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Abstract

Aberrant promoter methylation is a common mechanism for tumor suppressor inactivation in cancer. We develop a
set of tools to identify genome-wide DNA methylation in distal regions with causal effect on tumorigenesis called
MICMIC. Many predictions are directly validated by dCas9-based epigenetic editing to support the accuracy and
efficiency of our tool. Oncogenic and lineage-specific transcription factors are shown to aberrantly shape the
methylation landscape by modifying tumor-subtype core regulatory circuitry. Notably, the gene regulatory networks
orchestrated by enhancer methylation across different cancer types are seen to converge on a common
architecture. MICMIC is available on https://github.com/ZhangJlab/MICMIC.
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Background
Appropriate DNA methylation patterns are critical for
(epi)genomic stability and gene expression regulation [1].
In particular, it is well established that promoter hyperme-
thylation is a common epigenetic mechanism for tumor
suppressor inactivation in cancer [2]. However, many
genes lowly expressed in normal samples were not differ-
entially expressed with differentially methylated promoter
[3, 4]. Some genes have been verified to be regulated by
aberrant promoter methylation with a causal effect on
tumorigenesis, including CDKN2B, CDKN2A, RB, APC,
BRCA1, and MLH1 [5–7]. Recently, DNA methylation of
enhancers in various cancers has been under intense study
[4, 8–11]. However, its exact role and whether it is merely
a marker of malignancy or a causal factor is largely un-
known. Some of these studies focused on well-annotated
enhancer regions. However, the annotated enhancer sites
are mainly derived from the epigenome profiling of lim-
ited cell lines or tissues, lacking an in-depth coverage of
distal regulatory sites in patient cancer samples. DNA

methylation may be similar to somatic mutations in can-
cer, in which only a subset of events is causal or “drivers,”
while most are “passengers.” To identify the subset that
are causal, we need solutions that enable us to: (1)
genome-wide identify causal DNA methylation of en-
hancers and its gene targets in pan-cancers in an unbiased
manner; and (2) directly validate a specific methylation
event on the putative enhancer by experimentation.
Pharmacological inhibition of DNA methylation with the
drug 5-azacitidine is commonly used for experimental val-
idation, but it induces genome-wide DNA demethylation
without specificity.
In this study, we designed a set of tools for identifying

genome-wide DNA methylation of distal regulatory sites
that result in a causal effect on tumorigenesis. De novo
enhancers/silencers and its direct gene targets were in-
ferred by information theoretic approaches [12, 13] and
validated with the emerging CRISPR/dCas9 epigenetic
editing [14–17] technique. Information theoretic ap-
proaches have been proved effective to distinguish the
direct from indirect connection in other applications
with solid mathematical proof [18, 19]. Strikingly, we
have found that the modulation of DNA methylation on
distal regulatory sites by dCas9-DNMT3A-3 L has pro-
found effect on cancer cell behavior similar to promoter
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methylation, e.g. cell migration and proliferation altered
along with target gene expression change, even though
the distal regulatory site 200 kb away. By contrast,
dCas9-TET1 has the opposite effect on its target gene
expression. Our strategy recovered many known en-
hancers and unannotated regulatory sites from different
cancer types, differential methylation of which regulated
known or novel tumor-suppressor/oncogene with causal
effect on cell malignancy and patient survival. Furthermore,
our study also provides mechanistic insight on how DNA
methylation of distal regulatory sites is critical for the main-
tenance of tumor cell identity and malignancy with gene
network perspective.

Results
Pipeline for MICMIC to infer methylation regulation
networks
To identify driver methylation events during tumorigen-
esis, we developed a strategy based on information theor-
etic approaches to distinguish the direct from indirect
correlation between the methylation of CpG probes and
the expression of its potential gene targets. Our method,
“Methylation Regulation Network Inference by Condi-
tional Mutual Information Based PC-algorithm” (MIC-
MIC), is composed of three layers. The bottom layer uses
conditional mutual information (CMI) to determine the
dependence relationship between three nodes, genes, and/
or CpG probes (Fig. 1a). If variables X and Y are con-
nected only via A, then CMI(X,Y|A) will be close to zero,
indicating that there is no direct connection between X
and Y. The middle layer uses a path consistency algorithm
(PC-algorithm) to infer the regulatory network that in-
cludes all nodes (Fig. 1a). To start with, all nodes are con-
sidered connected and each edge is tested by CMI based
on the observed data. The final network emerges after all
false positive connections are eliminated. Finally, in the
top layer, MICMIC identifies each CpG probe and its dir-
ect target(s) as a pair, denoted here as a DRE-target pair
(DRE, direct regulatory elements) (Fig. 1b). Since many
methylation events are merely a consequential effect of
the cancerous state rather than being causal, MICMIC
was purposely designed not to call differentially methyl-
ated regions. To identify DRE-target pairs relevant to
tumorigenesis, we focused on genes that were determined
to be essential for tumorigenesis by differential expression
test and master regulator analysis (MRA), which was
designed to quantify the enrichment of cancer signature
genes among the regulatory neighbors of the target gene
(see “Methods”). For each target gene tested, we included
all nearby genes and CpG probes ±300 kb away from the
transcriptional start site (TSS) of the gene and merged the
expression and methylation matrix together. The
CMI-based PC algorithm inferred the regulatory network
and the DRE-target pair (see “Methods”). We downloaded

TCGA level 3 datasets for various cancers, encompassing
HumanMethylation450 array and RNA-sequencing
(RNA-seq) data. As an example, in the TCGA gastric can-
cer cohort (STAD) for the gene CDCA5, we identified ten
DREs associated with CDCA5 expression, with four of
them > 240 kb away from the TSS of CDCA5 (Fig. 1c).
Subsequently, we successfully experimentally verified one
of these DREs, cg02933228, which will be discussed fur-
ther below. The false discovery rate (FDR) for MICMIC
was 0.05 based on simulation testing (Fig. 1d).

Genomic features enriched in distal regulatory
interactions identified by MICMIC
From analysis of 11 different cancer types from the TCGA
datasets, the number of DREs was in the range of 2192–
13,027 (total 73,255) and the number of DRE-target pairs
was in the range of 2234–13,570 (total 80,334). Of
DRE-target pairs, 57.4% were cancer specific and 42.6%
shared by more than one cancer type. A total of 55,993
DREs that were > 2 kb away from the TSS were termed dis-
tal DREs, similar to a previous study [9]. Of the promoter
DREs (≤ 2 kb), 88.8% were negatively correlated with their
target genes (Fig. 2a, b), among which the majority were
downregulated (Additional file 1: Figure S1). The percentage
of negative and positive correlations for distal DRE-target
pairs were 37.9% and 62.1%, respectively (Fig. 2a, b). To
identify enriched genomic features, we used the ENCODE
ChromHMM 18-state models to annotate the distal DREs
for 6/11 cancer types based on the availability of the corre-
sponding cell line data (see “Methods”) [20]. Of the six
tested, all of the distal DREs negatively correlated with its
targets were enriched (p value < 0.01) in two or more en-
hancer regions (EnhG1, EnhG2, EnhA1, EnhA2, EnhWk),
suggesting that methylation of an enhancer could
negatively regulate target gene expression (Fig. 2c and
Additional file 1: Figure S2). On the contrary, all of the
DREs positively correlated with its targets were enriched
in one or two of the repressor regions (ReprPC,
ReprRCWk), but not in the enhancer regions (Fig. 2c and
Additional file 1: Figure S2). Bivalent Enhancers (EnhBiv),
first reported in stem cells [21], were enriched in both
negatively and positively correlated DREs. We then
compared both negatively and positively correlated DREs
for the enrichment of active chromatin marks (H3K27ac,
H3K4me1, p300, and DNase I hypersensitivity) and re-
pressive marks (H3K9me3 and H3K27me3). We observed
strong enrichment of active marks around the negatively
correlated distal DREs and strong enrichment of repres-
sive marks at the positively correlated ones (Fig. 2d and
Additional file 1: Figure S4). Enrichment of H3K4me3,
marker of active promoters, was only observed at a
minority (< 30%) of negatively-correlated DREs, which were
2–3 kb away from TSS (Additional file 1: Figure S4c).
Similarly, the PhastCons conservation score reached its peak
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at the center of the genomic regions flanking negatively cor-
related distal DREs across all cancer types, and was signifi-
cantly higher than the control group (p value was in the
range of 2.18e-68–0.027) (Fig. 2e). By contrast, there is much
weaker or no enrichment for positively correlated distal
DREs (Fig. 2e). The precision of our distal DRE-target pre-
diction was evaluated by different chromatin interaction
datasets, such as IM-PET, Hi-C, RAD21-cohesin, and
ChIA-PET [22–24] (see “Methods,” only negatively corre-
lated pairs considered here). The precision rate of MICMIC
reached up to 90% when the DRE-target pairs were

separated by up to 25 kb and 50% even when the pairs were
separated up to 100 kb (Fig. 2f). The TCGA samples ana-
lyzed in this study and the DREs identified by MICMIC were
listed in the following tables (Additional file 2: Table S1 and
Additional file 3: Table S2).

