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SUMMARY

A hallmark of naive pluripotency is the presence of
two active X chromosomes in females. It is not clear
whether prevention of X chromosome inactivation
(XCI) is mediated by gene networks that preserve
the naive state. Here, we show that robust naive
pluripotent stem cell (nPSC) self-renewal represses
expression of Xist, the master regulator of XCI. We
found that nPSCs accumulate Xist on the male X
chromosome and on both female X chromosomes
as they become NANOG negative at the onset of dif-
ferentiation. This is accompanied by the appearance
of a repressive chromatin signature and partial
X-linked gene silencing, suggesting a transient and
rapid XCI-like state in male nPSCs. In the embryo,
Xist is transiently expressed in males and in females
from both X chromosomes at the onset of naive
epiblast differentiation. In conclusion, we propose
that XCI initiation is gender independent and trig-
gered by destabilization of naive identity, suggesting
that gender-specific mechanisms follow, rather than
precede, XCI initiation.

INTRODUCTION

In order to achieve dosage compensation, female mammals

have one inactive X chromosome (Xi). However, in female murine

embryos, the Xi is reactivated in the pre-implantation blastocyst

(Mak et al., 2004; Okamoto et al., 2004) specifically in the cells of

the naive pluripotent epiblast (Silva et al., 2009). Their in vitro

counterpart, naive pluripotent stem cells (nPSCs), retain this em-

bryonic feature, making them an excellent model system to

study X chromosome inactivation (XCI). XCI is initiated upon dif-

ferentiation of female nPSCs and is characterized by monoallelic

upregulation of Xist, the non-coding RNA which coats the future

Xi in cis (Panning et al., 1997; Sheardown et al., 1997). In

contrast, Xist expression is extinguished during differentiation

of male nPSCs.
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The link between a naive pluripotent cellular identity and the

lack of a Xi in females is still poorly understood. In the pre-im-

plantation blastocyst, reactivation of the Xi occurs in cells ex-

pressing the nPSCmarker NANOG (Silva et al., 2009). Moreover,

NANOG and other members of the naive transcriptional network

were found to bind to Xist intron 1 (Navarro et al., 2008). Deletion

of Nanog and Oct4 was shown to induce a moderate upregula-

tion of Xist (Navarro et al., 2008), but deletion of Xist intron 1

was shown to be dispensable for XCI and did not affect Xist

expression (Minkovsky et al., 2013).

X chromosome reactivation (XCR) is also a feature during

in vitro nuclear reprogramming to naive pluripotent cell identity

(Tada et al., 2001). The general consensus is that naive pluripo-

tent gene regulators must play a role both in vivo and in vitro XCR

(Navarro et al., 2008, 2010, 2011; Pasque and Plath, 2015; Pas-

que et al., 2014; Payer et al., 2013; Silva et al., 2009).

Studies investigating the process of XCI have largely been

conducted in vitro and using nPSCs cultured in serum/LIF

(SL) conditions. This is known to be suboptimal, as it induces

transcriptional heterogeneity of pluripotency factors (Chambers

et al., 2007), promotes an overall weak naive transcription fac-

tor (TF) network in which spontaneous differentiation and

increased expression of lineage markers are observed (Marks

et al., 2012), and exhibits epigenetic constraints (Ficz et al.,

2013; Habibi et al., 2013; Leitch et al., 2013; Marks et al.,

2012). It is also known to reduce reprogramming efficiency

(Silva et al., 2008) and to decrease the ability of nPSCs to enter

embryonic development (Alexandrova et al., 2016). Using

defined serum-free medium containing LIF and inhibitors of

mitogen-activated protein kinase signaling and glycogen syn-

thase kinase-3b (2iL), these limitations have been overcome

(Silva et al., 2008; Silva et al., 2009; Ying et al., 2008). 2iL

acts on the TF network governing the naive identity by boosting

its expression (Martello and Smith, 2014). In addition, nPSCs

cultured in 2iL exhibit a transcriptional signature that is similar

to the naive pluripotent epiblast (Boroviak et al., 2015). How-

ever, it is unknown whether increased transcriptional homoge-

neity and pluripotent TF robustness have an impact on the

process of XCI.

Here, we assessed the relationship between naive pluripotent

cell identity and the process of XCI. This uncovered unexpected

XCI events during differentiation of bothmale and female nPSCs.
ne 1, 2018 Crown Copyright ª 2018 Published by Elsevier Inc. 919
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Figure 1. Xist Expression Is Abolished by a Robust Naive Pluripotent Network

(A) Schematic illustrating the experiment performed to evaluate the impact of the nPSC culture conditions on the expression of Xist.

(B) qRT-PCR analysis of Nanog and Xist in XX1, XX2, XY1, and XY2 ESC lines in SL versus 2iL. P indicates number of passages in 2iL. Error bars represent ± SD.

(C) Flow cytometry analysis of male SL Nanog-GFP ESCs and subsequent sorting into three Nanog-GFP populations: low, medium, and high.

(D) qRT-PCR analysis of Nanog, Klf4, Oct4, and Xist in low, medium, and high Nanog-GFP ESCs. Error bars represent ± SD.

(E) Strand-specific RNA-seq showing expression of the positive and negative strands at theXist locus inmale 2iL ESCs. The double-strandXist probe used in (F) is

represented in red.

(legend continued on next page)
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These observations impact our understanding of XCI and its rela-

tionship with the naive pluripotent identity.

RESULTS

Robust nPSC Self-Renewal Abolishes Xist Expression
To evaluate the impact of gene expression homogeneity and

increased naive pluripotent gene expression on the levels of

Xist, we analyzed two male and two female SL-derived embry-

onic stem cell (ESC) lines before and after passaging in 2iL (Fig-

ures 1A, S1A, and S1B). As expected, upregulation of naive

pluripotent network components was observed after transferring

cells from SL to 2iL (Figures 1B and S1C). Remarkably, 2iL con-

ditions led to repression of Xist in both male and female ESCs

after only one passage (Figure 1B).

ESCs in SL present heterogeneous levels of naive markers

(Chambers et al., 2007), rendering these cells a useful tool

to study the relationship between naive network status and

Xist expression. Male SL ESCs with Nanog-GFP reporter

were sorted into low, medium, and high GFP populations (Fig-

ures 1C and S1D). Oct4 levels were maintained in all three frac-

tions, whereas the pluripotency factor Klf4 positively correlated

with Nanog expression (Figure 1D). Interestingly, Xist expres-

sion was 28-fold lower in Nanog-high than Nanog-low cells

(Figure 1D).

To validate the qRT-PCR data, we performed strand-specific

RNA sequencing (RNA-seq) in 2iL-cultured male nPSCs. This

clearly showed that expression at the Xist locus was exclusively

antisense (Figure 1E). We also analyzed the pattern of Xist by

RNA fluorescence in situ hybridization (FISH) using a single-

strand (ss) Xist-specific probe and a conventional double-strand

(ds) probe detecting Xist exon 1 and also any present antisense

transcript. When using the ds probe and depending on the

gender, one or two pinpoints were detected in 88% or 97% of

cells, respectively (Figure 1F). In contrast, with the ss probe,

Xist was detected in less than 2% of cells (Figure 1F). Together,

these data demonstrate that Xist is not expressed in robust self-

renewing nPSCs.

