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Abstract

Human hematopoiesis involves cellular differentiation of multipotent cells into progressively more 

lineage-restricted states. While the chromatin accessibility landscape of this process has been 

explored in defined populations, single-cell regulatory variation has been hidden by ensemble 

averaging. We collected single-cell chromatin accessibility profiles across 10 populations of 

immunophenotypically-defined human hematopoietic cell types and constructed a chromatin 

accessibility landscape of human hematopoiesis to characterize differentiation trajectories. We find 
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variation consistent with lineage-bias toward different developmental branches in multipotent cell-

types. We observe heterogeneity within common myeloid progenitors (CMPs) and granulocyte-

macrophage progenitors (GMPs), and develop a strategy to partition GMPs along their 

differentiation trajectory. Furthermore, we integrated scRNA-seq data to associate transcription 

factors to chromatin accessibility changes, and regulatory elements to target genes through 

correlations of expression and regulatory element accessibility. Overall, this work provides a 

framework for integrative exploration of complex regulatory dynamics in a primary human tissue 

at single-cell resolution.

Introduction

In 1957, Conrad Waddington developed an influential analogy for developmental cell 

biology by conceptualizing cellular differentiation as a ball rolling down a bifurcating three-

dimensional surface (Goldberg et al., 2007; Waddington, 1960). This developmental 

landscape defines a descriptive path a cell might follow, choosing different developmental 

fates as it reaches saddle points that separate different, increasingly restricted, cellular states. 

The shape of this landscape is largely defined by transcription factors (“guy-wires”), which 

recruit chromatin effectors to reconfigure chromatin (Calo and Wysocka, 2013; Long et al., 

2016) and promote new cellular phenotypes (Graf and Enver, 2009; Takahashi and 

Yamanaka, 2006). These concepts – the first a descriptive notion of development (Figure 

S1A), and the second a mechanistic description of the molecular actors that drive state 

changes (Figure S1B) – have provided a conceptual framework for understanding cell fate 

choices. Recent technological advances in single-cell epigenomic assays (Kelsey et al., 

2017) now provide the opportunity to ascribe epigenomic features to this landscape by 

quantifying overall epigenomic similarity of individual cells during a normal differentiation 

process, as well as the activity of master regulators that influence cell fate decisions.

Hematopoietic differentiation serves as an ideal model for exploring the nature of 

multipotent cell fate decisions (Laurenti and Göttgens, 2018; Orkin and Zon, 2008). The 

hematopoietic system is maintained by the activity of a small number of self-renewing, long-

lived hematopoietic stem cells (HSCs) capable of giving rise to the majority of blood cell 

lineages (Becker et al., 1963; Laurenti and Göttgens, 2018; Orkin and Zon, 2008) whereby 

multipotent cells transit multiple decision points while becoming increasingly lineage-

restricted (Figure 1A). The human hematopoietic system is an extensively characterized 

adult stem cell hierarchy with diverse cell types capable of phenotypic isolation with multi-

parameter fluorescence activated cell sorting (FACS) (Corces et al., 2016; Laurenti and 

Göttgens, 2018). This capacity for phenotypic isolation has enabled measurement of the 

epigenomic and transcriptional dynamics associated with sorted human progenitors across 

differentiation providing a foundation for the dissection of regulatory variation in normal 

multi-lineage cellular differentiation (Chen et al., 2014; Corces et al., 2016; Farlik et al., 

2016; Novershtern et al., 2011). Furthermore, recent work measuring single-cell 

transcriptomes has revealed significant transcriptional heterogeneity in isolated progenitors 

(Notta et al., 2015) and across differentiation (Laurenti and Göttgens, 2018; Velten et al., 

2017). These observations set the stage for single-cell epigenomic measurements that may 
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define cis- and trans- regulatory mechanisms underlying transcriptional and cell fate 

commitment heterogeneity in hematopoiesis.

To define a single-cell chromatin accessibility landscape of this developmental hierarchy, we 

applied a single-cell assay for transposase-accessible chromatin by sequencing (scATAC-

seq) (Buenrostro et al., 2015b) to 10 sortable populations in human bone marrow or blood 

comprising multipotent and lineage restricted progenitors. We find that the regulatory 

landscape of human hematopoiesis is continuous, with cell surface markers reflecting 

“basins” within this landscape. This single-cell analysis also uncovered substantial 

heterogeneity within immunophenotypically-defined cellular populations, including 

variability within multipotent progenitors strongly correlated along the dimensions of 

hematopoietic differentiation – an observation consistent with lineage priming at the level of 

chromatin accessibility. We observe especially strong variability within populations of 

immunophenotypically-defined common myeloid progenitor (CMP) and granulocyte-

macrophage progenitor (GMP) cell types. Using ATAC-seq and RNA-seq, we confirm that 

GMPs are substantially heterogeneous on both epigenomic and transcriptomic levels, and 

demonstrate a strategy to enrich for sub-populations within GMPs at different developmental 

stages of a myeloid differentiation trajectory. Last, we generate scRNA-seq data and 

integrate these data with scATAC-seq to associate expression changes of transcription factors 

(TFs) to changes in chromatin accessibility at cis-regulatory elements. Using these 

integrated data, we also link changes at cis-regulatory elements to changes in the expression 

of nearby genes. These methods for assaying and analyzing single-cell epigenomics data 

provides the opportunity for de novo discovery of cell types and states, define regulatory 

variability within immunophenotypically-pure populations, and capture the cis- and trans-

regulatory dynamics across a cell-resolved regulatory landscape of differentiation.

Results

Single-cell chromatin accessibility of distinct hematopoietic cell types

We used FACS to isolate 8 distinct cellular populations from CD34+ human bone marrow, 

which included cell types spanning the myeloid, erythroid, and lymphoid lineages (Figures 

1A and 1B). In addition, we also profiled a CD34+CD38−CD45RA+CD123− subset which 

has not been well characterized (Manz et al., 2002). Cells analyzed after sorting and cells 

cryopreserved after sorting provided comparable data quality and yield (Figures S1C–E) and 

therefore we performed all further scATAC-seq measurements on cryopreserved cells 

(Figure 1C). Together, this sorting strategy captures ~97% of all CD34+ cells (Figure S1F) 

and using post-sort analysis, we found that sorted cell types were on average 97% pure by 

cell surface marker immunophenotype (Corces et al., 2016). Using this approach, we 

profiled the chromatin accessibility landscapes (CALs) across a total of 30 independent 

single-cell experiments representing 6 human donors, with each progenitor population 

assayed from two or more donors (Figure S1G). We did not profile CD34- bone marrow 

stem cells, as they are rare and less well described (Matsuoka et al., 2015).