Validation of causal DNA methylation events involved in
tumorigenesis by epigenome engineering techniques in
gastric cancer
We chose distal DRE-target pairs for validation if: (1)
there was a strong correlation between expression and

Fig. 1 Pipeline for inferring methylation regulation networks. a Top: Schematic of the MICMIC pipeline that uses information theoretic approaches
to distinguish direct regulation from indirect correlation, where variables X and Y are connected only via variable A, then CMI(X,Y|A) will be close
to zero, suggesting that there is no direct connection between X and Y. Bottom: A PC algorithm is used to infer the regulatory network from the
observed data matrix, eliminating the indirect edges by CMI testing. b MICMIC is designed to identify the regulatory relationship between the
methylation level of a CpG probe and the expression level of its potential gene target. For every target gene tested, we included all nearby
genes and CpGs ± 300 kb from the transcription start site (TSS) of the test gene and merged the related expression and methylation matrix
together. Then MICMIC applies the CMI-based PC algorithm to infer the regulatory network. CpG probes that passed the test were named direct
regulatory elements (DREs). The DRE and its gene targets were denoted as DRE-target pairs. c A representative example of the MICMIC output for
the CDCA5 gene, where ten DREs (nine shown here) were identified to be associated with CDCA5 expression in gastric cancer (TCGA STAD), four
of which were at least 240 kb away from the TSS of the target gene. One of these DREs, cg02933228 (blue oval), was experimentally verified. In
the lollipop diagram, green represents significant CpG probes, i.e. DREs. The Pearson correlation coefficient (PCC) for each DRE-target pair was
represented by a vertical line (red for negative PCC and green for positive PCC). d Simulation test to justify the MICMIC p value cut-off. The
number of actual DREs identified (blue) vs the number of DREs identified by chance (red) at various p value cut-offs
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methylation, represented by a significant Pearson correl-
ation coefficient (PCC < − 0.3 or > 0.3); and (2) the target
gene was determined to be essential for tumorigenesis
by differential expression test and MRA (see “Methods,”
Figs. 3a and 4a, and Additional file 1: Figures S5 and
S7). For example, in gastric cancer, WNT5B expression
and methylation of its distal DRE (cg02935351) were
strongly anti-correlated and WNT5B was predicted to
be a tumor suppressor by MRA (Fig. 3a). Next, we per-
formed epigenetic editing by using CRISPR-dCas9 based
technologies, such as the casilio system [14] for targeted
methylation with a DNMT3A-3 L fusion protein and the
dCas9-SunTag scaffold with scFv–TET1 catalytic domain
fusions [15] for targeted demethylation to the intended
genomic sites in the AGS human gastric cancer cell line
(Additional file 4: Table S3). Remarkably, targeting
DNMT3A-3 L to the region near cg02935351 downregu-
lated WNT5B, while targeting TET1 to this region

produced similar results to treatment with the global DNA
methylation inhibitor, 5-AZA, and upregulated WNT5B
(Fig. 3b). The effect of targeting DNMT3A-3 L/TET1 to
the distal DRE site of WNT5B was confirmed by bisulfite
sequencing without off-target on other genes (Fig. 3c and
Additional file 1: Figure S7a). We then tested if modulation
of the DNA methylation of distal DREs could affect cell
migration. Strikingly, cancer cell migration increased as a
result of DNMT3A-3 L targeting, but decreased by TET1
targeting or overexpression of WNT5B complementary
DNA (cDNA) (Fig. 3b and Additional file 1: Figure S9). To
further confirm the regulatory function of this distal DRE re-
gion, we cloned a 1-kb genomic region flanking cg02935351
and the WNT5B promoter into the pGL3 luciferase reporter
vector and verified its putative enhancer status (Fig. 3f).
Interestingly, co-transfection with dCas9-DNMT3A-3 L was
also able to regulate the reporter constructs (Fig. 3f). In
addition, we verified several other genes, including MLEC,

Fig. 2 Genomic features of DREs identified across cancers. a Bar chart showing the number of promoter DRE-gene pairs (top) and distal DRE-
gene pairs (bottom) identified from the TCGA cancer cohorts. Blue bars indicate the fraction of the DRE-gene pairs shared by more than one
cancer type, while red bars indicate the fraction of the cancer-type specific DRE-gene pairs. b The negative and positive correlation between DRE
methylation and its target gene expression are shown by red and blue, respectively. Promoter pairs are mainly negatively correlated (88% in total).
c Representative results showing the preferred chromatin state of distal DREs in liver (HepG2) and breast (HMEC) cancer cell lines. The distal DREs
for each cell line were inferred from those identified from the corresponding TCGA cohort, LIHC and BRCA, respectively, here in this example. The
number of distal DREs were counted at each chromatin state, with the heatmap color and number indicating the enrichment p value of distal
DREs in each state. Results for other cancer types can be found in Additional file 1: Figure S2. d Representative results in liver cancer cell line
HepG2, showing increased chromatin signals for H3K27ac, H3K4me1, p300, and DNase I hypersensitivity at genomic regions surrounding the
negatively correlated distal DREs, in contrast to increased chromatin signals for repressive marks H3K9me3 and H3K27me3 surrounding the
positively correlated distal DREs. P values were calculated by t-test comparing the signals of negatively correlated distal DREs vs that of an all
probes control. The results for other cancer cell lines can be found in Additional file 1: Figure S4. e Average conservation score of distal DRE
flanking regions. PhastCons conservation score was in the range of 0–1 (non- to perfectly conserved). P values are calculated between distal DREs
and all probes (as control) by t-test. f The precision of DRE-target pairs predicted by MICMIC was determined by calculating the positive
predictive value (PPV) in comparison with other chromatin interaction data, including IM-PET, Hi-C, RAD21-cohesin, and ChIA-PET (see “Methods,”
only negatively correlated pairs considered here)
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LLGL2, CDCA5, MEN1, CLDN7, SOX9, and FGFR1 by epi-
genetic modulation of distal DREs followed by quantitative
polymerase chain reaction (qPCR), migration assay, and
luciferase reporter assay (Fig. 3d–f, Additional file 1:
Figure S9). We performed experiments using scrambled
single guide RNA (sgRNA), “untargeted,” or catalytically
inactive DNMT3A-3 L/TET1 to rule out the possibility of

off-target due to overexpression DNMT3A-3 L/TET1 (see
“Methods” and Additional file 1: Figure S6). Overall, our
experimental results were fully consistent with MICMIC
predictions. As mentioned above in Fig. 1, MICMIC
predicted a distal DRE for CDCA5, cg02933228, which is
> 240 kb away from the TSS of CDCA5 (Fig. 1c), but we
were able to achieve robust regulation of this distal DRE

Fig. 3 Validation of causal DNA methylation events in gastric cancer. a Representative results showing the negative regulation of WNT5B by
methylation of its distal DRE (cg02935351, 22,595 bp from WNT5B TSS). Box plot shows the high, middle, and low expression groups of WNT5B,
plotted against the methylation of the distal DRE in each group. MRA analysis was implemented by the gene set enrichment analysis (GSEA)
method. GSEA graphs show tumor-suppressive signatures of WNT5B by MRA. Correlation analysis and MRA for other genes are shown in
Additional file 1: Figure S5. b Confirmation that methylation of the distal DRE is the causal event for WNT5B regulation and cellular malignancy.
qPCR results showing increased WNT5B expression in AGS cells treated with 5-AZA or dCas9-TET1, and decreased expression in cells transfected
with dCas9-DNMT3A-3 L relative to controls. Cell migration assays showed that dCas9-DNMT3A-3 L targeting increased cell migration, while
overexpression (OE) of WNT5B suppressed tumor cell migration. Significance was determined by t-test and error bars represent ± SD. c Bisulfite
sequencing validation of increased methylation of the CpGs surrounding the dCas9-DNMT3A-3 L targeted DRE of WNT5B. In the lollipop diagram,
black circles stand for methylated Cs and white circles for unmethylated Cs. Each box below corresponds to one CpG position in the genomic
sequence. The colored bars summarize the methylation states of all sequences at that position with yellow for methylated Cs and blue for
unmethylated Cs. d qPCR results for eight gastric cancer genes after dCas9-DNMT3A-3 L/TET1 epigenetic editing with dCas9-only as control,
labelled as ctr1 and ctr2. Three independent replicates were conducted for each experiment. All DRE-target pairs tested here showed strong
anti-correlation between expression and methylation, and the qPCR results showed dCas9-TET1 targeting increased gene expression, while
dCas9-DNMT3A-3 L targeting inhibited gene expression (p value < 0.01, student t-test). e Summary of cell migration assay results for eight gastric
cancer genes, showing the causal effects of distal DRE methylation on cancer cell malignancy. See photos in Additional file 1: Figure S9. f The
distal DRE region and promoter of each gene of interest were cloned into the pGL3 reporter vector and assayed for luciferase activity. The
reporter constructs were also co-transfected with dCas9-DNMT3A-3 L (pro_enh + targeted_DNMT3A-3 L), resulting in decreased luciferase activity

Tong et al. Genome Biology  (2018) 19:73 Page 5 of 17



with dCas9 epigenetic editing (Fig. 3d–f ). This same distal
DRE, cg02933228, was also predicted to control the gene
MEN1, which we were also able to experimentally con-
firm. Additionally, our study is the first to show evidence
of the gene Malectin (MLEC) being a tumor suppressor
(Fig. 3d and e, Additional file 1: Figures S5 and S9). Taken
together, MICMIC along with MRA was able to identify
causal events in tumorigenesis involving DNA methyla-
tion of distal regulatory regions, which we were able to
verify via epigenetic editing by dCas9 fused with TET1 or
DNMT3A-3 L and identify novel oncogenes/tumor-sup-
pressors in the process.