2iL culture medium allows the removal of otherwise essential

components of the naive TF network (Ying et al., 2008). Thus,

we assessed the effect of the withdrawal of these on Xist expres-

sion over 3 days. We performed 4-hydroxytamoxifen (4-OHT)-

mediated Cre deletion of Nanog from Nanogflox/�, Rosa26-

CreERT2 ESCs (Figures 1G and S1F–S1H). We found an inverse

correlation between the expression of Nanog and Xist, which

was highly upregulated in both females and males (Figure 1G).

As expected, Nanog deletion also had an effect on the expres-

sion of its downstream targets such as Klf4 and Esrrb, but not

on Oct4 or other naive pluripotency genes (Figure S1H).

JAK/STAT3 signaling plays an important role in the mainte-

nance of pluripotency (Martello and Smith, 2014). In addition,
(F) RNA FISH inmale and female 2iL ESCswith a double-strand (ds) probe (left) or w

with probe signal is indicated. Female EpiSCs were used as a control for the ss

(G) qRT-PCR analysis of Nanog and Xist in female and male Nanogflox/�, Rosa26-
Error bars represent ± SD.

(H) qRT-PCR analysis of Xist in XX3 and XY1 ESCs in 2iL, 2i or after 3 and 5 day

(I) qRT-PCR analysis ofOct4 and Xist in female andmaleOct4flox/�, Rosa26-CreER
somatic cells were used as control for Xist expression. Error bars represent ± SD
activated STAT3 (p-STAT3) and its downstream target genes

have binding sites within the X-inactivation center (XIC) that har-

bors Xist and other genes involved in its regulation (Sánchez-

Castillo et al., 2015). Here, inhibition of JAK/STAT3 signaling

was achieved by treatment of ESCs with a JAK inhibitor (JAKi)

and confirmed by depletion of p-STAT3 (Figures 1H, S1I, and

S1J) and downregulation of its target Socs3 (Figure S1K). Inter-

estingly, treatment with 1 mM JAKi induced upregulation of Xist

in both female and male ESC lines (Figure 1H).

Overall, these data show that perturbing the naive pluripotent

network leads to a sharp upregulation of Xist in both male and

female ESCs. However, inhibition of JAK/STAT3 signaling also

impacted expression of naive factors, such asOct4 (Figure S1K),

which are known to be required for the integrity of the pluripo-

tency network. This raised the need to investigate whether the

observed sharp upregulation of Xist in males is indeed associ-

ated with a weaker but nonetheless naive identity or/and a

consequence of naive cell differentiation. To investigate this,

we analyzed Xist expression kinetics upon 4-OHT-mediated

Cre deletion of Oct4 in male and female Oct4flox/�, Rosa26-
CreERT2 ESCs (Figures 1I, S1L, S1M, and S1N). In this context,

the naive network collapses and cells lose the naive identity.

Importantly, concomitantly with Oct4 deletion, both female and

male cells exhibited a striking increase in the expression of Xist

(Figure 1I). In males, this reached 16% of Xist female somatic

cell levels.

Together, these data link the loss of naive gene expression and

identity to the upregulation of Xist.

Xist Is Highly Expressed in a Transient and Rapid
Fashion at the Onset of Male nPSC Differentiation
It is defined in the literature that Xist is repressed as male

nPSCs undergo differentiation both in vivo and in vitro (Panning

et al., 1997; Sheardown et al., 1997). Intriguingly, our results

above showed a surprisingly high upregulation of Xist in

males with a compromised naive network, leading us to

revisit the kinetics of Xist expression during male nPSC differ-

entiation. To address this, we induced differentiation of male

ESCs that had previously been cultured in either traditional

SL or optimal 2iL (Figure 2A). Surprisingly, a striking upregula-

tion of Xist was observed in differentiating male 2iL ESCs

(Figure 2B). Moreover, this was independent of the differentia-

tion condition applied. Xist upregulation was transient and

rapid, occurring between 1.5 and 2 days after induction of dif-

ferentiation (Figure 2B). Although less apparent, this pattern

was also observed in differentiating male SL ESCs (Figure 2B).

These results were confirmed using independent male ESC

and induced pluripotent stem cell (iPSC) lines (Figures S2A

and S2B).

Recent reports highlighted that erosion of imprints can occur

during the culture of nPSCs (Choi et al., 2017; Yagi et al.,
ith a single-strand (ss) probe detecting only Xist (right). The percentage of cells

probe. The scale bar represents 5 mm.

CreERT2 ESCs in 2iL at indicated time points following treatment with 4-OHT.

s in 1 mM JAKi + 2i. Error bars represent ± SD.

T2 ESCs in 2iL at indicated time points following treatment with 4-OHT. Female

.
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Figure 2. Xist Is Transiently and Rapidly Upregulated in Male nPSC Differentiation and Male EpiSC Reprogramming
(A) Schematic illustrating three conditions employed to differentiate 2iL and SL nPSCs: suspension culture in serum to generate EBs or adherent monolayer

culture in serum-free media ± Fgf2+ActivinA (FA).

(B) qRT-PCR analysis of Xist during differentiation of male ESCs in three different conditions. Before differentiation, ESCswere maintained in 2iL or SL conditions,

as indicated. Error bars represent ± SD.

(C) Strand-specific RNA-seq (negative strand only) showing expression of Xist during differentiation of male 2iL ESCs in three different conditions. Scale rep-

resents reads per million (RPM).

(D) Heatmap showing expression profile of Xist, differentiation markers, and naive markers during differentiation of male 2iL ESCs, as indicated. Scale represents

Z scores of log2-transformed expression values.

(E) qRT-PCR analysis of Xist during EB differentiation of male versus female 2iL ESCs. Error bars represent ± SD.

(F) Flow cytometry analysis of male GY118F Rex1+/dGFP EpiSCs following reprogramming induction with GCSF in 2iL. Cells were sorted at different time points,

with Rex1-dGFP reporter activation indicating the subset of cells successfully transitioning to the naive identity. A representative plot from day 3 is shown.

(G) qRT-PCR analysis of Xist and naive markers (Oct4, Tfcp2l1, and Esrrb) in male Rex1-positive reprogramming intermediates at different time points after

induction of reprogramming with 2iL+GCSF/GY118F. Parental EpiSCs (day 0) and ESCs in 2iL were used as controls. Error bars represent ± SD.
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2017). However, Xist is unlikely to have its expression pattern

affected, as it is not an imprinted gene in either the naive epiblast

or nPSCs.