Aggregated single-cell chromatin accessibility profiles closely resemble bulk CD34+ ATAC-

seq profiles (Figure 1D and Figures S1H–I). Including previously published scATAC-seq 

data from LMPPs and monocytes (Corces et al., 2016), this data set comprised 3,072 single-
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cell CALs across 32 integrated fluidic circuits (IFCs). Single-cell profiles were of consistent 

high-quality with 2,034 cells passing stringent quality filtering, yielding a median of 8,268 

fragments per cell with 76% of those fragments mapping to peaks, resulting in a median of 

6,442 fragments in peaks per cell (Figure 1E; see methods).

TF activity inference using ChromVAR

We applied ChromVAR to calculate TF motif associated CAL changes and identify potential 

regulators of epigenomic variability (Buenrostro et al., 2015b; Schep et al., 2017). This 

approach quantifies accessibility variation across single-cells by aggregating accessible 

regions containing a specific TF motif, then compares the observed accessibility of all peaks 

containing a TF motif to a background set of peaks normalizing for known technical 

confounders. ChromVAR identifies high-variance TF motifs across CALs representing 

known master regulators of hematopoiesis such as GATA1, BATF and CEBPB (Figure 1F). 

Notably, TFs of the same family often share a similar motif and thus are difficult to 

disambiguate, therefore TF motifs highlighted throughout the text are representative TF 

motifs which may encompass the individual activities of multiple expressed TFs.

Hierarchical clustering of single-cell profiles using TF z-scores generally classifies single-

cells by their immunophenotypically-defined cell type identity (Figure 2A). Interestingly, 

despite the overall high quality of the HSC profiles (Figure S1J–L), HSCs exhibit low TF z-

scores for lineage specifying TF motifs. Furthermore, the HOX TF motif was most enriched 

in HSCs, previously shown to regulate stem cell activity (Lawrence et al., 1997; Magnusson 

et al., 2007), however, this TF motif also exhibited relatively low-level activity compared to 

lineage defining TFs in more-differentiated cells. Low level expression of lineage specifying 

TFs in other multipotent cell systems has been described (Grün et al., 2016) and is 

hypothesized to generally promote multipotency (Graf and Enver, 2009), which may also 

explain the low level TF z-scores in this analysis of HSCs.

Using the vector of TF z-scores as features, we visualize hematopoietic differentiation 

within these data using t-SNE, which clearly displays the expected branching into four 

distinct differentiated final states representing erythroid, myeloid, lymphoid and pDC 

differentiation (Figure 2B and Figure S2A–D). In past work we also used ChIP-seq data as 

annotations to explore chromatin accessibility differences in single-cell profiles (Buenrostro 

et al., 2015b). Here, we found that K562, a cell line described as an erythroid progenitor 

model, ChIP-seq data discriminated between cells at different stages of erythroid 

differentiation, however, failed to capture the variance associated with myeloid and 

lymphoid trajectories (Figure S2E). Therefore, due to the relatively paucity of TF ChIP-seq 

in primary bone-marrow derived CD34+ cells or in early myeloid and lymphoid cell models, 

we chose to use TF motifs in downstream analyses.

Mapping single profiles on hematopoietic principal components

The TF z-scores can be used to cluster single-cell profiles, however, this unsupervised 

analysis may not distinguish chromatin accessibility changes associated with differentiation 

from changes associated with other biological phenomenon such as the cell cycle or niche-

dependent cell-cell signaling (Crane et al., 2017). Furthermore, the use of t-SNE and TF z-
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scores for clustering makes relative cell-cell distances difficult to interpret. We reasoned a 

reference guided approach that utilizes accessibility co-variance of regulatory elements in 

bulk hematopoietic samples, combining previously published (Corces et al., 2016) and 

additional reference profiles (see methods), would provide a natural and intuitive subspace 

for dimensionality reduction of single-cell data. To achieve this we implemented a 

computational strategy, similar to recent methods for single-cell RNA-seq analysis (Li et al., 

2017), that first identifies principal components (PCs) of variation in bulk ATAC-seq 

samples (Figure S2F) (Corces et al., 2016), then scores each single-cell by the contribution 

of each PC. Cells are subsequently clustered using the Pearson correlation coefficients 

between these normalized PCs scores and all other cells (Figure S2G). For low-dimensional 

visual representation, we performed PCA on this correlation matrix (Figures 2C and 2D) and 

display the first 3 principal components, which represent 93.7% of the total subspace 

variance (Figure S2H–M).

We validated this computational approach by down sampling bulk profiles to 104 fragments 

and find that the PCA-projection approach closely follows sample clustering using the bulk 

data set (Figure S2N). We next down-sampled ensemble single-cell profiles to match the 

sequence depths observed in single-cells to quantify the expected mean error to be 1.95%, 

1.70% and 3.1% per cell of the total signal for PCs 1–3 respectively (Figures S2O,P). To test 

our sensitivity for identifying intermediate cell states, we created synthetic mixtures from 

ensemble profiles, down-sampled to 104 fragments and found the synthetic mixtures to 

closely follow the expected paths (Figures S2Q,R). Last, we found this approach to be robust 

to expected experimental confounders in single-cell data (Figure S2S–V). Overall, this 

visual representation of the data provides a reference-guided landscape of differentiation 

with similarities to Waddington’s developmental landscape (Figure S1A), furthermore 

layering TF z-scores onto this representation provides insight into the “guy wires” that may 

underlie epigenomic changes during differentiation (Figure S1B).

The continuous landscape of human hematopoiesis

Using this computational approach, we find the CAL of human hematopoiesis radiates away 

from a common basin of early hematopoietic progenitors (Figure 2C). HSC/MPP (left) and 

LMPP (right) localize at the center of the projection, followed by CMP and GMP cells that 

comprise a large and diverse basin. Differentiation into CLP (lymphoid), MEP (erythroid) 

and monocytes (myeloid) appear as distinct differentiation trajectories that swoop away from 

the central HSC basin (Figure 2D). Furthermore, motifs associated with master lineage 

regulators ID3, CEBPB and GATA1 (Orkin and Zon, 2008) show continuous gradients of 

activity across lymphoid, myeloid and erythroid development, while the HSC and LMPP 

compartment show higher accessibility associated with the HOX motif (Figures 2E–H). We 

also observe examples of FACS misclassification of cell types, particularly between 

CMP:MPP, GMP:LMPP (separated by CD38) and GMP:CLP (separated by CD10), likely 

due to the continuous nature of the cell surface markers (Figure S3A–D).