Validation of causal DNA methylation events involved in
tumorigenesis by epigenome engineering techniques in
liver cancer
We also validated MICMIC predictions in liver cancer.
First, we observed a strong anti-correlation between
HDAC11 expression and cg03190578 methylation (Fig. 4a).
As expected, targeted methylation with DNMT3A-3 L to
the cg03190578 region decreased HDAC11 expression,
while targeted demethylation with TET1 dramatically in-
creased HDAC11 expression (Fig. 4b). Consequently, we
found that modulation of DNA methylation on the distal
DRE, cg03190578, by dcas9-DNMT3A-3 L significantly

Fig. 4 Validation of causal DNA methylation events in liver cancer. a Representative results showing the negative regulation of HDAC11 by
methylation of its distal DRE (cg03190578, 3817 bp from HDAC11 TSS). Box plot shows the high, middle, and low expression groups of HDAC11,
plotted against the methylation of the distal DRE in each group. GSEA graphs show oncogenic signatures of HDAC11 by MRA. Correlation analysis and
MRA for other genes are shown in Additional file 1: Figure S10. b Confirmation that methylation of the distal DRE is the causal event for HDAC11
regulation and cellular malignancy. qPCR results showing increased HDAC11 expression in PLC8024 cells treated with 5-AZA or dCas9-TET1, and
decreased expression in cells transfected with dCas9-DNMT3A-3 L relative to controls. Cell migration assays showed that dCas9-DNMT3A-3 L targeting
suppressed cell migration, while overexpression (OE) of HDAC11 increased tumor cell migration. Significance was determined by t-test and error bars
represent ± SD. c qPCR results for 11 liver cancer genes after dCas9-DNMT3A-3 L/TET1 epigenetic editing with dCas9-only as control, labelled as ctr1
and ctr2. Three independent replicates were conducted for each experiment. Ten out of 11 DRE-target pairs were predicted to be negatively regulated
by DRE methylation, CBFA2T3 was predicted to be positively regulated by methylation of the distal DRE (cg20283771).The qPCR results (p value < 0.01
by Student’s t-test) were consistent with the predictions (Additional file 1: Figure S10). d Summary of results for cell migration and proliferation assays
for liver cancer genes, showing the causal effects of distal DRE methylation on cancer cell malignancy. See photos in Additional file 1: Figure S11. e
The distal DRE region and promoter of each gene of interest were cloned into the pGL3 reporter vector and assayed for luciferase activity. The
reporter constructs were also co-transfected with dCas9-DNMT3A-3 L (pro_enh + targeted_DNMT3A-3 L), resulting in decreased luciferase activity
except CBFA2T3 positively correlated with its DRE methylation
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decreased cancer cell migration suggesting an oncogenic
function for HDAC11 in liver cancer, which was confirmed
by increased cell migration upon overexpression of
HDAC11 (Fig. 4b). In contrast, dcas9-TET1 targeting to
the cg03190578 region increased cancer cell migration
(Additional file 1: Figure S11). In addition to HDAC11, we
validated other genes as well and identified the distal DREs
of HDAC11, APOA1, NDRG1, TK1, and TKT to be en-
hancers and the distal DREs of BIRC5, CDT1, CBFA2T3,
SLC16A3, KLF9, and APOC3 to be silencers (Fig. 4c–e,
Additional file 1: Figures S10 and S11). Among these
genes, some shared the same distal DRE, e.g. APOA1
shared cg23193059 with APOC3 and CDT1 shared
cg20283771 with CBFA2T3. Intriguingly, methylation
of DRE cg20283771 was positively correlated with
CBFA2T3 expression, but negatively correlated with
CDT1 (Fig. 4c, Additional file 1: Figure S10). Both
genes were verified to be causally regulated by methy-
lation of cg20283771 with combined effect on cancer
cell migration after dCas9-DNMT3A-3 L targeting
(Fig. 4c–e). For two genes, NDRG1 and TK1, there
was no significant difference in cell migration after
dCas9-DNMT3A-3 L targeting of their distal DREs,
but they did show a significant decrease in cell prolif-
eration (Fig. 4d).

Aberrant methylation landscape of distal DREs can be
shaped by oncogenic and lineage-specific transcription
factors (TFs) with profound effects on tumorigenesis and
patient survival
We next investigated how TFs can regulate and shape the
methylation landscape of distal DREs in cancers (see
“Methods”). First, we categorized all distal DREs in each
cancer into four subgroups, i.e. negative-up, negative-down,
positive-up, and positive-down, dependent on whether the
pair was negatively or positively correlated and whether the
target gene was up- or downregulated in tumor versus nor-
mal samples. After identification of TFs associated with dis-
tal DREs (Additional file 1: Figure S12), we calculated the
PCC between the expression level of each enriched TF and
the average methylation level of its cognate binding sites on
distal DREs for each subgroup (Fig. 5c) and ranked TFs by
its PCC in ascending order. Strikingly, the top ranked TFs
identified from the negative-down group were mostly
tissue-specific TFs across various cancer types, whereas TFs
identified from the negative-up group were mainly onco-
genic TFs (Fig. 5a and b, Additional file 1: Figure S13).
GSEA further confirmed that these tissue-specific TFs are
tumor suppressors (Fig. 5a inset), suggesting that hyper-
methylated distal DREs from the negative-down group in
conjunction with the decreased expression of the cognate
tissue-specific TFs, lead to downregulation of its distal gene
targets in cancer. Similarly, GSEA confirmed that the top
ranked TFs in the negative-up group were enriched for

oncogenic TFs (Fig. 5b inset and Additional file 1: Figure S13),
suggesting that hypomethylation of distal DREs from
negative-up group together with the increased expres-
sion of the cognate oncogenic TFs, consequentially
lead to upregulation of its distal gene targets. For distal DREs
positively correlated with its targets, we found significant
enrichment of TFs with repressor activity (p value = 8e-7),
suggesting that DNA methylation may affect the binding of
TF repressors with implications in tumorigenesis (Additional
file 1: Figure S14).
We also investigated the association between DRE

methylation and patient survival. We identified 1081 DRE
methylation correlated with patient survival (q-value < 0.1,
FDR by BH procedure) in bladder cancer (BLCA), breast
cancer (BRCA), head and neck carcinoma (HNSC), liver
cancer (LIHC), lung cancer (LUAD), and uterine corpus
endometrial cancer (UCEC). For BLCA, the DREs
associated with survival were enriched in intergenic
regions. For LUAD and UCEC, the DREs associated
with survival were enriched in distal regions (enrich-
ment p value < 0.05) (Fig. 5d). We then calculated the
number of master cancer genes (via MRA) that are
regulated by DNA methylation of the promoter or distal
DREs and used the density distribution to quantify the ef-
fect that methylation of those DREs have on tumorigen-
esis (Fig. 5e, Additional file 1: Figures S15 and S16). The
results indicated that the methylation of distal DREs com-
pared to proximal DREs had more of an impact on the
regulation of both oncogenes and tumor suppressors at
the initiation and progression stage of tumorigenesis.
Furthermore, we analyzed the dynamic change in methy-

lation patterns that can occur at distal DREs as tumors
transition from the initiation to the progression stage.
During this transition, methylation patterns of distal DREs
can remain the same (“consistent”), become differentially
methylated in the opposite direction (“reversed”), or show
increased (“stronger”) or decreased (“weaker”) methylation
change in the initiation versus the progression stage
(Additional file 5: Table S4). Strikingly, distal DREs related
to patient survival were more enriched in the “reversed”
group (Fig. 5f). For example, in uterine cancer, the distal
DRE of PAQR4 was de-methylated at the initiation stage
but became re-methylated in higher stage tumors.
Moreover, the high methylation of the DRE and lower ex-
pression of PAQR4 were correlated with poorer patient sur-
vival (Fig. 5g). Many more distal DRE-target pairs fell into
this category, including the gene STX18 (Fig. 5g).

Diverged tumor-subtype core regulatory circuitry and
converged pan-cancer global topology of TF network
associated with distal DRE
Multiple lines of evidence have indicated that super-enhancers
(SEs) with associated oncogenic TFs play a pivotal role in
regulating and maintaining tumor cellular identity [25, 26]. It
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has been shown that SEs function as a platform to integrate a
set of key TFs forming a core regulatory circuitry (CRC) to
regulate tumor-subtype specific gene expression. The TFs in
each CRC are auto-regulated by itself through binding sites
on its corresponding SE. The TFs can also cross-regulate each
other by forming an interconnected loop with cognate binding
sites on other TFs’ related SEs. Based on this information, we
took advantage of the genome-wide information of distal
DRE-target derived from MICMIC to assemble the CRCs
regulated by DNA methylation for each cancer type

(Additional file 6: Table S5). We hypothesized that cancer sub-
types could be distinguished by the joint consensus clustering
of the DNA methylation of each TF’s cognate binding site and
the expression level of the corresponding TF. Strikingly, the
joint consensus clustering with the assembled CRCs for can-
cers, including breast, liver, stomach, and endometrial carcin-
oma, can identify the cancer subtypes in line with the
previously established molecular/pathological subtypes. For in-
stance, breast cancer subtypes (lumA, lumB, and basal like)
[27] can be identified by the joint clustering (Fig. 6b). We can