Independent differentiation time courses were analyzed by

strand-specific RNA-seq. In agreement with the qRT-PCR

data, when male 2iL ESCs are differentiated, there is a surge of

Xist expression that starts 1.5 days following induction of differ-

entiation and lasts approximately 12 hr (Figure 2C). Principal-

component analysis (PCA) based on differentially expressed

genes showed that 2iL ESCs have a more undifferentiated start-

ing point in relation to SL ESCs (Figure S2C), which corroborates

our qRT-PCR data showing that transferring nPSCs from SL to

2iL increases the expression of naive pluripotency markers.

The expression of known regulators of Xist was also analyzed.

Ftx, Jpx, and Tsx also appear to be downregulated by 2iL condi-

tions in comparison to SL at day 0 (Figure S2D). Upon differenti-

ation, positive and negative regulators of Xist are also transiently

upregulated (Figures S2D–S2F). Global analysis of the expres-

sion pattern of long non-coding RNAs showed that Xist follows

a pattern during differentiation that is distinct from other long

non-coding RNAs (Figure S3A).

To position Xist upregulation in the sequence of events taking

place during differentiation, we compared its timing relative to

naive pluripotent and lineage marker gene expression (Fig-

ure 2D). Importantly, downregulation of the naive pluripotency

factors Sox2, Nanog, Rex1, Esrrb, Klf2, Prdm14, and Tfcp2l1

preceded Xist upregulation. In contrast, expression of lineage

markers was detected only after Xist upregulation. In combina-

tion with the effects of naive network perturbations on Xist

expression (Figure 1), these results indicate that the upregulation

of Xist observed in male cells upon induction of differentiation is

caused by a weakening naive pluripotent network.

The differentiation experiments were also performed in a fe-

male ESC line. Remarkably, 1.5 days after induction of embryoid

body (EB) differentiation, Xist expression reaches very similar

levels in male and female cells (Figure 2E). However, while Xist

expression keeps increasing in female cells, it starts declining

in male cells.

Together, these results reveal that at the onset of differentia-

tion, males upregulate Xist at a level similar to that of females.

Xist Is Transiently Upregulated during Reprogramming
of Male Cells
The aforementioned mechanistic association between a func-

tional naive TF network and the repression of Xist led us to

investigate whether these are correlated in the context of reprog-

ramming to naive pluripotency in 2iL.We analyzed the productive
(B) Immuno-RNA FISH for Xist (red) and H3K27me3 or H3K27ac (green) in male 2iL

(C) RNA FISH for Xist (red) and Rnf12, Nexmif, or Huwe1 (grayscale) in male 2iL

(D) Quantification of RNA FISH patterns for the X-linked genes Rnf12, Nexmif, or

Huwe1 signal, and pink indicates the absence of Rnf12/Nexmif/Huwe1 signal.

(E) RNA FISH for Xist (red) in female 2iL ESCs at 1.5 days of differentiation in FA

(F) RNA FISH for Xist (red) and Rnf12 or Huwe1 (grayscale) in female 2iL ESCs a

(G) Quantification of RNA FISH patterns for X-linked genes Rnf12 or Huwe1 and X

indicates monoallelic Rnf12/Huwe1 signal, and pink indicates the absence of Rn

(H) Immuno-RNA FISH for Xist (red), NANOG (green), and OCT4 (grayscale) in ma

clouds.

(I) Percentage of NANOG- and OCT4-expressing cells in the population (left) and

Fisher’s exact test was used for statistical analysis. ESC lines used were XY1 an
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reprogramming intermediates of male EpiSCs using STAT3 acti-

vation (Yang et al., 2010) and Rex1-dGFP reporter activity (Kal-

kan et al., 2017) to induce and monitor reprogramming, respec-

tively (Figures 2F and S3B). As expected, Xist was repressed in

bothmale EpiSCs and control ESCs (Figure 2G). However, in pro-

ductive reprogramming intermediates, Xist was sharply upregu-

lated (Figure 2G) prior to establishment of a consolidated nPSC

identity. It is possible that this is due to loss of tight control of

gene expression. Alternatively, it could reflect the fragile nature

of the nascent naive network during reprogramming.

Male XChromosomeExhibits Hallmarks of XCI uponXist

Upregulation
Next, we analyzed whether the observed Xist upregulation in

males was linked to events associated with the initiation of XCI

as previously described for females. To look at this, we assessed

the nuclear pattern of Xist by RNA FISH. Surprisingly, 1.5 days

after male 2iL ESCs were induced to differentiate in FA, 20%

of cells showed Xist RNA expression. Interestingly, nearly half

of these exhibited XistRNA clouds, with various sizes, character-

istic of XCI (Figure 3A). Although in a smaller proportion, male SL

ESCs induced to differentiate also exhibited cells showing Xist

RNA accumulation (Figure S4A). Appearance of an Xist RNA

cloud duringmale nPSC differentiation has been reported before

(Monkhorst et al., 2008). However, the percentage of cells exhib-

iting this pattern was less than 0.5%, a much smaller proportion

than reported in this study. The difference in the results could be

explained by the homogeneity and robust self-renewal of our 2iL

nPSC cultures and by the choice of time point to conduct the

analysis.

Another event associated with XCI in females is accumulation

of the repressive histone mark trimethyl-H3K27 (H3K27me3)

(Plath et al., 2003; Silva et al., 2003) on the future Xi. Interestingly,

H3K27me3 accumulation was observed in 63% of male cells

showing Xist RNA cloud (Figures 3B, S4B, and S4C).

We then addressed the status of acetyl-H3K27 (H3K27ac),

which is a mark of active enhancers (Creyghton et al., 2010).

This was found hypoacetylated at the male Xist RNA cloud (Fig-

ures 3B, S4B, and S4D). Together, these results indicate that a

silencing epigenetic signature has formed in the Xist-coated

male X chromosome.

To examine whether Xist accumulation was inducing gene

silencing, we performed RNA FISH analysis for nascent tran-

scripts of 5 X-linked genes (Rnf12, Nexmif, Nsdhl, Wbp5, and

Huwe1). The percentage of cells expressing Rnf12, Nsdhl, and

Nexmif was between 3- and 4-fold lower in male cells showing

Xist cloud that in male cells lacking Xist accumulation, and in
ESCs at 1.5 days of differentiation in FA.White arrowheads indicate Xist cloud.

ESCs at 1.5 days of differentiation in FA.

Huwe1 and Xist as shown in (C). Gray indicates the presence of Rnf12/Nexmif/

using ss probe. Quantification of different Xist RNA patterns is shown.

t 1.5 days of differentiation in FA.

ist as shown in (F). Dark gray indicates biallelic Rnf12/Huwe1 signal, light gray

f12/Huwe1 signal.

le 2iL ESCs at 1.5 days of differentiation in FA. White arrowheads indicate Xist

in cells exhibiting Xist cloud (right) as shown in (H).

d XX1. Scale bar represents 5 mm.



the case of Wbp5, no examples of gene expression were found

at the male X chromosome coated by Xist (Figures 3C, 3D, and

S4E). In contrast, Huwe1 showed no difference. Rnf12, Nsdhl,

Wbp5, and Nexmif are in closer proximity to the Xist locus than

Huwe1 and are also known to be silenced early during XCI, unlike

Huwe1, which is silenced at a late stage (Marks et al., 2015). At

the cell population level, Nexmif was also downregulated (Fig-

ure S4F). However, Xist-mediated silencing did not affect popu-

lation levels of Rnf12 expression (Figure S4F). These data are

consistent with a rapid transient Xist upregulation in males, a

transience that is sufficient to have an impact on early-silencing

genes but not lasting long enough to affect late-silencing ones.