CMP, GMP and MEP profiles appear markedly heterogeneous in this projected space. We 

quantified the statistical significance of this observed heterogeneity by comparing the 

observed variability to down-sampled aggregate profiles and found CMPs to be the most 
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heterogeneous cell type (p < 10−111), with all cell types displaying statistically significant 

heterogeneity (Figure S3E). To further assess the statistical significance of this 

heterogeneity, we permuted peaks matched in mean accessibility and GC content (see 

methods) and find that variability across all cell types, with the exception of monocytes (p = 

0.35), remained statistically significant (Figures S3F,G). Finally, single-cell TF z-scores 

(Schep et al., 2017), which are calculated without using bulk ATAC-seq data as a reference, 

also exhibit significant variability for all cell types (Figure S3H). Thus, rather than 

identifying a series of discrete cellular states (Figure 1A), these results suggest that the CAL 

in early hematopoietic differentiation (HSC, MPP, LMPP and CMP) comprise a fairly broad 

basin of allowable states, while paths of later differentiation become more canalized into 

distinct and continuous differentiation trajectories (see DataS1, single-cell CALs can be 

further explored using our web resource: http://schemer.buenrostrolab.com/).

De novo identification of uncharacterized chromatin states

Given the observed limitations of our sort markers, we sought to define hematopoietic cell 

types de novo by applying k-medoids clustering on the first five principal components from 

this PC projection approach. We defined 14 unique clusters (Figures 3A and 3B; see 

methods) that largely overlap with previously-defined cell surface marker-based definitions 

of human hematopoietic subsets (Figure 3C) and changes in the accessibility of TF motifs 

associated with hematopoiesis (Figure 3D). This analysis identified key hematopoietic 

regulators de novo, including motifs associated with well-described master regulators 

GATA1 (erythroid), CEBPD (myeloid) and EBF1 (lymphoid) lineage-specifying factors 

(Orkin and Zon, 2008). Notably, we also find a specific HSC cluster of TFs that include 

HOX, ERG and MAFF motifs.

Using this clustering approach, we find that CMPs separate into 4 clusters denoted here as 

clusters 2–5, which includes a cluster with mixed contribution from CMP and MEP cells 

(cluster 5). We observe that the 4 CMP clusters within our data show significant variability 

across motifs associated with GATA1, BCL11A and SPI1 (PU.1), TFs implicated in 

myeloid/erythroid specification (Figure S3I). We identify 1,801 differentially accessible 

regions across these CMP clusters, including two previously validated erythroid enhancers 

(Fulco et al., 2016) regulating GATA1 expression (Figure S3I,J). Given these differences, we 

assigned CMP clusters as CMP-K3 (early erythroid), CMP-K5 (late erythroid), CMP-K4 

(unknown) and CMP-K2 (myeloid primed). These strong chromatin accessibility differences 

further validate recent work describing functional and transcriptional heterogeneity within 

mouse (Paul et al., 2015; Perié et al., 2015) and human (Notta et al., 2015) CMPs, and 

strongly suggest that CMPs can be partitioned into myeloid and erythroid committed 

progenitors. In addition, we also find that MEP (K5-7), GMP (K9,10) and pDCs (K12,13) 

predominantly separate as two or more distinct clusters each, likely representing early- and 

late-stage progenitor differentiation.

Chromatin accessibility variability within data driven clusters

We next sought to measure chromatin accessibility differences within stringently-defined 

HSC and LMPP progenitors, populations previously described as primed toward different 

lineage fates (Busch et al., 2015; Karamitros et al., 2018; Laurenti and Göttgens, 2018; Naik 
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et al., 2013; Pei et al., 2017). To quantify this variability, we created stringent cluster 

definitions that required cells to be both CAL cluster-pure and immunophenotypically 

(FACS identity) pure populations, which we call epigenomically and immunophenotypically 

pure (EIPP) clusters. We then computed TF z-scores (Schep et al., 2017) for cells within 

each EIPP group and found substantial heterogeneity within these subsets (Figure S3K). To 

explore the relationship of TF-associated variability within HSCs to directions of 

differentiation we categorized individual EIPP HSCs by their TF z-scores (high or low), 

computed the distance between high/low centroids in the PC space, and calculated statistical 

significance by comparing high/low distances to permuted HSC EIPP profiles (Figure 3E 

and Figure S3L–N). Using this analysis approach, we find CTCF, NFKB (represented by the 

RELA motif) and ETS motifs to be significantly variable in HSCs, however uncorrelated 

with any specific direction of differentiation (Figure 3F). Interestingly, NFkB signaling 

(inflammatory signaling) has been implicated in mouse HSC stem-cell maintenance (Zhao et 

al., 2012) and HSC emergence mediated by neutrophil secretion of TNFa (Espín-Palazón et 

al., 2014; Sawamiphak et al., 2014). In contrast, we find the GATA (p=10−17) and MESP/ID 

(p=10−8) motif (represented by GATA2 and MESP1 motifs) TF z-scores to be significantly 

correlated to erythroid and lymphoid trajectories respectively (Figures 3G–H and Figures 

S3N). The direction of this TF bias is consistent with previous studies that lineage trace 

HSCs which suggest that HSCs exhibit oligo-lineage bias toward erythroid-myeloid or 

lymphoid cell fates (Pei et al., 2017).

We next turned to LMPPs, a subset previously shown to demonstrate lineage priming toward 

dendritic (pDC), myeloid (GMP:Monocytes) and lymphoid (CLP:B-cell) fates in mice 

(Busch et al., 2015; Naik et al., 2013) and in human (Karamitros et al., 2018). Interestingly, 

we found motifs associated with the TFs TCF4, STAT1 and CEBPE to be significantly 

correlated with directionality toward CLP, pDC and GMP differentiation, respectively 

(Figures S3O–R), notably the TCF4 motif is similar to the TCF3, ID3 and MESP1 motifs. 

TCF4 and CEBPE motif accessibility were anti-correlated with each other, and each defined 

a unique direction toward CLP (lymphoid) or GMP (myeloid) differentiation respectively, 

suggesting antagonism between myeloid/lymphoid differentiation programs. Separately, the 

STAT1 motif accessibility appeared to be directed towards CLP (lymphoid) and pDC 

(dendritic) cell fates. Overall, this reference-guided computational approach provides a 

statistical framework for assigning TF motif associated variability to lineage-associated 

CAL variation providing a resource for identifying molecular factors that may be involved in 

lineage priming across multipotent cell populations.

Heterogeneous cell types can be further divided along developmental trajectories

We next sought to order cells along continuous differentiation trajectories across branches of 

hematopoietic development. To achieve this, we first determined the shortest path between 

cluster centroids and assigned cells to the closest point along that path, a similar approach 

has been described for analyzing scRNA-seq data (Shin et al., 2015). This approach aligned 

cells to well-defined lineage pathways (Orkin and Zon, 2008) producing an ordering of 

single cells along continuous erythroid (K1,3,5,6,7), lymphoid (K1,2,8,14), pDC 

(K1,2,8,12,13) and myeloid (K1,2,9,10,11) differentiation trajectories (Figure 4A–D and 
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Figure S4A–D). These trajectories allow for interpretation of CAL heterogeneity within 

progenitors and provide methods to further parse cellular sub states across differentiation.