Fig. 5 Interplay between distal DRE methylation and the cognate transcription factor binding has profound effects on tumorigenesis. Bar charts show the
enriched transcription factors (TFs) that bind to DREs showing a negative correlation between the average methylation of TF binding motifs and TF
expression, with (a) downregulation (negative-down DREs) or (b) upregulation (negative-up DREs) of the target gene. Intensity of blue color indicates the
degree of tissue specificity of the TF in breast cancer (BRCA) compared to other tissue types. Intensity of red/green color indicates the degree of oncogenic/
tumor suppressive behavior of the TF. Bar chart showing the enriched TFs binding on the group-specific distal DREs. The TFs were ranked by the negative
correlation between the TF expression and average DNA methylation of the TF binding motifs on the group-specific distal DREs. The correlation value is
shown on the y-axis. Colors represent the tissue type significance or master regulator significance of the TF gene. The cancer signature association of the
TFs is shown in the inset GSEA plot. c Representative examples of TFs that showed a negative correlation between the expression of the TF and average
DNA methylation of the TF binding motifs on distal DREs. d Heatmap showing the enrichment significance of DREs associated with patient survival in
various genomic regions. The heatmap color and number indicates the enrichment p value of DREs associated with patient survival in each category. e
Higher impact of distal DREs on cancer genes compared with promoter DREs during initiation (top) and progression (bottom). Y-axis for the two top
waterfall plots indicates the master regulator significance for each gene, ranked from tumor-suppressive to oncogenic. Y-axis for the two bottom panels
shows the density of normalized gene counts controlled by promoter or distal DREs. See results of other cancers in Additional file 1: Figure S16. f Heatmap
showing the enrichment significance of distal DREs associated with patient survival in the four methylation patterns of distal DREs, i.e. “consistent,”
“reversed,” “stronger,” and “weaker” according to the direction of methylation change from the initiation to progression stage of tumorigenesis for each
cancer type. The number in each square represents the p values. g Example of two distal-DRE target pairs identified in uterine cancer that show a
“reversed” methylation pattern. Box plots on the x-axis show the DRE is demethylated during the initiation stage but becomes remethylated during cancer
progression. High methylation of both DREs and low expression of their target genes were associated with poorer patient survival
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Fig. 6 Tumor-subtype core regulatory circuitry and pan-cancer global topology of TF network regulated by DNA methylation of distal DREs.
a The interconnected auto- and cross-regulation loops within the CRC TFs. The links between TFs were derived from distal DRE-target pairs in
which the DRE harbors binding sites for the CRC TFs. The TFs are colored by the tumor subtypes in which they are highly expressed. Effects of
the CRC on tumorigenesis are analyzed by the cancer pathway enrichment of the TFs’ targets (hypergeometric p value < 0.05), representing in
the right side of the CRC. b Top: Heatmap of the expression Z-score of CRC TFs in the tumor subtypes. Bottom: Joint consensus clustering by the
expression of CRC TFs and methylation of binding DREs shows a great similarity between the CRC subtypes and PAM50 subtypes in breast
cancer. See results of other cancers in Additional file 1: Figures S17–S19. c Signaling pathways in breast cancer regulated by CRC TFs whose
targets were identified by the distal DRE-target pairs in which the DRE harbored the TF binding sites. Each color of a gene node indicates a
different cancer pathway. Edges represent regulatory relationships. d Convergence of network topology across cancer types (see “Methods”). For
each cancer type, their TF networks were decomposed and categorized into 13 different types of basic three-node network motifs, indicated by
the topology structures above the graph. The X-axis shows the numerical identification number associated with each motif. The relative
enrichment (Z > 2) or depletion (Z < − 2) of each of the 13 basic network motifs for each cancer type was calculated as a Z-score (Y-axis)
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further identify the underlying signaling pathways reg-
ulated by CRC in different subgroups (Fig. 6c and
Additional file 1: Figures S17–S19). Similarly, the glo-
bal gene regulatory network (GRN) for each cancer
can be generated with the information of our
genome-wide distal DRE-target interaction and TFs
associated with each DRE. Topology of GRN can be
compared based on the normalized frequency of the
three-node network motif in each cancer [28, 29].
Notably, GRNs across various cancer types converged
on a common architecture (Additional file 7: Table
S6), highlighting the similarity of GRN controlled by
DNA methylation of distal regulatory regions at the
higher-order organization level (Fig. 6d).

Discussion
In this study, we aimed to identify DNA methylation of
distal regulatory regions with causal effects on tumorigen-
esis. MICMIC is different from other currently available
methylation analysis software in two respects. First, since
many methylation events are merely a consequence of epi-
genetic disruption and not the cause, rather than calling
differentially methylated regions first, we begin by: (1)
using genes essential for tumorigenesis by differential ex-
pression test and MRA to find its distal DRE(s); and (2)
take novel application of information theoretic approaches
in DRE-target call. Interestingly, about 23.7% putative en-
hancers flanking our distal DREs harbor known COSMIC
non-coding mutations in liver cancer (Additional file 8:
Table S7). This can help prioritize the somatic mutations
locating on distal regulatory sites as cancer risk loci
non-coding variants are enriched in enhancers [25, 30].
Our bench validation with dCas9 targeting is dependent

on the experiment with co-transfection of multiple plas-
mids into cancer cell lines that have to be effectively trans-
fected. This could be challenging for certain cancer types,
e.g. only one gastric cell line “AGS” (over 50% transfection
efficiency with lipofectamine3000) and a few liver cancer
lines have acceptable transfection efficiency in our hand.
However, the DNA methylation level seems quite hetero-
geneous for most DREs in the same cell line. For instance,
we can increase or decrease the DNA methylation level of
the same DRE site in AGS cell line by dCas9 targeting,
and consequentially change the gene expression level in
both directions, upregulation or downregulation.
It is common for a single enhancer to control more

than one gene and vice versa. As shown above, both
oncogene CDCA5 and tumor-suppressor MEN1 were
verified to be regulated by the same distal DRE
cg02933228. However, the decreased cell migration
phenotype after dCas9-DNMT3A-3 L targeting of
cg02933228 was only consistent with CDCA5’s func-
tion prediction. We need to take into account this
complexity when interpreting the phenotypic output

from the methylation modulation by dCas9 targeting
since the output could be the combined effect of
multiple genes targeted by the same distal DRE.
Our study provides mechanistic insight on how

DNA methylation of distal DREs is critical for the
maintenance of tumor cell identity and malignancy.
We found that oncogenic and lineage-specific TFs
shape the methylation landscape of distal DREs,
which is controlled in concert by the expression level
of each enriched TF and the average methylation level
of its cognate binding sites on distal DREs. Key TFs
were identified to be part of core regulatory circuit-
ries (CRCs) associated with distal DREs for regulation
of tumor-subtype specific gene expression. Further-
more, we showed that the network topology of GRN
derived from DNA methylation of distal DREs may
have the same architecture across different cancer
types, enriched for network motifs like “feed forwards
loop,” “regulated mutual,” and “regulating mutual.”
This similarity in topology suggests that a common
organization principle governs this type of biological
networks regulated by DNA methylation of distal
regulation regions.

Conclusions
In this study, we have developed a set of tools to
genome-wide identify DNA methylation in distal regions
with causal effect on tumorigenesis. Novel oncogenes/
tumor-suppressors and their putative enhancers can be
identified together based on this strategy. We have exten-
sively validated many of the predictions by epigenetic
editing. Our study reveals the prevalent regulation of
genome-wide putative enhancers by DNA-methylation
with causal effect on cellular malignancy and patient sur-
vival. Our study also provides mechanistic insight on how
DNA methylation of distal regulatory regions is critical for
the maintenance of tumor cell identity and malignancy.

Methods
Data collection
We downloaded TCGA level 3 DNA methylation data,
clinical data, and RNA-seq data for 4747 matched samples
encompassing 11 cancer types: bladder urothelial carcin-
oma (BLCA); breast invasive carcinoma (BRCA); cervical
squamous cell carcinoma and endocervical adenocarcin-
oma (CESC); colon adenocarcinoma (COAD); esophageal
carcinoma (ESCA); head and neck squamous cell carcin-
oma (HNSC); liver hepatocellular carcinoma (LIHC); lung
adenocarcinoma (LUAD); lung squamous cell carcinoma
(LUSC); stomach adenocarcinoma (STAD); and uterine
corpus endometrial carcinoma (UCEC) (Additional file 2:
Table S1). The methylation data is based on the Infinium
HumanMethylation450 BeadArray platform, in which the
probes covered 485,000 CpG sites across the genome.
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Mutual information and conditional mutual information
Mutual information (MI) is a general measurement of
dependence between individual events. This method
is based on the joint probability of events to infer de-
pendence without making any assumptions about the
nature of their underlying relationships. MI is based
on information theory and can be calculated by the
entropy of variables. For any variable A, the entropy
H(A) is the average amount of information gained
from a measurement. And it can be defined by:

H Að Þ ¼ −
XNA

i¼1

p aið Þ logp aið Þ ð1Þ

where p(a) is the probability of any possible value of A.
The joint entropy of two discrete systems A and B is de-
fined by

H A;Bð Þ ¼ −
XNA

i¼1

XNB

j¼1

p ai; bj
� �

logp ai; bj
� � ð2Þ

where the p(a,b) is the joint probability. When both A
and B are independent events, the joint entropy of A
and B can be denoted by:

H A;Bð Þ ¼ H Að Þ þ H Bð Þ ð3Þ
For any dependent events A and B, the joint entropy

will follow:

H A;Bð Þ < H Að Þ þ H Bð Þ ð4Þ
The mutual information of I(A,B), which quantifies

the dependence of A and B, is defined as the difference
between H(A) + H(B) and H(A,B):

I A;Bð Þ ¼ H Að Þ þ H Bð Þ−H A;Bð Þ ð5Þ

I A;Bð Þ ¼
XNa

i¼1

XNb

j¼1

p ai; bj
� � p ai; bj

� �

p aið Þ � p bj
� � ð6Þ

A higher MI represents a greater connection between
the events.
To further study the dependence within three or more

variables, conditional mutual information (CMI) is intro-
duced to assess the exclusive dependence between any pairs
of variables given the value of a third one. CMI can distin-
guish pairs directly from indirectly connected. The condi-
tional mutual information (CMI) can be calculated by:

I X;Y jZð Þ ¼
X
z∈Z

X
y∈Y

X
x∈X

pX;Y ;Z x; y; zð Þ log pZ zð ÞpX;Y ;Z x; y; zð Þ
pX;Z x; zð ÞpY ;Z y; zð Þ

ð7Þ
or in terms of entropy:

I X;Y jZð Þ ¼ H X;Zð Þ
þ H Y ;Zð Þ−H X;Y ;Zð Þ−H Zð Þ ð8Þ

where p(X,Y,Z) is the joint probabilities and H(X,Y,Z) is
the joint entropy. A high value for CMI(X,Y|Z) would
mean X and Y are directly connected and do not rely on
the given variable Z.
We used the kernel density estimation (KDE) to estimate

the probability distribution of continuous variables, such as
gene expression. KDE was found to be superior to the
histograms estimator and the estimation of probability
distribution by KDE has been used in MI calculation as fol-
lows [18, 19],

P Xið Þ

¼ 1
N

XN
j¼1

1

2πð Þn=2 Cj jn=2
exp −

1
2

X j−Xi
� �T

C−1 X j−Xi
� �� �

(9)
where C is the covariance matrix of X and |C| is the

determinant of matrix C.
From Eqs. 1, 6, and 9, we got the entropy of variable

X, MI of (X,Y), and CMI of (X,Y|Z) as:

H Xð Þ ¼ log 2πeð Þn2 Cj j1=2
h i

; ð10Þ

I X;Yð Þ ¼ 1
2

log
j C Xð Þ j • j C Yð Þ j

j C X;Yð Þ j ; ð11Þ

I X;Y jZð Þ ¼ 1
2

log
j C X;Zð Þ j • j C Y ;Zð Þ j
j C Zð Þ j • j C X;Y ;Zð Þ j : ð12Þ

MI and CMI were normalized by:

Î X;Yð Þ ¼ I X;Yð Þ
max I X;Yð Þð Þ ; ð13Þ

Î X;Y jZð Þ ¼ I X;Y jZð Þ
max I X;Y jZð Þð Þ ; ð14Þ

where maximal(MI) and maximal(CMI) were the MI
and CMI values when Y was totally dependent on X.
Then, the normalized MI and CMI value were between
0 and 1.

Significance level determination
To determine the significance level of our MI and CMI
examination, we used random permutation and Fisher’s
Z statistics to calculate the z-score and p value [19]. We
randomly shuffled the vectors X and Y many times and
got the correlation r between random X,Y (CMI). Then
we transformed r to z by:

z’ ¼ :5 ln 1þ rð Þ− ln 1−rð Þ½ � ð15Þ
The confidence interval would be:
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z
0 � zσz0 ð16Þ

Here, the σz is the standard deviation of z. We used
the observed X,Y value to get the observed CMI value
and transformed it into Z-value. The Z-score was calcu-
lated by Z score = (Z value-z’)/σz. And the p value was
calculated by 2*pnorm(−|Zscore|).

Differential expression analysis
We used the Voom method to normalize the RNA-seq
data and calculated the gene differentially expressed be-
tween tumor and normal by limma package [31]. We se-
lected the differentially expressed genes (DEGs) by the
cut-off of |log2FC| > 0.58 (i.e. fold change cut-off either
upregulation > 1.5-fold or downregulation at least
1.5-fold) and adjusted P < 0.01, and the DEG list was
used for downstream analysis, e.g. identification of the
corresponding DREs and master regulator analysis.

Master regulators analysis (MRA)
Master regulators (MRs) control a large number of down-
stream targets that play important roles in cancer stage
transition. Here, we exploited a classical strategy to identify
MRs for cancer initiation (paired tumor vs normal samples)
and progression (late-stage [IV] vs early stage [I] samples).
The basic framework contains two parts: (1) based on can-
cer specific gene expression profile, transcriptional targets
(termed as regulon) of TFs are inferred using ARACNe
[32] with default parameters. Data processing inequality
(DPI) was set to reduce the number of indirect connections;
(2) gene set enrichment analysis with R gage package [33]
is conducted to evaluate whether the regulon of TFs is
enriched in the signature of cancer-related phenotype tran-
sition (ranked gene list using t value from differential ex-
pression analysis). Specifically, the regulon genes of a TF
are divided into positive (+) and negative (−) groups based
on the Spearman’s correlation coefficients between the ex-
pression level of the TF and each gene in its regulon. Then,
two runs of gene set enrichment analysis are carried out to
determine the MR is activated (i.e. oncogenic) or repressed
(i.e. tumor-suppressor): run 1 regulon (+) in from the up-
regulated side and regulon (−) from the downregulated
side; run 2 regulon (+) in from the downregulated side and
regulon (−) from the upregulated side. In each run, the en-
richment q-values are calculated by Fisher’s method. Regu-
lon(+) of a gene is also called positive neighbors and
regulon(−) of a gene is called negative neighbors in this
paper. Whichever of the two runs gives the more significant
q-value is used as the final q-value; the MR is predicted as
oncogenic (the q value in run 1 < the q value in run 2) or
tumor-suppressive (the q-value in run 1 > the q-value in
run 2) correspondingly.

Identification of the direct regulatory elements by MI/CMI
based PC-algorithm
For genes being tested, we identified the DREs by the
following steps:

1. Data preparation. We selected neighboring elements
(i.e. messenger RNA expression and CpG probe
methylation) of a target gene within a genomic
range (default ± 300 kb from TSS of the gene) and
integrated the data value for these selected elements
(e.g. expression and methylation value). The final
result was a data matrix in which columns
correspond to samples and rows to variables (i.e.
gene or CpG probes). We chose genomic range ±
300 kb since it was reported that the enhancer-
promoter interactions peak around 120 kb upstream
of the TSS [34].

2. Identification of DREs for the gene on test. We used
the network inference method called PC algorithm
to infer the regulatory network based on the MI/
CMI connections [12]. The PC algorithm is
computationally feasible and very efficient for
sparse connections frequently encountered in
biological networks. The result returned an adjacent
matrix representing the direct connected edges.
First, we assumed all nodes connected by default to
generate a completely connected graph between all
genes and all CpG probes within the genomic range
(default ± 300 kb from TSS of the gene). Second,
MI was calculated for any node pair, e.g. node i and
j based on their values in samples. Third, the edge
between i and j will be kept in the network only if
their MI passes the significance testing (cut-off
p < 0.01). Fourth, all of the common partners (k) for
the i and j pair surviving last test will be used to
calculate the CMI(i,j|k), which can distinguish if i-j
connection is conditional on variable k. Fifth, we
generated a directly connected network in an
adjacent matrix after deletion of these indirectly
connected edges. Herein, a mutual information
cutoff (MI > 0.1 bits) was used to remove weak
connections. Finally, we generated a list of the
DRE-target pairs that were directly connected.

3. Classification of the DRE-target pairs. The DREs were
classified based on the target gene expression (up- or
downregulation in tumors), direction of correlation
with its target gene expression (positive or negative),
and the distance from the TSS of its target gene.
DREs locating within ± 2000 bp of the TSS of its
target genes were classified as the promoter DREs
and others were classified as distal DREs.

The MICMIC pipeline can be adjusted to handle genomic
range beyond ± 300 kb. We chose genomic range ± 300 kb
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here since it was reported that the enhancer-promoter in-
teractions peak around 120 kb upstream of the TSS [34].
Examples of the indirectly correlated CpG-gene

pairs rejected by our method are presented in
Additional file 1: Figure S3c. The deregulations of the
CIMP genes are controlled by the hypermethylation
of genome-wide CpG islands and the strongly corre-
lated CpGs rejected by our method showed no correl-
ation in the non-CIMP samples.

Mapping chromatin state of DREs by ChromHMM 18-state
model
To annotate the DREs, we downloaded chromHMM
18-state data of HMEC breast epithelial cells (E119),
HeLaS3 cervix cancer cells (E117), colon tissue (E106),
HepG2 cells (E118), A549 lung cancer cells (E114), and
gastric tissue (E094) from the ROADMAP Epigenomics
Project. We counted the number of DREs overlapping
with each chromatin state. For each chromatin state, the
enrichment fold change and significance were computed
by hypergeometric testing using the total CpG probes
on HM450 array as control.
We used the hypergeometric test to calculate the stat-

istical significance of the over-represented chromatin
state for the DREs. We assigned N as the total number
of probes in the HM450 array and K as the number of
probes overlapping with the chromatin state under test,
n as the number of DREs from N probes that can regu-
late its target genes, and x as the number of DREs over-
lapping with the chromatin state under test. The
enrichment fold change was calculated as ratio between
x/n and K/N. The over-enrichment of chromatin states
in DREs was calculated with hypergeometric distribution.

Histone modifications, sequence conservation, and DNase
I hypersensitivity
In order to systematically benchmark the DREs we identi-
fied, we collected epigenomic data of various human cells
and tissues from the ENCODE Project (Additional file 9:
Table S8). We downloaded chromatin marks including
histone modifications of H3K4me1, H3K4me3, H3K9me3,
H3K27me3, H3K27ac, and p300 ChIP-seq signals to
evaluate the enhancer activity of distal DREs, from breast
cancer cells (MCF-7), colon cancer cells (HCT116), cer-
vical cancer cells (HeLa-S3), liver cancer cells (HepG2),
and lung cancer cells (A549). The enrichment of histone
marks at the distal DREs derived from TCGA cancer co-
horts was calculated with the epigenome profiling data
from the corresponding cell lines or tissues. To evaluate
the status of evolutionary conservation, we obtained the
100-way PhastCons conservation data to calculate the
conservation score for the distal DREs in each cancer. We
have also tested DNase I hypersensitivity data from
MCF7, HelaS3, A549, and HepG2. We calculated the

scores for each genomic feature on genomic regions
6000 bp flanking each DRE, then got the average score for
all DREs from the same cancer cell line.