Together these results show that males undergo XCI. which

had so far only been associated with females. However, unlike

females, male XCI is partial, transient, and rapid.

Females Exhibit Partial XCI of Both X Chromosomes at
the Onset of Differentiation
The observed upregulation of Xist in males, which possess only

one X chromosome, questions the existence of a choice mech-

anism preceding initiation of XCI in females. To address this, we

performed Xist RNA FISH in differentiating female nPSCs. Anal-

ysis of these cells in 2iL self-renewing conditions showed that

Xist is not expressed (Figure 1F). Strikingly, at 1.5 days of differ-

entiation, we observed that 30% of the female cells expressing

Xist display RNA accumulation on both X chromosomes (Fig-

ure 3E). Control experiments revealed that 99% of the cells in

this female line have no more than two X chromosomes, demon-

strating that these results cannot be explained by the presence

of tetraploid cells in culture (Figures S1B and S4G).

To assess whether Xist accumulation is inducing gene

silencing on both X chromosomes, we performed RNA FISH

analysis for nascent transcripts of Rnf12 and Huwe1 (Figures

3F and 3G). The incidence of biallelic silencing of Rnf12 was

12-fold greater in female cells exhibiting Xist RNA accumulation

on both X chromosomes than in cells not expressing Xist, while

Huwe1 showed no difference.

These results indicate that the choice of which X chromosome

is going to be irreversibly silenced may follow rather than pre-

cede the initiation of XCI.

Transient Xist RNA Patterns Occur as Differentiating
Cells Become NANOG Negative
To investigate whether Xist upregulation is consistent with a

particular differentiation stage, we analyzed the expression of

NANOG and OCT4 relative to Xist at the single-cell level. Due

to asynchrony in nPSC differentiation, NANOG expression was

variable while most cells remained OCT4-high at 1.5 days. Inter-

estingly, Xist upregulation in males occurred in cells that were

NANOG-low or -negative (Figures 3H and 3I). Likewise, we found

biallelic Xist upregulation in female cells that were OCT4-high/

NANOG-low or -negative (Figures S4H and S4I). The expression

of active CASPASE-3, which is an early marker of apoptosis, was

evaluated to confirm the viability of the Xist-positive male cells.

Importantly, all analyzed Xist-positive cells were negative for

active CASPASE-3 (Figure S4J).

These results are in agreement with a transient Xist upregula-

tion occurring in a defined developmental window and in close

relationship with the downregulation of the naive network.
In Vivo Transient Xist Expression in Males and in
Females on Both X Chromosomes
The embryonic day 4.5 (E4.5) naive epiblast is molecularly and

functionally highly similar to in vitro 2iL nPSCs (Boroviak et al.,

2015). Given the observed transient upregulation ofXistRNAdur-

ing nPSC differentiation, we investigated whether this also oc-

curs during in vivo differentiation of the pluripotent naive epiblast.

In agreementwith our findings in nPSCs,we found that E4.5 naive

epiblast cells do not display Xist expression in either sex (Fig-

ure 4A). FromE4.5, theembryo starts implanting andnaiveplurip-

otent gene expression is rapidly downregulated (Boroviak et al.,

2015). Thus, we analyzed E5.5 male and female post-implanta-

tion embryos as a naive epiblast differentiation time point. At

E5.5, we also failed to detect Xist expression in males, whereas

female cells already exhibited one Xist RNA cloud in nearly all

cells, which is the pattern associated with female differentiated

cells. This led us to analyze earlier time points. Interestingly, at

E4.75–E5.0, we found 1–3 cells per male epiblast exhibiting Xist

RNA expression (Figure 4B). When analyzing female epiblast

cells for the same time points, we observed that Xistwas bialleli-

cally expressed in 10% of the epiblast cells showing Xist expres-

sion (Figures 4B and 4C). Together, these data are indicative that

at implantation stage, and correlating with the downregulation of

the naive epiblast network, male and female epiblast cells un-

dergo transient and rapid monoallelic and biallelic expression

of Xist respectively.

DISCUSSION

Our results show that Xist is fully repressed in both male and fe-

male nPSCs provided they have a robust naive TF network. This

may be the result of a combination of direct and indirect mech-

anisms at the XIC, which contains multiple genomic binding sites

occupied by naive pluripotent-associated TFs located at the Xist

locus and at other non-coding and coding genes involved in Xist

regulation (Sánchez-Castillo et al., 2015).

We showed that Xist accumulates transiently at the male X

chromosome and induces partial epigenetic and transcriptional

silencing in early differentiating cells.Wehave also demonstrated

that this is linked to downregulation of the naive TF network. In

this context, known positive regulators of Xist, such as Jpx

(Tian et al., 2010), Ftx (Chureau et al., 2011), and RNF12 (Jonkers

et al., 2009; Barakat et al., 2017), may transiently gain the upper

hand and drive Xist expression. However, Xist is subsequently

rapidly suppressed, suggesting that other mechanisms of Xist

silencing are readily available. In agreement with this, deletion

of Tsix, one of the non-coding RNAs implicated in Xist silencing,

was previously found to correlate with the presence of an Xist

RNA cloud in a proportion of differentiating male nPSCs (Sado

et al., 2002). Likewise, Dnmt1mutant nPSCs exhibit Xist upregu-

lation and silencing of X-linked genes in differentiating male cells

(Beard et al., 1995; Panning and Jaenisch, 1996).

It has been proposed that initiation of XCI is related to the X

chromosome/ploidy ratio (Monkhorst et al., 2008). Our study

proposes downregulation of the naive TF network as the trigger

for the initiation of XCI. It will now be interesting to investigate

how these relate to each other.

XCI is defined as having five key phases in the following order:

counting, choice, initiation, spreading, and maintenance (Augui
Cell Stem Cell 22, 919–928, June 1, 2018 925
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Figure 4. Xist Is Transiently Upregulated Monoallelically in Males and Biallelically in Females In Vivo

(A and B) RNA FISH for Xist in representative male and female epiblasts of embryos at E4.5 and E5.5 (A) and at E4.75–E5.0 (B).

(B) Examples of cells with monoallelic Xist expression in males and biallelic expression in females are delineated with yellow dashed lines. Higher magnification of

these cells is displayed in the bottom panels.

(C) Percentage of cells with biallelic Xist over total number of epiblast cells expressing Xist in female embryos at indicated developmental stages. Error bars

represent ± SD.