We examined variability within two clusters (K9 and K10) of GMPs, which show significant 

differences in accessibility among myeloid-defining factors SPI1 (PU.1) and CEBP 

associated motifs across the myeloid developmental trajectory (Figure S4E). To further 

partition this population, we sought to identify cell surface markers that may differentially 

enrich for K9 and K10 GMPs. We hypothesized that CD123 expression may correlate with 

early and late GMP differentiation for two reasons: (i) the UNK population, which is 

CD123−/lo, is enriched in the GMP K9 cluster and (ii) CD123, also known as IL3RA, is a 

high affinity receptor for the myeloid promoting cytokine IL3. We therefore performed 

scATAC-seq, bulk ATAC-seq (Buenrostro et al., 2013; 2015a) and bulk RNA-seq on cells 

from three distinct bins of CD123 expression (Figure 4E). Bulk ATAC-seq and RNA-seq 

data revealed substantial chromatin accessibility and transcriptomic differences across the 

GMP-A and GMP-C populations (Figure 4F and Figure S4F–H). The list of differentially 

expressed genes included important developmental regulators, including down regulation of 

HSPC TFs GATA2 and TAL1 and up regulation of myeloid genes SPIB, IRF8, TLR7 and 

MPEG1 in the GMP-C cell population (Figure 4F). In addition, projection of the scATAC-

seq data from the three cell fractions revealed that this strategy provides strong separation of 

early (GMP-A) and late (GMP-C) stages of myeloid differentiation (Figures 4G,H and 

Figure S4I–K). Altogether, we validate the heterogeneity within GMPs and more generally 

demonstrate a data driven approach for defining cell populations from single-cell 

epigenomic data.

Motif accessibility dynamics along myeloid cell differentiation

The myeloid trajectory described above transits two heterogeneous cell populations (CMP 

and GMP), as such, regulatory analysis of myeloid differentiation has been previously 

obscured in bulk studies due to the limitations of the immunophenotypic markers of these 

populations. We therefore sought to characterize TF dynamics across myeloid development 

by mapping TF z-scores to cells along the continuous myeloid differentiation trajectory 

(Figure S4L–N). Using this approach, we find 6 clusters (see methods) of TF z-score 

profiles during myeloid development (Figure 5A and Figure S5A–C). Accessibility at TF 

motifs associated with regulators HOXB8 and GATA1 (cluster 1) is high in HSCs and 

decreases through differentiation to CMPs. Interestingly, loss of GATA motif accessibility 

(represented by the GATA1 motif) begins within the HSC compartment, while HOX motif 

accessibility (represented by the HOXB8 motif) is lost at the transition of HSC to CMP 

differentiation, suggesting that loss of GATA motif accessibility may be an early event in 

lineage commitment within HSCs (Figure 5B). We also observe two distinct modes of 

activation for myeloid-associated TF motifs; cluster 4 TFs (CEBPD and SPIB associated 

motifs) display early and gradual gain in activity beginning within CMPs, while cluster 5 

TFs (STAT1, IRF8 and BCL11A associated motifs) increase sharply in activity across the 

GMP-A to GMP-C transition, implicating the CEBP family of TFs (represented by the 

CEBPD motif) as an initiating factor for myeloid-erythroid specification (Figure 5C). In 

addition to the activity patterns associated with canonical myeloid-defining factors, we also 

identify a pulse of activity within CMPs from cluster 2 TFs (TCF3/12 associated TF motifs 
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up regulated in CLP/pDC), which may reflect transient activation of a lymphoid program 

within pre-committed myeloid-biased CMPs (Figure S5C).

Matching transcriptomes with chromatin accessibility

We next aimed to develop a means to pair single-cell epigenomic and transcriptomic 

measurements, with the goal of linking chromatin accessibility changes associated with 

DNA sequence motifs to expressed TFs, as well as linking accessibility changes at putative 

enhancers to expression changes at target genes. We first performed single-cell RNA-seq 

(10X genomics platform) across HSC, CMP and GMPs, collecting a total of 7,818 cells 

passing filter (2,268, 4,454 and 1,096 respectively; Figure 5D). In addition, we included 

publically available scRNA-seq data from CD34+ and CD14+ monocyte cells (Zheng et al., 

2017), altogether analyzing transcriptional dynamics of 14,432 cells across myeloid 

differentiation. Using these data, we developed a reference-guided approach to pair scATAC-

seq and scRNA-seq profiles (see DataS2). To do this, we first fit a linear model to match the 

measured bulk ATAC-seq PCs, which measure global variation in chromatin accessibility, to 

changes in gene expression as measured by bulk RNA-seq across sorted populations 

(Figures S5D–F). We then used this map between ATAC-seq PCs and gene expression to 

assign “inferred transcriptomes” to each cell in the scATAC-seq data set (Figure S5G). 

Finally, to pair each scRNA-seq profile to a scATAC-seq cell, we assigned scRNA-seq 

profiles to the most correlated scATAC-seq “inferred transcriptome” (Figure S5H). Using 

this approach, we found that the sorted identity of scRNA-seq profiles were enriched for the 

corresponding matched sorted identity for scATAC-seq profiles (Figure S5I). Furthermore, 

by pairing single-cell RNA-seq to scATAC-seq cells we found scRNA-seq profiles of FACS 

sorted CMPs associated with the four scATAC-seq defined CMP clusters discussed above 

(Figure S5J). Further validating the recent reports of heterogeneity in mouse (Paul et al., 

2015; Perié et al., 2015) and human (Notta et al., 2015) CMPs, we found expression 

heterogeneity of known hematopoietic regulators in CMPs, which included HOXA5, 

GATA1 and CEBPB (Figure S5K,L).

Our approach provides a computational method to fit gene expression changes across bulk 

ATAC-seq and RNA-seq “anchor points” generated from well-defined sorted populations, 

providing a reference for analysis of single-cell gene expression and chromatin changes 

spanning these anchor points to resolve continuous regulatory changes in cell differentiation. 

This reference-guided strategy resulted in a total of 9,312 scRNA-seq cells positioned across 

myeloid pseudo-time with high concordance in the enrichment of immunophenotypically-

defined cells across the trajectories (Figure 5E). Using this unified lineage order we mapped 

expression dynamics across myeloid cell differentiation and found expected patterns across 

known regulators of myelopoesis (Figures 5F,G). To further validate this pairing approach, 

we compared the ATAC:RNA paired lineage order with ordering scRNA-seq cells using 

diffusion pseudotime (DPT) (Haghverdi et al., 2016). In this comparison, we find that the 

two approaches for cell ordering are overall highly correlated (R=0.86; Figure S5M). 