Precision of DRE-target pairs
We computed the precision of DRE-target pair predictions
by comparing them to the enhancer-promoter pairs
(EP-pairs) predicted by chromatin interactions derived from
IM-PET, ChIA-PET, Hi-C, and RAD21-cohesin. These tools
mainly detect active enhancers with enrichment of active his-
tone marks, such as H3K4me1, H3K4me3, and K3K27Ac,
which were confirmed to be enriched in our DREs negatively
correlated its targets (Fig. 2d). Other studies show that active
enhancers with low DNA methylation tend to have gene tar-
gets with high expression [35–38]. DREs positively correlated
with its targets were enriched for genomic repressive regions
and TF repressors (Fig. 2c and Additional file 1: Figures S2
and S14), but not enriched for active histone marks. This
suggested that DREs positively correlated its targets may use
different mechanism to indirectly regulate gene expression.
Herein, we only considered DREs negatively correlated with
its targets for further analysis, similar to other studies [9, 10].
A predicted DRE-target pair will be counted as confirmed if
its DRE and target gene overlapped the two ends of an inter-
action from the IM-PET, ChIA-PET, HiC, or
RAD21-cohesin data [23]. The precision result was similar
but superior to the result obtained through other methods
(e.g. ELMER [9]) (Additional file 1: Figure S3b). Of note, our
method output many more negatively correlated EP pairs
compared with ELMER (Additional file 1: Figure S3). The
datasets of IM-PET, ChIA-PET, and HiC were downloaded
from the 4DGenome database [39]. A supplement of HiC
data was downloaded from GEO (GSE63525) and
ChIA-PET data were downloaded from ENCODE
(ENCSR436IAJ). We used the similar procedure [23] to con-
duct the RAD21-cohesin interaction analysis (termed as
CNC), which used ChIP-Seq data to find pairs of cohesin
binding-sites that do not contain CTCF sites. The ChIP-Seq
datasets of CTCF and RAD21 were downloaded from EN-
CODE (ENCFF095BZW, ENCFF001TTK, ENCFF001UNO,
ENCFF059UOO, ENCFF594DJD, ENCFF001XLM, ENCFF
001TTJ, ENCFF001TTK, ENCFF001VDS).

Comparing MICMIC with other methods
We used IM-PET 23,106 EP interaction pairs between
5311 CpG probes and 344 genes as positive control
and tested the precision of EP prediction from patient
data by four methods: MICMIC; ELMER; BNstruct
(Bayesian Network Structure Learning) [40]; and
NEO2 (Network Edge Orienting (NEO) Software)
[41]. All the methods were applied on the expression
and methylation data from the same patient cohort of
TCGA liver cancer. The MICMIC EP prediction was
ranked by the normalized mutual information and
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conditional mutual information. The ELMER EP pre-
diction was ranked by the empirical p value (Pe). The
BNstruct EP prediction was ranked by the confidence
threshold (alpha). The NEO2 EP prediction was
ranked by edge orienting score (LEO.NB.OCA). The
precision rates were calculated and compared when
selecting the same number of top ranked EP pairs
from different methods.

Cell culture
Gastric cancer cell line AGS was from ATCC and liver
cancer cell lines BEL-7402 and PLC8024 were obtained
from the Institute of Virology of the Chinese Academy of
Medical Sciences (Beijing, China). AGS cells were cul-
tured in RPMI-1640 medium (Gibco) supplemented with
10% fetal bovine serum (HyClone) and 1% Anti-Anti
(Gibco). BEL-7402 and PLC8024 cells were cultured in
DMEM medium (Gibco) supplemented with 10% fetal bo-
vine serum and 1% Anti-Anti. The AGS cell line can be ef-
fectively transiently transfected with efficiency > 50% with
lipofectamine3000. We selected liver cancer cell line
BEL-7402 to test the effect of downregulation of tumor
suppressors, such as KLF9, APOA1, APOC3, and
CBFA2T3. We used liver cancer cell line PLC8024, a more
aggressive one compared with BEL-7402, to test the effect
of downregulation of oncogenes, such as HDCA11,
CDT1, NDRG1, TKT, TK1, BIRC5, and SLC16A3.

RNA purification and qPCR
Total RNA was purified using the method described pre-
viously [42], followed by treatment with RNase-free
DNaseI (NEB). RevertAid RT Reverse Transcription Kit
(Thermo) was used to perform the first strand cDNA
synthesis according to the manufacturer’s instructions.
For qPCR analysis, cDNA was subjected to quantifica-
tion by iTaq Universal SYBR green supermix (Bio-Rad).

Plasmids and cloning
Catalytic domains of Dnmt3a and Dnmt3l were ampli-
fied from mouse cDNA and were fused to form
Dnmt3A-3 L. PUFa from pAC1405-pCR8-4xNLS
_PUFa_2xNLS (Addgene #71903) were fused with
Dnmt3a-3 l into vector of pcDNA3-Flag-HA (Addgene
#10792, a gift from William Sellers). gRNAs were cloned
into pAC1371-pX-sgRNA-5xPBSa (Addgene #71888,
Additional file 4: Table. S3 for sgRNA sequences).
pAC1405-pCR8-4xNLS_PUFa_2xNLS and pAC1371-pX
-sgRNA-5xPBSa were gifts from Albert Cheng (Addgene
plasmid #71888, Addgene #71903). dCas9 expression
plasmid was generated by replacement of the cas9 with
dCas9 cassette in px330 vector (px330, Addgene plasmid
#42230, a gift from Feng Zhang; 3xFLAG-dCas9/
pMXs-neo Addgene plasmid #51260, a gift from Hodaka
Fujii). We generated catalytically inactive Dnmt3a (P705V

and C706D mutations) by point mutagenesis with primers:
Dmt3a-muP705-Forward, GGC AGT GTC GAC AAT
GAC CTC TCC ATT GTC AAC CCT G;
Dmt3a-muP705-Reverse, TCA TTG TCG ACA CTG CCT
CCA ATC ACC AGG, with sequencing confirmation.
Putative distal regulatory regions and promoters of the tar-

get genes were amplified from human genomic DNA (see
Additional file 4: Table S3 for primer sequences used in
cloning) and inserted into the pGL3-basic vector (Promega).
For dCas9-TET1 targeting, we used these plasmids:

pCAG-dCas9-5xPlat2AflD and pCAG-scFvGCN4sfGFP
TET1CD (Addgene plasmid #82560 and #82561, gifts
from Izuho Hatada). We generated catalytically inactive
TET1 with H1671Y and D1673A mutations with primers:
Tet1-muH1671-Forward, TCC CTA CAG GGC CAT

TCA CAA CAT GAA TAA TGG AAG CAC TG; and
Tet1-muH1671-Reverse, AAT GGC CCT GTA GGG
ATG AGC ACA GAA GTC CAG, with sequencing
confirmation.
Before we decided to use single sgRNA to target one dis-

tal DRE, we tested two or three sgRNAs in combination to
target one distal DRE. However, there is no difference for
the dCas9 targeting effect on the target gene expression.

Transfections and control design
All transfections were done with lipofectamine 3000
(Invitrogen) according to the manufacturer’s instruc-
tions. The ratios of co-transfected plasmids were as fol-
lows: 1 gRNAs: 2 px330-dCas9: 1 pcDNA3-Dnmt3A-3 L
(test) or pcDNA3 (control) for qPCR; 1 gRNAs: 1
pCAG-dCas9-5xPlat2AflD: 1 pCAG-scFvGCN4sfGFP
TET1CD (test) or pcDNA3 (control) for qPCR; 19
pGL3-promoter or pGL3-promoter-enhancer: 1 pRL-TK
for luciferase assay; and 5 gRNAs: 10 Px330-dCas9: 5
pcDNA3-Dnmt3A-3 L (test) or pcDNA3 (control): 19
pGL3-promoter or pGL3-promoter-enhancer: 1 pRL-TK
for luciferase assay.
Above “pcDNA3 (control)” is a control for dCas9 target-

ing, in which dCas9 co-transfected with empty pcDNA3
without DNMT3A-3 L/TET1. The same conclusion as
shown in Figs. 3d and 4c can be reached by using scram-
bled sgRNA as the control for the qPCR test (Additional
file 1: Figure S8c). dCas9 targeting specificity was con-
firmed with off-target test by bisulfite sequencing of
non-targeted sites (WNT5B-sgRNA in Additional file 1:
Figure S7a vs Fig. 3c, and NDRG1-sgRNA in Additional
file 1: Figure S7b). dCas9 targeting specificity was also
confirmed with qPCR quantifying other non-targeted
genes with WNT5B-sgRNA (Additional file 1: Figure S7c).
Furthermore, we performed experiments by using “untar-
geted” or catalytically inactive DNMT3A-3 L/TET1 to
rule out the possibility of off-target due to overexpression
DNMT3A-3 L/TET1 (Additional file 1: Figure S8a,b). The
“untargeted” constructs were generated by removal of the
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PUFa linker from DNMT3A-3 L-fusion, or removal of
scFv linker from TET1-fusion (Additional file 1:
Figure S6). For these “untargeted,” catalytically active
DNMT3A-3 L/TET1 was overexpressed but targeted
to nowhere due to the deletion of “linker” domain. The
“untargeted” or catalytically inactive DNMT3A-3 L/TET1
did not result in any significant change of the target gene
expression (Additional file 1: Figure S8a, b).

cDNA cloning and overexpression in lentivirus
We cloned HDAC11, WNT5B, and MLEC cDNA
from human cDNA library. We then inserted each
cDNA into lentiviral expression vector lenti-Blast,
modified from lentiCas9-Blast (Addgene #52962, a gift
from Feng Zhang). The lentivirus was packed with
plasmids pMD2.G and psPAX2 after co-transfection
into 293 T cells. All cDNAs have been confirmed by
DNA sequencing.