Scale bar represents 10 mm.
et al., 2011). However, our data suggest that counting and choice

between the two X chromosomes is not a requirement for XCI

initiation. Furthermore, we show that the initiation and spreading

phases also occur in males. Importantly, the initiation and

spreading of XCI in males take place within a defined window

of time where the process of XCI is known to be reversible

(Wutz and Jaenisch, 2000), meaning that as long as Xist
926 Cell Stem Cell 22, 919–928, June 1, 2018
expression ceases within 3 days of differentiation, any induced

changes on the X chromosome are fully reversible. Consistent

with this, our data showed that Xist expression was already

downregulated by day 3 of male cell differentiation. Therefore,

we hypothesize that in the mouse species a counting mecha-

nism, which relies on gender differences during the reversible

period, occurs after XCI initiation.



It has been proposed that initiation of XCI in females is pre-

ceded by pairing of the two XIC loci and that the process of

choice was dependent on pairing, therefore restricting XCI to fe-

male cells (Bacher et al., 2006; Xu et al., 2006). Moreover,

although the negative regulation of Xist by the naive TF network

is the same in male and female cells, the X-linked Xist activators

adjacent to Xist and known to also work in trans will be dupli-

cated in females. These and other mechanisms must somehow

ensure that all but one X chromosome undergo irreversible XCI. It

will now be important to further understand how these mecha-

nisms allow XCI to be maintained in females only.

Human naive-like cells and human embryos cultured in vitro

were found to have an intriguing Xist pattern (Petropoulos

et al., 2016; Sahakyan et al., 2017; Vallot et al., 2017). In both

cases, the presence of one or two Xist RNA clouds was reported

for a proportion of male and female cells, respectively. As sug-

gested by the authors, this may indicate species differences.

However, it may also be akin to what we are reporting here,

that is, as a result of a perturbed naive TF network, human naive

cells may exhibit monoallelic and biallelic Xist upregulation in

both males and females respectively.

In conclusion, our study redefines the paradigm of XCI and

opens up new avenues to investigate how this process is

regulated.
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Antibodies

Monoclonal mouse anti-alpha-Tubulin Abcam Cat# ab7291, RRID:AB_2241126

Polyclonal rabbit anti-Nanog Bethyl Laboratories Cat# A300-397A, RRID:AB_386108

Monoclonal rat anti-Nanog ThermoFisher Scientific Cat# 14-5761-80, RRID:AB_763613

Monoclonal rabbit anti-Oct4 Cell Signaling Technology Cat# 83932, RRID:AB_2721046

Polyclonal goat anti-Oct4 Santa Cruz Biotechnology Cat# sc-8628, RRID:AB_653551

Monoclonal rabbit anti-Phospho-Stat3 (Tyr705) Cell Signaling Technology Cat# 9145, RRID:AB_2491009

Polyclonal rabbit anti-H3K27me3 Merck Millipore Cat# 07-449, RRID:AB_310624

Polyclonal rabbit anti-H3K37ac Abcam Cat# ab4729, RRID:AB_2118291

Monoclonal rabbit anti-Cleaved Caspase-3 (Asp175) Cell Signaling Technology Cat# 9664, RRID:AB_2070042

Polyclonal rabbit anti-Rnf12 Merck Millipore Cat# ABE1949, RRID:AB_2721047

HPR-conjugated donkey anti-rabbit GE Healthcare Cat# NA934, RRID:AB_772206

HPR-conjugated sheep anti-mouse GE Healthcare Cat# NA931, RRID:AB_772210

HPR-conjugated donkey anti-goat Santa Cruz Biotechnology Cat# sc-2020, RRID:AB_631728

Donkey anti-rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

ThermoFisher Scientific Cat# A-21206, RRID:AB_2535792

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

ThermoFisher Scientific Cat# A-31573, RRID:AB_2536183

Donkey Anti-Rat IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

ThermoFisher Scientific Cat# A-21208, RRID:AB_2535794

Goat biotinylated anti-Avidin Vector Laboratories Cat# BA-0300, RRID:AB_2336108

Chemicals, Peptides, and Recombinant Proteins

N2 Cambridge Stem Cell Institute N/A

B27 ThermoFisher Scientific Cat# 17504044

Murine LIF Hyvönen lab, Cambridge N/A

CHIR99021 Stewart lab, Dresden N/A

PD0325901 Stewart lab, Dresden N/A

FBS Labtech Cat# FB-1001S/500

Egf Peprotech Cat# 315-09

Fgf2 Hyvönen lab, Cambridge N/A

Activin A Hyvönen lab, Cambridge N/A

XAV 939 Tocris, Bio-techne Cat# 3748

4-Hydroxytamoxifen Sigma-Aldrich Cat# 7904

InSolution JAK Inhibitor I Merck-Millipore Cat# 420097

GCSF Peprotech Cat# 300-23

KaryoMAX Colcemid Solution in HBSS ThermoFisher Scientific Cat# 15210040

Taq DNA Polymerase QIAGEN Cat# 201205

Critical Commercial Assays

DNeasy Blood & Tissue Kit QIAGEN Cat# 69504

RNeasy Mini Kit QIAGEN Cat# 74104

SuperScript III First-Strand Synthesis SuperMix ThermoFisher Scientific Cat# 18080400

TaqMan Fast Universal PCR Master Mix (2X), no

AmpErase UNG

ThermoFisher Scientific Cat# 4352042

Esrrb TaqMan Gene Expression Assay ThermoFisher Scientific Mm00442411_m1

Ftx TaqMan Gene Expression Assay ThermoFisher Scientific Mm03455830_m1
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Gapdh TaqMan Gene Expression Assay ThermoFisher Scientific 4352339E