However, we find that unsupervised ordering of cells using DPT was more correlated to the 

number of genes detected than the ATAC:RNA pairing approach described above (R=0.68 

versus R=0.14), suggesting computational ordering of scRNA-seq data with DPT may be 

more sensitive to dropout (Figure S5N,O). This may be expected as DPT does not explicitly 
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model cell-cell differences in dropout (zero counts for genes) and further suggests that 

computational tools for joint analysis of scATAC-seq and scRNA-seq may be more robust to 

technical confounders. Most importantly, the gene expression trajectories (Figure S5P) are 

largely similar between the two approaches, validating the ATAC:RNA pairing approach.

Linking TF expression with associated accessibility variation in binding motif

In effort to disambiguate TFs that bind the same or similar motif and thus assign expression 

of TFs to downstream changes in chromatin accessibility at TF motifs, we correlated the 

expression of TFs with the TF motif z-scores across myeloid pseudo-time. We then filtered 

for motif accessibility-TF expression correlations of R>0.5, this approach yielded 11 TFs 

that defined different stages of myeloid development (Figure 5H), including loss in the 

expression of HOX factors (HOXB7 and HOXB8) (Argiropoulos and Humphries, 2007) and 

activation of well-known master regulators of myeloid cell development including SPI1 (PU.

1) and IRF8 (Satpathy et al., 2012). Resolution of the developmental order of these activated 

TFs across myeloid differentiation has been previously obscured in bulk studies, in part, due 

to the cellular heterogeneity within CMPs and GMPs. Interestingly, we also observed a 

strong correlation between GATA3 expression and GATA motif accessibility, deletion of 

GATA3 has been shown to promote self-renewal in HSCs (Frelin et al., 2013), together 

leading to the hypothesis that GATA3 may be associated with HSC lineage priming. Here, 

single-cell chromatin accessibility, paired with single-cell transcriptomics, resolves the 

temporal dynamics of master regulator expression and associated chromatin changes in 

myeloid cell development, providing a resource for further functional studies and for the 

analysis of regulatory changes associated with differentiation.

Regulatory element and gene activation across myelopoiesis

We next sought to characterize locus-specific cis-regulatory dynamics during myeloid 

differentiation. We first filtered for regulatory elements with high fragment counts and with 

significant variability across the ordered cells identifying 14,005 cis-regulatory elements for 

analysis (see methods). These regulatory elements exhibited highly heterogeneous patterns 

of accessibility changes (Figure 6A–C and Figures S6A–C) – suggesting that a limited 

number of TF motif accessibility patterns (k=6) could induce a surprising level of variation 

of chromatin accessibility at individual regulatory elements. For example, within the 

regulatory elements surrounding the myeloid regulator CEBPD (numbered for simplicity, 

see Figure 6B), the distal element CEBPD-1 was “fast-to-activate” and showed step-wise 

gains of activity while the distal element CEBPD-2 was “slow-to-activate” and showed a 

more discrete pulse of activity (Figure 6B).

To visualize the complete repertoire of dynamic regulatory profiles we ordered elements 

based on their accessibility changes over this trajectory (Figure 6C and Figure S6). This 

analysis reveals multiple broad classes of regulatory element behaviors, ranging from fast- to 

slow-to-repress HSC regulatory elements and fast- to slow-to-activate monocyte regulatory 

elements (Figure 6C). We also observe a collection of “transition” cis-regulatory elements 

that exhibit peak accessibility at intermediate stages of myeloid development, as well as 

“reactivation” elements that are initially lost and subsequently reactivated in later stages of 

myeloid differentiation (Figures S6D,E). Thus, from a small number of discrete clusters of 

Buenrostro et al. Page 10

Cell. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TF motif accessibility, highly diverse cis-regulatory profiles likely arise from the 

combinatorial control of trans-factor binding to their target regulatory elements (Figure 

S6F).

We reasoned that correlation between dynamically activated patterns of distal regulatory 

elements with nearby expressed genes may be used to connect enhancers to target genes 

(Figure 6C). Indeed, we found dynamic regulatory elements surrounding CEBPD were 

highly correlated with CEBPD expression (Figure 6D). More generally, we calculated the 

correlation of regulatory elements to dynamic genes within 10 Mb of annotated transcription 

start sites (“peak-gene pairs”) and found that proximal regulatory elements (<100 kb) were 

significantly more correlated to the expression of nearby genes than distant elements (>100 

kb) (Figure 6E). Further validating this approach, we also found that the correlation of 

regulatory elements to target genes improved as a function of loop confidence within 

promoter capture HiC (PCHiC) data (Figure 6F), here defined by PCHiC loops from both 

CD34+ (Mifsud et al., 2015) and monocyte (Javierre et al., 2016) cells. Importantly, we find 

loop interactions at this resolution do not necessarily define correlated peak-gene pairs. In 

our analysis, only 45% of dynamic enhancers within high confidence loops are called as 

correlated to the expression of PCHiC defined target genes (Figure S6G). This observation 

may be due to the fact that PCHiC loops link relatively large genomic regions, often 

encompassing multiple regulatory elements, which may independently regulate downstream 

genes.

We next sought to test whether previously defined cis-linked expression quantitative trait 

loci (cis-eQTLs) overlapped enhancer-gene interactions identified using these integrated 

single-cell data. We reasoned that correlated peak-gene pairs could be used to functionally 

connect relevant genetic variation at regulatory elements to consequences in gene expression 

important in normal monocyte function. We therefore collected previously-published cis-

eQTLs, derived from interferon-γ and lipopolysaccharide stimulation of monocytes (Fairfax 

et al., 2014), and filtered for SNPs within developmentally dynamic regulatory elements 

linked to dynamic genes (n=370 peak-gene pairs). To directly compare enrichment of either 

correlated peak-gene pairs or PCHiC loops at cis-eQTL defined peak-gene interactions, we 

determined significant enrichment of each data set by normalizing to a background set of 

peak-genes matched for distance (Figure S6H). We found that cis-eQTLs were strongly 

enriched for scATAC/scRNA-seq correlated peak-gene pairs (p=4.9×10−5) and observed 

only a modest enrichment PCHiC loop interactions (p=0.19) (Figure 6G and Figure S6I). 

Thus, statistical linkage between single-cell chromatin accessibility and gene expression can 

serve as a means to functionally link enhancers to target gene promoters.

