cycles of the DVSF algorithm 

(Algorithm 5) (solid), using γPTV = 1.99/θPTV, γOAR = 0.3/θOAR, λPTV = λOAR = 0.5, 

compared to the DVH produced by Pinnacle3 (dashed) after 131 iterations and meeting a 

stopping tolerance of less than 10−7.
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Figure 5. 
Dose contour map for Prescription 1 of Table 2 (a) after 2000 cycles of the DVSF algorithm 

(Algorithm 5), using γPTV = 1.99/θPTV, γOAR = 1/θOAR, λPTV = λOAR = 1, compared to (b) 

the dose contour map produced by Pinnacle3 after 86 iterations and meeting a stopping 

tolerance of less than 10−7. The red shaded area is the PTV and the blue shaded area is the 

OAR (brainstem). Colour bar has units of Gy.
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Figure 6. 
Dose contour map for Prescription 2 of Table 2 (a) after 2000 cycles of the DVSF algorithm 

(Algorithm 5), using γPTV = 1.99/θPTV, γOAR = 0.3/θOAR, λPTV = λOAR = 0.5, compared 

to (b) dose contour maps produced by Pinnacle3 after 131 iterations and meeting a stopping 

tolerance of less than 10−7. The red shaded area is the PTV and the blue shaded area is the 

OAR (brainstem). Colour bar has units of Gy.
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Table 1

Prescriptions associated with PTV and OAR structures in order to test the functionality of the proposed DVSF 

algorithm (Algorithm 5) in a simplified 2D geometry.

Prescription OAR PTV

1 Dmax = 45 Gy
Dmin = 70 Gy
Dmax = 77 Gy

2
D15.5% ≤ 45 Gy
Dmax = 70 Gy

Dmin = 70 Gy
Dmax = 77 Gy

3
D50% ≤ 25 Gy

D15.5% ≤ 45 Gy
Dmax = 70 Gy

Dmin = 70 Gy
Dmax = 77 Gy

4
D8.5% ≤ 45 Gy
Dmax = 70 Gy

Dmin = 66.5 Gy
D95% ≥ 70 Gy
Dmax = 77 Gy

Phys Med Biol. Author manuscript; available in PMC 2018 June 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Penfold et al. Page 28

Table 2

Prescriptions associated with PTV and OAR (brainstem) structure for a clinical test case.

Prescription OAR PTV

1
Dmax = 54 Gy
D5% ≤ 50 Gy

Dmin = 66.5 Gy
Dmax = 74.9 Gy
D95% ≥ 70 Gy

2
Dmax = 40 Gy
D5% ≤ 35 Gy

Dmin = 66.5 Gy
Dmax = 74.9 Gy
D95% ≥ 70 Gy
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