Klf2 TaqMan Gene Expression Assay ThermoFisher Scientific Mm01244979_g1

Klf4 TaqMan Gene Expression Assay ThermoFisher Scientific Mm00516104_m1

Klf5 TaqMan Gene Expression Assay ThermoFisher Scientific Mm00456521_m1

Nanog TaqMan Gene Expression Assay ThermoFisher Scientific Mm02384862_g1

Nexmif TaqMan Gene Expression Assay ThermoFisher Scientific Mm01239465_g1

Oct4 TaqMan Gene Expression Assay ThermoFisher Scientific Mm00658129_gH

Rex1 TaqMan Gene Expression Assay ThermoFisher Scientific Mm03053975_g1

Rnf12 TaqMan Gene Expression Assay ThermoFisher Scientific Mm00488044_m1

Socs3 TaqMan Gene Expression Assay ThermoFisher Scientific Mm01249143_g1

Sox2 TaqMan Gene Expression Assay ThermoFisher Scientific Mm03053810_s1

Tfcp2l1 TaqMan Gene Expression Assay ThermoFisher Scientific Mm00470119_m1

Xist TaqMan Gene Expression Assay ThermoFisher Scientific Mm01232884_m1

Biotin-Nick Translation Mix Sigma-Aldrich Cat# 11745824910

Illustra MicroSpin S-300 HR columns GE Healthcare Cat# 27513001

Salmon Sperm DNA, sheared ThermoFisher Scientific Cat# AM9680

Mouse Cot-1 DNA ThermoFisher Scientific 18440016

Ribonucleoside Vanadyl Complex New England Biolabs S1402S

Texas Red Avidin DCS Vector Laboratories A-2016

Mouse Xist Stellaris RNA FISH Probe with

Quasar 570 Dye

BioSearch Technologies Cat# SMF-3011-1

Mouse Xist Stellaris RNA FISH Probe with

Quasar 670 Dye

BioSearch Technologies Cat# VSMF-3095-5

Custom Stellaris RNA FISH Probe with FISH

Probe with Quasar 570 Dye

BioSearch Technologies Cat# SMF-1063-5

Mouse Chromosome X Whole Chromosome

Painting Probe, Green Label

MetaSystems Probes Cat# D-1420-050-FI

Mouse Chromosome Y Whole Chromosome

Painting Probe, Orange Label

MetaSystems Probes Cat# D-1421-050-OR

Deposited Data

RNA seq data This paper GEO: GSE109173

Experimental Models: Cell Lines

E14tg2a ESC line Smith lab, Cambridge N/A

EFC ESC line Smith lab, Cambridge N/A

LF1 ESC line Smith lab, Cambridge N/A

LF2 ESC line Smith lab, Cambridge N/A

C6 ESC line Smith lab, Cambridge N/A

Nanogflox/�, Rosa26-CreERT2 ESC line This paper N/A

Oct4flox/�, Rosa26-CreERT2 ESC line This paper N/A

Rex1-dGFP EpiSC line This paper N/A

Rex1-dGFP NSC line This paper N/A

Nanog-GFP EpiSC line Smith lab, Cambridge N/A

Experimental Models: Organisms/Strains

Mouse CD-1 Charles River Cat# 022

Oligonucleotides

Gender PCR primer Ube1XA (50 to 30): TGGTC

TGGACCCAAACGCTGTCCACA

(Chuma and Nakatsuji, 2001) N/A

Gender PCR primer Ube1XB (50 to 30): GGCA

GCAGCCATCACATAATCCAGATG

(Chuma and Nakatsuji, 2001) N/A
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Software and Algorithms

Fiji Open Source http://imagej.net/Fiji/Downloads

R The R Project https://www.r-project.org/

GraphPad Prism 6 GraphPad Software https://www.graphpad.com/scientific-

software/prism/

FlowJo FlowJo, LLC https://www.flowjo.com/

TrimGalore Babraham Institute http://www.bioinformatics.babraham.ac.uk/

projects/trim_galore

TopHat2 Johns Hopkins University https://ccb.jhu.edu/software/tophat

featureCounts Walter and Eliza Hall Institute

of Medical Research

http://bioinf.wehi.edu.au/featureCounts

DESeq2 Bioconductor https://bioconductor.org/packages/release/

bioc/html/DESeq2.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, José Silva

(jcs64@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Male wild-type ESC lines included E14tg2a (XY1) and EFC (XY2). Female wild-type ESC lines included LF1 (XX1), LF2 (XX2) and C6

(XX3). The cell sorting experiment was performed in maleNanog-GFP ESCs. FemaleNanog-GFP EpiSCs were used as control in Xist

RNA FISH.Nanog deletion was performed in male and femaleNanogflox/-, Rosa26-CreERT2 ESC lines.Oct4 deletion was performed

inmale and femaleOct4flox/-, Rosa26-CreERT2 ESC lines. Male iPSC line usedwas derived fromRex1-dGFPNSCs. Reprogramming

was performed in male Rex1-dGFP EpiSCs.

Cell culture
Mouse ESCs and iPSCs were cultured in 2i+LIF (2iL), 2i, or serum+LIF (SL) as indicated. 2iL medium was composed of N2B27, 3 mM

CHIR99021, 1 mM PD0325901 (Stewart lab, Dresden), and 20 ng ml�1 of murine LIF (Hyvönen lab, Cambridge). N2B27 medium

comprised 1:1 DMEM/F-12 and Neurobasal (ThermoFisher Scientific), 2 mM L-glutamine (ThermoFisher Scientific), 1x penicillin-

streptomycin (Sigma-Aldrich), 0.1 mM 2-mercaptoethanol (ThermoFisher Scientific), 1% B27 (ThermoFisher Scientific) and 0.5%

N2 (homemade). SL medium contained GMEM (Sigma-Aldrich), 10% fetal bovine serum (Labtech), 1x non-essential amino acids

(ThermoFisher Scientific), 1 mM sodium pyruvate (Sigma-Aldrich), 2 mM L-glutamine, 1X penicillin-streptomycin, 0.1 mM 2-mercap-

toethanol and 20 ng ml�1 of LIF. EpiSCs were cultured in FAX medium composed of N2B27 supplemented with 12.5 ng ml�1 Fgf2,

20 ng ml�1 Activin A (Hyvönen lab, Cambridge) and 6.25 mg ml�1 XAV 939 (Bio-Techne). 4-OHT (Sigma-Aldrich) was used at a con-

centration of 500 nM and InSolution JAKi I (Merck Millipore) at a concentration of 1 mM. During expansion of Nanogflox/- cell lines,

selection with 200 mg ml�1 G418 (ThermoFisher Scientific) was applied to select for pluripotent cells based on Nanog promoter

activity at the null allele. For ESCs and iPSCs, tissue-culture flasks were coated with 0.1% gelatin (Sigma-Aldrich) in PBS (Sigma-

Aldrich). For EpiSCs, tissue-culture flasks were coated with 10 mg ml�1 fibronectin (Merck Millipore) in PBS (Sigma-Aldrich).

Cell differentiation
For embryoid body differentiation, 1.53 106 cells were plated on 10 cm low-attachment dishes in serum-containing mediumwithout

LIF. For differentiation in adherent monolayer culture, 63 105 cells were plated on gelatin-coated 10 cmdishes in serum-free (N2B27)

or N2B27 supplemented with Fgf2 and Activin A (FA). XY1 and XX1 ESCs were not passaged more than 3 times in 2iL prior to the

differentiation assays.

Reprogramming
Embryo-derivedmaleEpiSCswithRex1+/dGFP reporter (Kalkan et al., 2017)were used that constitutively express theGY118F recep-

tor transgeneknown todriveEpiSC reprogramming viaSTAT3activation (Yanget al., 2010). For reprogramming,EpiSCswereplatedat

10,000 cells per fibronectin-coated 6-well in FAX maintenance medium. The following day, reprogramming was induced by switch to

2iL plus GCSF (30 ng ml�1 human GCSF, Peprotech). On days 2, 3, 4, 5 and 6, multiple reprogramming wells were harvested using

accutase, stained with DAPI to eliminate nonviable cells, and sorted by flow cytometry to isolate the Rex1-dGFP-positive subpopula-

tion for further analysis. Parental EpiSCsandmaleRex1+/dGFPESCswere usedas negative andpositive gating controls respectively.
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Embryos
Embryos were collected from CD1 female mice (Charles River Laboratories, UK). Use of animals in this project was approved by the

Animal Welfare and Ethical Review Body for the University of Cambridge (Procedure Project Licenses P76777883 and 80/2597).