Discussion

We used single-cell chromatin accessibility and transcriptomic analysis to identify 

regulatory heterogeneity and continuous differentiation trajectories in early human 

hematopoiesis by developing a broadly applicable computational framework for analysis of 

these single-cell data. This framework includes a means for visualizing single-cell chromatin 

accessibility, and computationally pairing these data with single-cell RNA-seq, by using 

bulk data as a reference. With this approach, we find that immunophenotypically-defined 
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cell populations often flow from one state to another and further we dissociate TF motif 

activity variability within these populations as correlated or uncorrelated to axis of 

differentiation. In this effort, we find the activity of TF motifs, such as the GATA motif in 

HSCs, may represent indicators of lineage priming pulling cells toward different 

developmentally committed states. While this reference-guided approach enabled us to pair 

scATAC-seq and scRNA-seq data along a common lineage trajectory, this approach may be 

generalized to pair cells along more-diverse cell fate transitions. Notably, methods for 

computationally pairing multi ‘–omic’ profiles have advantages over experimentally coupled 

approaches, for example, a computational approach may provide i) more flexible 

experimental workflows, ii) allow pairing data across experimental methods that may not be 

easily combined, and iii) the reanalysis of the large repertoire of scRNA-seq data already or 

soon-to-be collected (Regev et al., 2017). As such, the data generated here and associated 

computational methods may be broadly adapted to further develop computational tools to 

pair different single-cell data types.

Furthermore, single-cell CALs can be aggregated to define unique cis-regulatory elements 

active at different stages of differentiation. The intersection of genetic variants with these 

regulatory elements may provide new insights into cell types or stages of differentiation 

relevant to disease (Corces et al., 2016; Guo et al., 2016). Current experimental methods that 

aim to associate non-coding genetic variation to changes in gene expression generally 

measure either physical interactions using chromatin conformation capture approaches 

(Javierre et al., 2016) or direct genetic perturbation (Fulco et al., 2016). Here, we show that 

correlation of naturally occurring regulatory heterogeneity across single-cells can be used to 

pair regulatory elements to target genes. This single-cell inference approach for linking 

regulatory elements to genes may be particularly useful for inferring enhancer-gene 

interactions in rare cells or across cells states where FACS markers are not well defined. We 

expect future studies will combine an integrated single-cell inference approach with physical 

interaction or genetic perturbation maps for improved linking of enhancers to target genes, 

providing a single-cell resolved interaction landscape of noncoding genetic variation.

Overall this work has defined one representation of the epigenomic states underlying 

hematopoiesis, reminiscent of Waddington’s landscape of differentiation. However, given 

the static snapshot of the CAL profiles we have quantified it remains uncertain to what 

degree density of this landscape might allow inference of cell state transition kinetics and 

potential. Joint measures with the emerging repertoire of CRISPR-based tools for lineage 

tracing (Woodworth et al., 2017) will be essential for quantifying the epigenomic 

contribution of lineage priming on cell fate decisions over time. It also remains to be seen to 

what extent lineage priming is reflected in transcriptional diversity within HSCs, and 

whether the lineage-associated CAL variability we observe within HSCs is tightly coupled 

with transcriptional changes (Yu et al., 2016). We expect future work to couple single-cell 

epigenomic, transcriptomic, proteomic and lineage measures may reveal important insights 

into the molecular details and temporal order of initiating regulatory factors governing 

multipotent cell fate transitions. Altogether, we expect further improvements in 

experimentally or computationally integrating single-cell data to unravel a dynamic 

regulatory landscape underlying developmental or disease cell fate decisions.
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- Significantly differential CMP peaks
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- Filtering and regulatory element analysis

- Bulk and single cell RNA-Seq analysis

- Matching scRNA-seq to scATAC-seq

- Integration of promoter capture Hi-C data

- Monocyte cis-eQTL data

Data and software availability

Key resources table

Additional resources

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, William Greenleaf (wjg@stanford.edu).

Experimental model and subject details

Cell collection and isolation—Human bone marrow was sorted as previously described 

(Corces et al., 2016). In addition to the cell types previously described, we also isolated 

plasmacytoid dendritic cells (pDCs), an unknown population (UNK) and megakaryocytes. 

To isolate pDCs from human bone marrow using FACS we gated for live, lineage negative, 

CD34+ CD38+ CD10- CD45RA+ CD123+ cells. To isolate UNK cells from human bone 
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marrow by FACS, we gated for live, lineage negative, CD34+ CD38+ CD10- CD45RA+ 

CD123-. Megakaryocytes were isolated using in vitro differentiation of bone marrow 

derived CD34+ cells to megakaryocytes. To do this, CD34+ cells were cultured in StemSpan 

SFEM with Megakaryocyte Expansion Supplement (Stem Cell Technologies) for 14 days, 

yielding approximately 100-fold expansion in cell number. After cell isolation of all 

populations using FACS, 15,000 single-cells were resuspended in 100 µl of 

BAMBANKER™ serum-free cell freezing medium (Wako Chemicals, 302-14681) and 

cryopreserved in liquid nitrogen. Samples were collected commercially from allcells. 

Further information about the donors profiled and FACS protocols can be found in 

SupplementaryTable1.

Method details

Single-cell ATAC-seq and single-cell RNA-seq—Single-cells not cryopreserved after 

FACS (fresh) were assayed as previously described (Buenrostro et al., 2015b). To assay cells 

cryopreserved after FACS (frozen), cells were allowed to recover for 10 min at 37°C in 

IMDM with 10% FBS. After recovery, cells were washed twice in cold 1× PBS and once in 

with the C1 DNA Seq Cell Wash Buffer (Fluidigm). Cells were then resuspended in 6 µl of 

C1 DNA Seq Cell Wash Buffer, and were combined with 4 µl of C1 Cell Suspension 

Reagent, 7 µl of this cell mix was loaded onto the Fluidigm IFC. Single-cells were then 

assayed using scATAC-seq as previously described (Buenrostro et al., 2015b).

Single-cell RNA-seq—Single-cell RNA-seq data was collected using the recommended 

protocol for the 3’ scRNA-seq 10X genomics platform using v2 chemistry. DNA shearing 

used the Covaris S220, libraries were sequenced on a NextSeq with 26×8×98 read lengths.

Bulk ATAC-seq and RNA-seq—ATAC-seq and RNA-seq libraries were generated as 

previously described (Buenrostro et al., 2015b; Corces et al., 2016) with slight modifications 

for frozen cells. One vial of 15,000 frozen cells in 100 µl of BAMBANKER™ freezing 

medium was quickly thawed at 37°C. 70 µl for bulk ATAC-seq and 30 µl for bulk RNA-seq 

were then added to 500 µl of warm IMDM with 10% FBS. For bulk ATAC-seq, the cells 

were split into 2 tubes of 5,000 cells used as technical replicates. Cells were washed twice in 

1× PBS, all supernatant was carefully removed without disturbing the cell pellet, and cells 

were resuspended in 40 µl of transposition mix (20 µl of 2× TD buffer, 2 µl of TDE1, 0.2 µl 

of 2% digitonin, 13.33 µl of 1× PBS, and 4.47 µl of nuclease-free water) (Illumina, 

FC-121-1030; Promega, G9441), here the transposition reactions were scaled down to 

compensate for cell loss during washes. Transposition reactions were incubated at 37 °C for 

30 min in an Eppendorf ThermoMixer with agitation at 300 rpm. The transposed DNA 

fragments were purified and amplified as described (Corces et al., 2016).