Dual luciferase assay
The Dual-Luciferase Reporter Assay System (Promega)
was used in dual luciferase assay according to the manu-
facturer’s instructions.

Migration assay
4 × 105 of AGS cells or 1 × 106 BEL-7402 and PLC8024
cells were used to conduct migration assay using the
12-Well Chemotaxis Chamber (Neuro Probe) according
to the manufacturer’s instructions.

Cell proliferation assay
CCk-8 (Dojindo) was used to perform cell proliferation
assay following the manufacturer’s instructions.

5-aza-deoxycytidine treatment
AGS, BEL-7402, and PLC8024 cell lines were treated
with 10 μM 5-aza-dC (Sigma-Aldrich) for 48 h, followed
by RNA purification and qRT-PCR as described. DMSO
was used as a control to establish baseline expression.

Identification of enriched transcription factor bindings
For a distal DRE-target pair, a TF is considered a
regulator of the target if the cognate binding motif
of this TF can be found on the ± 250-bp genomic re-
gions flanking the DRE. To identify TFs associated
with the ± 250-bp genomic region flanking each
DRE, we used TFs from the Mocap database, con-
taining genomic mapping for 823 TFs [43] with
binding quality. Stringent cut-off (p value < 1e-5)
was applied to select the TF binding sites. Mocap
method is an integrated classifier that assembles motif
scores, chromatin accessibility, TF footprints, evolutionary
conservation, and other factors to predict TF bindings. For
each DRE category tested (negative-up, negative-down,

positive-up, or positive-down), we counted the number of
DREs containing the binding site of the TF being tested, de-
noted as variable “a” below and variable “b” for number of
DREs not containing the TF being tested. For the entire
DREs combining the four subgroups, we can also get simi-
lar number as “c” and “d” for containing and not containing
the TF being tested, respectively. Calculation of the enrich-
ment odds ratio (OR) and a 95% confidence interval (CI)
was conducted with the following formulas:

OR ¼ a=cð Þ= b=dð Þ

CI ¼ exp log ORð Þ � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=aþ 1=bþ 1=cþ 1=d

p� �

We then filtered TFs with an OR > 1.05 as the
enriched TFs in each DRE category.

Evaluate the tissue specificity of genes
We downloaded the gene expression data of human tis-
sues from GTEx (GTEx V6 dataset) [44]. We used the
Voom method to normalize the data and limma [31] to
identify the differential expression genes comparing
samples of one tissue against all other tissues. Genes
passing the threshold, log2 transformed Fold-Chang
> 0.58 or < − 0.58 and adjusted p value < 0.01, were
identified as the tissue specific ones.

Enrichment of transcription repressors
We searched the AmiGO database [45] with the key words
“transcription repressor” and “negative regulation” to obtain
a list of genes related to the transcriptional repression
process and collected the repressor information from
GO:0017053, GO:0090571, GO:0001206, GO:0001227,
GO:0001191, GO:0000900, GO:0070491, GO:0070176,
GO:0003714,GO:0032785, GO:2000143, GO:1903507, and
GO:0001078. These gene sets include transcriptional re-
pressor activity, translation repressor activity, and transcrip-
tion repressor complex. Enrichment of transcription
repressor of TFs associated with distal DREs was conducted
by hypergeometric analysis.

Discovery of core transcriptional regulatory circuitry
Core regulatory circuitry (CRCs) is formed by a set of
key TFs associated with super-enhancers (SEs) in
regulating tumor-subtype specific gene expression and
maintaining tumor cellular identity. The TFs in each
CRC are auto-regulated by themselves via binding
sites on their corresponding SE. The TFs can also
cross-regulate each other by forming an intercon-
nected loop via cognate binding sites on other TFs’
related SEs. Based on this information, we took ad-
vantage of the genome-wide information on distal
DRE-targets generated from our MICMIC method to
assemble the CRCs regulated by DNA methylation for
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each cancer type. The information for SEs of human
genome hg19 was downloaded from dbSUPER [46].
First, we selected the distal DREs overlapping with
SEs and identified the enriched TFs (OR > 1.05, CI =
95%) associated with these distal DREs. We then pre-
dicted the auto-regulatory loops with the following
criterion: the TF on test is under regulation of distal
DREs with binding sites for TF itself. Cross-regulation
between a pair of TFs can be inferred if the cognate
binding site of one TF can be found on the other
TF’s related SE. After putting together all of the auto-
and cross-regulations, we generated an interconnected
CRCs eventually.

TF targets and downstream cancer pathway analysis
As mentioned before, for a distal DRE-target pair, a TF
is considered a regulator of the target if the cognate
binding motif of this TF can be found on the surround-
ing regions of the DRE (± 250 bp). After identification of
the targets for CRCs, we conducted enrichment analysis
for the downstream pathways. Enrichment analysis of
KEGG cancer pathways was conducted to identify the
pathway targeted by CRC TFs highly expressed in each
tumor subtype (cut-off p value < 0.05).

TF network decomposition and network motif
identification
The TF network mediated by distal DREs was derived
from genome-wide DRE-target information predicted by
MICMIC after removal of non-TF genes. For network
motif analysis, we used the mfinder software [47] to dis-
assemble the TF network. On average across the 11 can-
cer types, the TF networks were decomposed into 1.85
million three-node subgraphs with 13 types of
three-node network motifs identified. Relative enrich-
ment or depletion of each of the 13 basic network motifs
within each cancer was calculated. Two hundred ran-
domized same-size networks were used as the random
control and the significance Z-score was calculated
(Z > 2 considered as enriched and Z < − 2 as depleted).

Additional files

Additional file 1: Supplementary figures. (DOCX 10287 kb)

Additional file 2: Table S1. Barcode of TCGA samples. (XLSX 81 kb)

Additional file 3: Table S2. DREs identified from 11 cancers.
(XLSX 5825 kb)

Additional file 4: Table S3. sgRNA-primer of DRE tested. (XLSX 11 kb)

Additional file 5: Table S4. Category of methylation change.
(XLSX 5313 kb)

Additional file 6: Table S5. Interconnected loops in core regulatory
circuits. (XLSX 40 kb)

Additional file 7: Table S6. TF_network_motifs. (XLSX 11 kb)

Additional file 8: Table S7. Cosmic non-coding variations neighboring
LIHC DRE. (XLSX 187 kb)

Additional file 9: Table S8. Data source of histone marks and DNase I.
(XLSX 10 kb)

Abbreviations
DREs: Direct regulatory elements; MRA: Master regulator analysis; TCGA: The
Cancer Genome Atlas; TF: Transcription factor; TSS: Transcription start sites

Funding
This work was supported by the Research Grants Council of Hong Kong
grants, HKU 17127014 General Research Fund (JZ) and HKU T12–710/16R
Theme-based Research Scheme (SYL and JZ).

Availability of data and materials
TCGA methylation and RNA-seq data are available from BROAD GDAC
Firehose ( http://gdac.broadinstitute.org/runs/stddata__2016_01_28/) [48].
The datasets of IM-PET, ChIA-PET, and HiC were downloaded from the
4DGenome database (https://4dgenome.research.chop.edu/Tables/4DGeno-
me_full.txt) [39].
The histone and DNase I signals can be accessed from ENCODE (https://
www.encodeproject.org/matrix/?type=Experiment) [49] with accession ID
listed in Additional file 9: Table S8.
The MICMIC software is available from https://github.com/ZhangJlab/MICMIC,
under Creative Commons Attribution 4.0 license [50]. The DOI for source code
used in this article is https://doi.org/10.5281/zenodo.1220929 [51].

Authors’ contributions
YT performed the computational analyses with the aid of BR. JS performed
experiments with the aid of CW, QK, and CNW. YT and JZ analyzed the data. SYL
and ASC provided support and critical comments to the manuscript. JZ
conceived of, designed, and directed the study. YT and JZ wrote the manuscript
with help from all authors. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Biological Sciences, The University of Hong Kong, Hong Kong,
Hong Kong. 2Department of Pathology, The University of Hong Kong, Queen
Mary Hospital, Pokfulam, Hong Kong.

Received: 27 October 2017 Accepted: 3 May 2018

References
1. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG,

et al. Increased methylation variation in epigenetic domains across cancer
types. Nat Genet. 2011;43:768–75.

2. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological
and translational implications. Nat Rev Cancer. 2011;11:726.

3. Sproul D, Nestor C, Culley J, Dickson JH, Dixon JM, Harrison DJ, et al.
Transcriptionally repressed genes become aberrantly methylated and
distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci
U S A. 2011;108:4364–9.

4. Hovestadt V, Jones DT, Picelli S, Wang W, Kool M, Northcott PA, et al.
Decoding the regulatory landscape of medulloblastoma using DNA
methylation sequencing. Nature. 2014;510:537–41.

5. Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH. TALE-mediated epigenetic
suppression of CDKN2A increases replication in human fibroblasts. J Clin
Invest. 2015;125:1998–2006.

Tong et al. Genome Biology  (2018) 19:73 Page 16 of 17

https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://doi.org/10.1186/s13059-018-1442-0
https://gdac.broadinstitute.org/
https://4dgenome.research.chop.edu/Tables/4DGenome_full.txt
https://4dgenome.research.chop.edu/Tables/4DGenome_full.txt
https://www.encodeproject.org/matrix/?type=Experiment
https://www.encodeproject.org/matrix/?type=Experiment
https://github.com/ZhangJlab/MICMIC
https://doi.org/10.5281/zenodo.1220929


6. Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, et al. P16-specific
DNA methylation by engineered zinc finger methyltransferase
inactivates gene transcription and promotes cancer metastasis.
Genome Biol. 2015;16:252.

7. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract
Oncol. 2005;2:S4–S11.

8. Aran D, Sabato S, Hellman A. DNA methylation of distal regulatory sites
characterizes dysregulation of cancer genes. Genome Biol. 2013;14:R21.

9. Yao L, Shen H, Laird PW, Farnham PJ, Berman BP. Inferring regulatory
element landscapes and transcription factor networks from cancer
methylomes. Genome Biol. 2015;16:105.

10. Bell RE, Golan T, Sheinboim D, Malcov H, Amar D, Salamon A, et al. Enhancer
methylation dynamics contribute to cancer plasticity and patient mortality.
Genome Res. 2016;26:601–11.

11. Lin X, Su J, Chen K, Rodriguez B, Li W. Sparse conserved under-methylated
CpGs are associated with high-order chromatin structure. Genome Biol.
2017;18:163.

12. Kalisch M, Buhlmann P. Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. J Mach Learn Res. 2007;8:613–36.

13. Kalisch M, Buhlmann P. Robustification of the PC-Algorithm for Directed
Acyclic Graphs. J Comput Graph Stat. 2008;17:773–89.

14. Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, et al. Casilio: a
versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic
labeling. Cell Res. 2016;26:254.

15. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, et al.
Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-
TET1 catalytic domain fusions. Nat Biotechnol. 2016;34:1060–5.

16. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA
Methylation in the Mammalian Genome. Cell. 2016;167:233–47. e217

17. Huang YH, Su J, Lei Y, Brunetti L, Gundry MC, Zhang X, et al. DNA epigenome
editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol. 2017;18:176.

18. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A.
Reverse engineering of regulatory networks in human B cells. Nat Genet.
2005;37:382.

19. Zhang X, Zhao X-M, He K, Lu L, Cao Y, Liu J, et al. Inferring gene regulatory
networks from gene expression data by path consistency algorithm based
on conditional mutual information. Bioinformatics. 2011;28:98–104.

20. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012;9:215–6.

21. Charlet J, Duymich CE, Lay FD, Mundbjerg K, Sørensen KD, Liang G, et al.
Bivalent regions of cytosine methylation and H3K27 acetylation suggest an
active role for DNA methylation at enhancers. Mol Cell. 2016;62:422–31.

22. Consortium EP. An integrated encyclopedia of DNA elements in the human
genome. Nature. 2012;489:57–74.

23. He B, Chen C, Teng L, Tan K. Global view of enhancer–promoter
interactome in human cells. Proc Natl Acad Sci. 2014;111:E2191–9.

24. Fullwood MJ, Liu MH, Pan YF, Liu J, Han X, Mohamed YB, et al. An oestrogen
receptor α-bound human chromatin interactome. Nature. 2009;462:58.

25. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. Super-
enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.

26. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al.
Master transcription factors and mediator establish super-enhancers at key
cell identity genes. Cell. 2013;153:307–19.

27. Network CGA. Comprehensive molecular portraits of human breast tumors.
Nature. 2012;490:61.

28. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, et al.
Superfamilies of evolved and designed networks. Science. 2004;303:1538–42.

29. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E,
Stamatoyannopoulos JA. Circuitry and dynamics of human transcription
factor regulatory networks. Cell. 2012;150:1274–86.

30. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The
accessible chromatin landscape of the human genome. Nature. 2012;489:75.

31. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015;43:e47.

32. Lachmann A, Giorgi FM, Lopez G, Califano A. ARACNe-AP: gene network
reverse engineering through adaptive partitioning inference of mutual
information. Bioinformatics. 2016;32:2233–5.

33. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally
applicable gene set enrichment for pathway analysis. BMC Bioinformatics.
2009;10:161.

34. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape
of gene promoters. Nature. 2012;489:109–13.

35. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A
unique chromatin signature uncovers early developmental enhancers in
humans. Nature. 2011;470:279–83.

36. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ,
et al. Histone H3K27ac separates active from poised enhancers and predicts
developmental state. Proc Natl Acad Sci U S A. 2010;107:21931–6.

37. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, et al. DNA-
binding factors shape the mouse methylome at distal regulatory regions.
Nature. 2011;480:490–5.

38. Burger L, Gaidatzis D, Schubeler D, Stadler MB. Identification of active
regulatory regions from DNA methylation data. Nucleic Acids Res. 2013;
41:e155.

39. Teng L, He B, Wang J, Tan K. 4DGenome: a comprehensive database of
chromatin interactions. Bioinformatics. 2015;31:2560–4.

40. Franzin A, Sambo F, Di Camillo B. bnstruct: an R package for Bayesian
Network structure learning in the presence of missing data. Bioinformatics.
2017;33:1250–2.

41. Aten JE, Fuller TF, Lusis AJ, Horvath S. Using genetic markers to orient
the edges in quantitative trait networks: the NEO software. BMC Syst
Biol. 2008;2:34.

42. Shatzkes K, Teferedegne B, Murata H. A simple, inexpensive method for
preparing cell lysates suitable for downstream reverse transcription
quantitative PCR. Sci Rep. 2014;4:4659.

43. Chen X, Yu B, Carriero N, Silva C, Bonneau R. Mocap: large-scale inference of
transcription factor binding sites from chromatin accessibility. Nucleic Acids
Res. 2017;45:4315–29. https://www.nature.com/articles/ncomms15943.

44. Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet.
2013;45:580–5.

45. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, et al. AmiGO: online
access to ontology and annotation data. Bioinformatics. 2009;25:288–9.

46. Khan A, Zhang X. dbSUPER: a database of super-enhancers in mouse and
human genome. Nucleic Acids Res. 2016;44:D164–71.

47. Kashtan N, Itzkovitz S, Milo R, Alon U. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs.
Bioinformatics. 2004;20:1746–58.

48. Broad Institute TCGA Genome Data Analysis Center. Analysis-ready
standardized TCGA data from Broad GDAC Firehose 2016_01_28 run. Broad
Institute of MIT and Harvard. Dataset. 2016. https://doi.org/10.7908/C11G0KM9.

49. Consortium EP. Identification and analysis of functional elements in 1% of
the human genome by the ENCODE pilot project. Nature. 2007;447:799.

50. Tong Y, Sun J, Wong CF, Kang Q, Ru B, Wong CN, et al. MICMIC: identification
of DNA methylation of distal regulatory regions with causal effects on
tumorigenesis. Github. https://github.com/ZhangJlab/MICMIC. (2018).
Accessed 19 Apr 2018.

51. Tong Y, Sun J, Wong CF, Kang Q, Ru B, Wong CN, et al. MICMIC:
identification of DNA methylation of distal regulatory regions with causal
effects on tumorigenesis. zenodo. https://zenodo.org/record/1220929#.
WuH5WC7wbIU (2018). Accessed 19 Apr 2018.

Tong et al. Genome Biology  (2018) 19:73 Page 17 of 17

https://www.nature.com/articles/ncomms15943
https://doi.org/10.7908/C11G0KM9
https://github.com/ZhangJlab/MICMIC
https://zenodo.org/record/1220929#.WuH5WC7wbIU
https://zenodo.org/record/1220929#.WuH5WC7wbIU

	Abstract
	Background
	Results
	Pipeline for MICMIC to infer methylation regulation networks
	Genomic features enriched in distal regulatory interactions identified by MICMIC
	Validation of causal DNA methylation events involved in tumorigenesis by epigenome engineering techniques in gastric cancer
	Validation of causal DNA methylation events involved in tumorigenesis by epigenome engineering techniques in liver cancer
	Aberrant methylation landscape of distal DREs can be shaped by oncogenic and lineage-specific transcription factors (TFs) with profound effects on tumorigenesis and patient survival
	Diverged tumor-subtype core regulatory circuitry and converged pan-cancer global topology of TF network associated with distal DRE

	Discussion
	Conclusions
	Methods
	Data collection
	Mutual information and conditional mutual information
	Significance level determination
	Differential expression analysis
	Master regulators analysis (MRA)
	Identification of the direct regulatory elements by MI/CMI based PC-algorithm
	Mapping chromatin state of DREs by ChromHMM 18-state model
	Histone modifications, sequence conservation, and DNase I hypersensitivity
	Precision of DRE-target pairs
	Comparing MICMIC with other methods
	Cell culture
	RNA purification and qPCR
	Plasmids and cloning
	Transfections and control design
	cDNA cloning and overexpression in lentivirus
	Dual luciferase assay
	Migration assay
	Cell proliferation assay
	5-aza-deoxycytidine treatment
	Identification of enriched transcription factor bindings
	Evaluate the tissue specificity of genes
	Enrichment of transcription repressors
	Discovery of core transcriptional regulatory circuitry
	TF targets and downstream cancer pathway analysis
	TF network decomposition and network motif identification

	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