METHOD DETAILS

RNA isolation, cDNA synthesis and qRT-PCR
Total RNA was isolated from cells using the RNeasy mini kit (QIAGEN) in accordance with the manufacturer’s protocol. One micro-

gram of total RNA was reverse-transcribed using SuperScript III First-Strand Synthesis SuperMix (ThermoFisher Scientific). Reverse

Transcription Quantitative Real-Time PCR (qRT-PCR) reactions were set up in triplicate using TaqMan Universal PCR Master Mix

(ThermoFisher Scientific) and TaqMan gene expression assays (ThermoFisher Scientific). qRT-PCR experiments were performed

on a StepOnePlus Real Time PCR System (ThermoFisher Scientific). Delta Ct (DCt) values compared to Gapdh were calculated

and relative quantities calculated as 2 to the power of -DCt. The means of three values were calculated and normalized as indicated.

Flow cytometry
Nanog-GFP ESCs were resuspended in PBS containing 3.5% BSA (ThermoFisher Scientific) and sorting was performed using a

MoFlo high-speed cell sorter (Beckman Coulter). A 514/10BP filter was used for GFP and a 580/30BP filter was used for autofluor-

escence. Rex1-dGFP positive reprogramming intermediates were sorted using a BD Influx 5 cell sorter (BD Biosciences). A 460/50

filter was used for DAPI and a 530/40 filter was used for GFP.

DNA extraction
In the case of the cell lines, DNA was isolated using the DNeasy Blood & Tissue Kit (QIAGEN) in accordance with the manufacturer’s

protocol. In the case of the embryos, these were collected from the slides after RNA FISH and imaging and then lysed in 0.2% Triton

X-100 and Proteinase K at 56�C for 10 minutes followed by 95�C for 15 minutes.

Gender PCR
Cell lines were sexed by PCR using primers Ube1XA and Ube1XB, which results in two products of distinct sizes from the Ube1x and

Ube1y genes on the X and Y chromosome respectively (Chuma andNakatsuji, 2001) . PCR reactionswere performed in a final volume

of 20 mL with 100 ng of DNA, 1X CoralLoad buffer, 0.2 mM dNTPs, 0.35 mMprimers and 2.5 units Taq DNA Polymerase (QIAGEN) and

run on a thermal cycler with the following conditions: 94�C for 3minutes, 30 cycles with 94�C for 30 s, 66�C for 30 s, and 72�C for 30 s,

followed by 72�C for 10 minutes. In the case of the embryos 4 mL per embryo lysate were added to the PCR reaction. Products were

electrophoresed on 2% agarose gel.

Western blotting
Dissociated cells were lysed in RIPA buffer (as described by Sigma-Aldrich) containing Complete-ULTRA protease-inhibitor and

PhosStop phosphatase-inhibitor cocktails (Roche), and sonicated with Bioruptor200 (Diagenode) at high frequency, alternating

30 s on/off for 3 minutes. SDS-PAGE electrophoresis was performed using Bolt 10% Bis-Tris Plus gels (ThermoFisher Scientific)

in a NovexMiniCell (ThermoFisher Scientific). Protein transfer was performed using semi-dry iBlot 2 system (ThermoFisher Scientific)

and iBlot Transfer Stacks (ThermoFisher Scientific). The following primary antibodies dilutions were used: mousemonoclonal against

a-Tubulin (1:5,000) from Abcam, rabbit polyclonal against NANOG (1:5,000) from Bethyl Laboratories, rabbit monoclonal against

p-Y705-STAT3 (1:1,000) from Cell Signaling Technology, rabbit polyclonal against RNF12 (1:1,000) from Merck Millipore, and

goat polyclonal against OCT4 (1:1,000) from Santa Cruz Biotechnology. Detection was achieved using HRP-linked secondary anti-

bodies against the appropriate species (GE Healthcare) and ECL Plus Western Blotting Detection System (GE Healthcare).

Xist RNA FISH with double-stranded probe
Cells were plated on SuperFrost Plus Adhesion slides (ThermoFisher Scientific) and permeabilised in cytoskeletal buffer

(100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES) containing 0.5% Triton X-100 (Sigma-Aldrich), 1 mM EGTA pH 8

and vanadyl ribonucleoside (New England Biolabs) for 5 minutes on ice. They were subsequently fixed in 4% paraformaldehyde

(Sigma-Aldrich) for 10minutes, brieflywashed in 1X PBS and dehydrated through 70, 80, 95, and 100%ethanol, after which the slides

were air-dried. At this stage, a denatured Xist probe was applied onto the slides and these were incubated overnight at 37�C.
The probewas prepared by labeling plasmid DNAcontaining amouseXist exon 1 fragment sequence (kindly provided by Professor

Neil Brockdorff, University of Oxford, UK) with a Biotin-Nick TranslationMix (Sigma-Aldrich) according tomanufacturer’s instructions

and non-incorporated nucleotideswere removedwith IllustraMicroSpin S-300 HR columns (GEHealthcare). To 20 ng of probe, 10 mg

of sheared salmon spermDNA (ThermoFisher Scientific) and 3 mg of mouse Cot-1 DNA (ThermoFisher Scientific) were added. Finally,

the probe was dehydrated by vacuum and resuspended in deionized formamide (VWR). Before applying to the slide, the probe was

denatured at 80�C and 2X hybridization buffer (4X SSC, 20% dextran sulfate, 2 mg ml-1 BSA, 2 mM vanadyl ribonucleoside)

was added.

The following day, the slides were washed at 42�C in 2X SSC/50% formamide for 15 minutes, then three times in 2X SSC for 5 mi-

nutes each. They were then transferred to 4X SSC/0.1% Tween 20 at room temperature and blocked in 4 mg ml-1 BSA in
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4X SSC/0.1% Tween 20 at 37�C for 30 minutes. Probe detection was performed by first applying Avidin conjugated to Texas Red

(1:500, Vector Laboratories), then a biotinylated anti-avidin antibody (1:200, Vector Laboratories), followed by a second layer of

Avidin-Texas Red. All detection reagents were diluted in 4 mg ml-1 BSA in 4X SSC/0.1%Tween 20 and incubated at 37�C for 30 mi-

nutes followed by three washes in 4X SSC/0.1% Tween 20 in between each step. Finally, the slides were mounted in Vectashield

Mounting Medium containing DAPI (Vector Laboratories).