For bulk RNA-seq, cells were split into 2 technical replicates. RNA was isolated using the 

Qiagen RNeasy Plus Micro kit, and RNA was eluted in 10 µl of RNase-free water. 5 µl of 

total RNA was used as input for NuGen Ovation V2 cDNA synthesis kit. The yield of 

purified SPIA-amplified cDNA was measured using Qubit dsDNA HS Assay kit. 50 ng of 

SPIA cDNA was fragmented using Nextera DNA library preparation kit (Illumina, 

FC-121-1030). Fragmented SPIA cDNA was then purified using Qiagen MinElute Reaction 
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Cleanup Kit, and purified DNA was eluted in 10 µl of elution buffer (10mM Tris-HCl, pH 

8). Purified SPIA cDNA fragments was amplified and purified as previously described for 

ATAC-seq (Corces et al., 2016). ATAC-seq and RNA-seq libraries were quantified using 

qPCR, amplified libraries were sequenced using paired-end, dual-index sequencing on a 

NextSeq 500 instrument with 76 bp read lengths.

Quantification and statistical analysis

Data pre-processing and TF scores—Single-cell and bulk ATAC-seq alignment, 

quality filtering and peak calling was performed as previously described (Corces et al., 

2016), with one exception. For single-cell profiles, any fragment that occurred in two cells 

from the same experiment (a single 96-cell IFC) was removed from further analysis. Using 

the previously described approach (Corces et al., 2016), we defined a peak list using all bulk 

hematopoietic data analyzed here, resulting in 491,437 500bp nonoverlapping peaks which 

we use for the remainder of this study. To count the number of fragments per peak in a 

sample or cell, for computing TF z-scores per cell and for determining background peak sets 

matched in GC and peak intensity, we used the default settings in the chromVAR package 

(Schep et al., 2017). Single-cells were filtered for quality requiring at least 60% of fragments 

in peaks and requiring greater than 1,000 fragments passing quality filters, quality filters are 

previously described (Corces et al., 2016) which includes removal of mitochondrial reads 

and low alignment quality (Q30). Bulk counts were normalized as previously described 

(Corces et al., 2016) using quantile normalization and the CQN package.

PCA projection—To calculate PCs on the bulk data sets, later used for projecting single-

cell profiles, we first removed peaks in annotated promoters or aligning to chrX, peaks 

associated with chrY and unmapped contigs were filtered out in the preprocessing steps 

described above. 455,057 peaks remained after filtering and were used for the PCA 

projection analysis. To normalize the bulk count matrix by library size, we identified 19,287 

low variance promoters, using a MATLAB implementation of a previously described 

approach (Brennecke et al., 2013), across all bulk samples and normalized each sample by 

the mean fragment counts within the low variance promoters. We subsequently took the 

mean counts of all normalized bulk sample replicates (HSC, MPP, LMPP, CMP, GMP, MEP, 

Mono, CD4, CD8, NK, NKT, B, CLP, Ery, UNK, pDC and Megakaryocyte) and performed 

PCA-SVD, resulting in 15 principal components.

To score single-cells by the activity for each component, we first centered the counts for 

each cell by dividing each peak by the mean fragment counts in peaks for a given cell. We 

then used the weighted coefficients for each peak and PC (determined using PCA-SVD of 

the bulk data above) to take the product of the weighted PC coefficients by the centered 

count values for each cell, taking the sum of this value resulted in a matrix of cells by PCs. 

Last, we calculate a cell-cell similarity matrix using Pearson correlation and perform PCA 

on the similarity matrix of correlation values. To assess this computational approach, we 

repeated this procedure for the bulk data, down sampled bulk data, mean single-cell profiles 

and synthetic mixtures. Notably, we found a patient-specific batch effect in the HSC single-

cell profiles in the PCA projected subspace, this batch signal was strongly correlated with 

Jun/Fos TF z-scores. We therefore normalized each HSC batch to the mean value of all HSC 
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profiles, and in addition, we blacklisted all motifs correlated with Jun/Fos accessibility. 

Correlated Jun/Fos motifs were determined by calculating motif similarity (Pearson) (Schep 

et al., 2017) and removing all motifs with an R>0.8. We use these corrected PC values and 

filtered TF motifs for all subsequent visualizations of these data.

To determine significant cell-cell variability in the PC projected sub-space, we either down 

sampled or permuted peaks by their GC content and mean accessibility. To permute peaks 

that match GC% and mean accessibility, we take the sum accessibility of all cells of a given 

immunophenotypically defined cell type (e.g. HSCs) and use the ChromVAR function 

“get_background_peaks” with the default settings. Notably, ChromVAR samples 

background peaks with replacement and may select the observed peak as a background peak, 

and therefore provides a conservative estimation of excess variability.

Clustering, K-medoids and computing density—All hierarchical clustering 

performed used Pearson correlation as the distance function. All k-medoids clustering shown 

in this work is performed using 10 replicates with the distance function Pearson correlation. 

For k-mediods clustering throughout this work, the gap statistic is used to determine the 

appropriate number of clusters, here the optimal cluster number is determined wherein the 

minimum K satisfies the follow criteria: the gap value for a given K is greater than the gap 

value of K+1 minus the standard error of the clustering solution for K+1. The first 5 PCs 

were chosen for clustering cells by their projected PC values. All metrics of cell data density 

shown in this work are weighted by the expected in vivo frequency of each cell type, as 

measured from flow cytometry data. 2D data density is calculated using KDE weighted by 

the in vivo frequency.

Lineage bias analysis—To compute TF variability within epigenome and 

immunophenotype pure (EIPP) cells, we first determined the most represented cell type for 

each of the 14 k-medoids determined clusters. We defined EIPP clusters as cells that were 

immunophenotypically-marked by this most-represented type, and also were within one of 

the k-medoids clusters. We then collected cluster-pure and immunophenotype-pure profiles 

for HSCs (k1 cluster) and LMPPs (k8 cluster), and proceeded to compute variability and TF 

z-scores using ChromVAR (Schep et al., 2017). To determine the magnitude and direction of 

the TF lineage bias, we first partitioned TF z-scores as greater than zero (high) or less than 

zero (low). We then computed the mean of the first 5 PCs from the PCA projection for the 

cells assigned to the high or low TF z-score, distance of the high and low centroids was 

calculated using Euclidean distance. We determined significance using “direction z-scores”, 

whereby we repeated the analysis described above for PCs calculated using 50 background 

peak permutations matching GC and mean accessibility, peaks were determined using 

ChromVAR (Schep et al., 2017). Direction z-scores were computed comparing the observed 

to the 50 permuted distances.