RNA FISH with single-stranded probe
RNA FISH protocol was modified from the Stellaris (Biosearch Technologies) protocol for adherent mammalian cells. Cells were

plated on SuperFrost Plus Adhesion slides (ThermoFisher Scientific) and fixed in 4% PFA (Sigma-Aldrich) at room temperature for

10 minutes. They were subsequently washed in 1X PBS and permeabilised in cytoskeletal buffer (100 mM NaCl, 300 mM sucrose,

3 mMMgCl2, 10 mM PIPES) containing 0.5% Triton X-100, 1 mM EGTA pH 8 and vanadyl ribonucleoside (New England Biolabs) for

5 minutes on ice. Following washing in 1X PBS, they were incubated in 70% ethanol at 4�C overnight. Cells were incubated in 10%

formamide (VWR) in 2X SSC (Sigma-Aldrich) for 10 minutes and then in 250 nM Stellaris Probes diluted in 100 mg mL�1 dextran sul-

fate (MPBiomedicals) and 10% formamide in 2X SSC at 37�Covernight. Xistwas recognized using Stellaris FISH Probes labeled with

either Quasar 570 or Quasar 670 (BioSearch Technologies). Rnf12,Nexmif,Nsdhl,Wbp5 andHuwe1were recognized using Custom

Stellaris FISH Probes labeled with Quasar 570 (BioSearch Technologies). The sequences of 48 oligonucleotides designed against

unique intronic sequences using the online Stellaris Probe Designer tool (BioSearch Technologies). The Rnf12 and Huwe1 probes

sequences were kindly provided by Prof. Neil Brockdorff and Dr. Tatyana Nesterova (University of Oxford, UK). After hybridization,

cells were incubated in 10% formamide in 2X SSC at 37�C for 30 minutes followed by a wash in 2X SSC at room temperature for

5 minutes. Cells were mounted with Vectashield Antifade Mounting Medium with DAPI (Vector Laboratories).

RNA FISH of mouse embryos
Mouse embryos were collected from CD1 mice and fixed in 4% PFA at room temperature for 15 minutes. Embryos were further pro-

cessed for RNA FISH using Stellaris probes (BioSearch Technologies) according to the procedure described above.

Immunofluorescence
Immunofluorescence was always performed in combination with RNA FISH using Stellaris probes. Sequential immunofluorescence

and RNA FISH protocol was modified from the Stellaris (Biosearch Technologies) protocol for adherent mammalian cells. Cells were

fixed and permeabilised as for RNA FISH. Theywere thenwashed in 1XPBS and incubatedwith primary antibody diluted in 1XPBS at

37�C for 2 hours. Primary antibodies were used as follows: rabbit polyclonal against H3K27me3 (1:500) from Merck Millipore, rabbit

polyclonal against H3K27ac (1:500) from Abcam, rat monoclonal against NANOG (1:300) from ThermoFisher Scientific, rabbit mono-

clonal against OCT4 (1:300) from Cell Signaling Technology and rabbit monoclonal against cleaved CASPASE-3 (1:100) from Cell

Signaling Technology. Following washing in 1X PBS, cells were incubated with secondary antibody diluted in 1X PBS at 37�C for

1 hour. An appropriate Alexa Fluor conjugated secondary antibody (1:1,000) from ThermoFisher Scientific was used. Cells were

then washed in 1X PBS and fixed again in 4% PFA at room temperature for 10 minutes. Following washing with 1X PBS, RNA

FISH protocol was carried out as described above, starting from the incubation in 10% formamide in 2X SSC.

Metaphase spread
ESCs were plated onto a gelatinised 6-well 2 days prior preparation of the chromosome spreads. Cultures were then arrested in

metaphase by addition of 0.5 mg mL�1 KaryoMAX colcemid (ThermoFisher Scientific) and incubation at 37�C for 3 hours. Cell

were then washed in PBS, harvested with accutase and centrifuged at 300 g for 5 minutes. Following aspiration of the supernatant,

the pellet was resuspended in 5 mL of 0.075 M KCl solution and incubated at 37�C for 15 minutes. Then 100 mL of ice cold metha-

nol:glacial acetic acid (3:1) fixative solution were added drop-wise followed by an incubation on ice for 10 minutes. Following incu-

bation, cells were centrifuged at 300 g for 5minutes, supernatant was aspirated leaving 500 mL in the tube and 5mL of fixative solution

were added to the cells. Again 500 mL of the supernatant were kept in the tube after centrifugation and spread onto a glass slide. After

at least 3 hours at room temperature, the slide was stained or stored at �20�C for further analysis.

DNA FISH chromosome painting
Prior to X and Y chromosome painting, immune RNA FISH was performed, slides were imaged and x-y coordinates were marked for

future reference. After removal of the coverslip, slides were washed in 2X SSC at room temperature. X and Y chromosome painting

was also performed on metaphase spreads. Slides were dehydrated through an ice-cold ethanol series (70%, 80%. 95% and 100%)

for 3 minutes each and then allowed to air dry. X and/or Y chromosome paint probe (Metasystems) was added to the slide, denatur-

ation was carried out at 75�C for 2 minutes and slides were incubated at 37�C overnight. After hybridization, slides were incubated in

0.4X SSC at 72�C for 2 minutes followed by a wash with 0.05% Tween-20 in 2X SSC at room temperature for 30 s. Slides were rinsed

in water, allowed to air dry and mounted with Vectashield Antifade Mounting Medium with DAPI (Vector Laboratories).

Microscopy and image analysis
Images were taken with an Eclipse Ti Spinning Disk confocal microscope (Nikon) equipped with an Andor Revolution XD System

using either 40X or 60X objectives. Images were processed and analyzed with ImageJ. Presented images are maximum intensity
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projections of Z stack slices or, in the case of embryos, selected Z stack slices. Scoring of RNA FISH signals was done by eye from

images.

RNA-seq
RNA integrity was assessed on a Qubit Fluorometer (ThermoFisher Scientific) and Agilent Bioanalyzer Nano Chips (Agilent Technol-

ogies). Depletion of ribosomal RNA was performed on 2-5 mg of total RNA using the Ribo-Zero rRNA Removal Kit (Illumina) and

libraries were produced from 10-100ng of ribosomal-depleted RNA using NextFlex Rapid Directional RNA-seq Kit (Bioo Scientific)

with 12 cycles of PCR amplification. Libraries were pooled in equimolar quantities and sequenced on the HiSeq4000 platform

(Illumina) at CRUK.

QUANTIFICATION AND STATISTICAL ANALYSES

Where indicated, statistical analysis was performed by Fisher’s exact test using GraphPad Prism. ‘‘n’’ values in figures represent the

number of embryos or number of cells analyzed. All qRT-PCR data represent the mean of three technical replicates. All error bars

represent ± standard deviation (SD).

RNA-seq analysis
RNA-seq reads were adaptor-trimmed with TrimGalore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore) and map-

ped to the mouse reference genome (GRCm38/mm10) with TopHat2 (https://ccb.jhu.edu/software/tophat) allowing for one

mismatch and alignments guided by Ensembl gene models (Ensembl release 82). Strand-specific read counts were obtained with

featureCounts (http://bioinf.wehi.edu.au/featureCounts). Transcript counts were normalized, and the statistical significance of differ-

ential expression between samples was assessed using the R Bioconductor DESeq2 package (https://bioconductor.org/packages/

release/bioc/html/DESeq2.html). Transcript counts normalized by DESeq2 size factors were subsequently normalized by their

length/1000. Principal component analysis (PCA) was performed by singular value composition using the R prcomp() function on

scaled expression values.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is GEO: GSE109173.
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