Significantly differential CMP peaks—To determine differential CMP peaks, aggregate 

CMP profiles for each k-medoids cluster were collected. Pairwise binomial tests were 

performed for each aggregate profile (4 CMP clusters) for each peak. Peaks with a p-value 

of <10−5 in one or more comparisons was used for further analysis (n = 1,801 peaks). For 
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clustering and visualization, counts were normalized using column z-scores and clustered 

using k-medoids, the gap statistic (as described above) was used to determine a K of 6.

Ordering cells for pseudo-time and smoothing—To determine continuous 

differentiation trajectories, we developed a supervised approach, similar to a recently 

published method (Shin et al., 2015). To do this, we first fit a line through each cluster 

centroid for the relevant clusters using linear interpolation across the first 5 PCs from the PC 

projection described above. These relevant clusters were determined using prior literature 

describing functional cell differentiation trajectories. To assign each cell to a given 

trajectory, we determined the closest point of each cell within the implicated clusters to the 

interpolated fit line that connected each cluster centroid across the 5 projected PCs (the 

closest point was determined using Euclidean distance). The pseudo-time values represented 

in the main figures represent Euclidean distance along the interpolated line across the 5 PCs 

from the projected PC space, all values are relative to the mean of HSCs (defined as the start 

point for all trajectories) and thus represent the value 0 in all pseudo-time trajectories. To 

order cells by myeloid development, only cells within clusters K1, K2, K9, K10, K11 were 

considered. For the erythroid, lymphoid and pDC trajectories, only the following clusters 

were considered: erythroid (K1,3,5,6,7), lymphoid (K1,2,8,14) and pDC (K1,2,8,12,13). To 

determine the TF motif accessibility dynamics across this inferred trajectory, we smoothed 

the TF z-scores along myeloid progression with a lowess function with a span of 200, 

implemented within the MATLAB function smooth. Continuous profiles were normalized 

by their min/max value for plotting and downstream clustering. The accessibility of 

individual peaks were smoothed and normalized as was done with TFs, however, with the 

notable difference of smoothing using a span of 500. To determine error in the smoothed TF 

z-score profiles and cis-regulatory elements we computed 95% confidence intervals by 

resampling cells (n=100 permutations) with replacement. We next repeated the smoothing 

for each permutation and used the MATLAB function paramci to determine the 95% 

confidence interval per TF or regulatory element.

Filtering and regulatory element analysis—To determine TFs that were significantly 

variable within the smoothed myeloid trajectories, we compared the standard deviation of 

the observed smoothed scores to a set of similarly smoothed, permuted, TF scores generated 

by randomly permuting the myeloid cell order. Selecting TFs with a standard deviation 

greater than 0.5 provided 205 motifs with an FDR < 1%. We used two criteria to determine 

highly variable regulatory elements, to do this we first filtered regulatory elements with 

greater than a mean accessibility of 0.01 fragments per cell and subsequently filtered for 

regulatory elements with a coefficient of variation of greater than 0.5 (n = 3,403), resulting 

in a high-quality list. This list was used for all analysis of regulatory elements except for 

quantifying enrichment at cis-eQTLs. For cis-eQTL analysis we reduced the coefficient of 

variation filter to 0 to yield a larger list of peaks for analysis (n=14,005).

To determine motif enrichment across dynamic accessible peaks, we first collected log-

PWM scores per peak using ChromVAR (Schep et al., 2017) for motifs that were selected in 

the TF analysis described above. Peak-to-peak distances were computed using Euclidean 

distance of the PC scores determined by PCA of the min/max normalized accessibility 
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dynamics across the myeloid trajectory. For each peak, the mean log-PWM score was 

computed for the nearest 300 peaks.

Bulk and single cell RNA-Seq analysis—Raw RNA-Seq reads were aligned to hg19 

and quantified per cell barcode using CellRanger v1.2.0 (https://support.10xgenomics.com/

single-cell-gene-expression/software/downloads/latest). While the full quantification 

pipeline is automated and reproducible through CellRanger, we briefly describe the 

workflow here. First, raw sequencing data was demultiplexed using Illumina bcl2fastq 

v2.17.1.14. Raw sequencing reads per cell barcode were aligned using STAR version 2.5.1b 

(Dobin et al., 2013) before duplicates were removed based on unique molecular indicies 

(UMIs). Per cell, per transcript counts were aggregated, and cells with fewer than 1,000 

UMIs/gene counts were excluded. To augment our sorted scRNA-Seq data, we downloaded 

processed monocytes and CD34+ scRNA-Seq data (as previously described (Zheng et al., 

2017)) from the 10X website.

To match the exact feature set quantified in the scRNA-Seq pipeline, all bulk RNA-Seq 

(including samples originally described in our previous study (Corces et al., 2016) and new 

samples described in this study) were aligned and quantified using STAR version 2.5.1b 

(Dobin et al., 2013) and the same gene transfer format file provided in the CellRanger v1.2.0 

distribution. Read counts for biological replicates were summed over each transcript to 

provide a single transcript count per sorted cell type.

Matching scRNA-seq to scATAC-seq—scRNA-seq profiles were matched to scATAC-

seq profiles by first linking bulk ATAC-seq PCs to bulk RNA-seq expression profiles. To do 

this, we first normalized the projected PC scores per cell by the sum-of-squares, which 

effectively normalizes to differences in the number of reads per cell, and determined the 

mean projected PC score (in scATAC-seq space) for each immunophenotypically defined 

cell type with matched bulk RNA-seq. We then trained a linear model, using step-wise 

regression (MATLAB implementation), to fit the log2 expression of all bulk gene expression 

profiles across sorted populations as the linear combination of ATAC-seq PC’s. Using the fit 

coefficients from the step-wise regression, we inferred the expression of all genes for each 

scATAC-seq profile to produce a reference-assisted “inferred transcriptome”. To match 

scRNA-seq data to scATAC-seq cells, we first selected for genes that were both variable 

(defined by a standard deviation across cells greater than 3) and well described by the 

regression model of bulk PCs (R > 0.9) resulting in a total of 853 genes. To improve 

matching by denoising profiles, we performed PCA on the expression level inferred for these 

variable genes, then scored profiles for both scATAC-seq “inferred transcriptomes” and 

scRNA-seq transcriptomes by the PC loadings from this PCA. Next, we calculated the 

correlation (Pearson), using the top 20 PCs, between each scATAC-seq “inferred 

transcriptome” and each cell from the scRNA-seq data set. Single-cell RNA-seq profiles 

were then matched to ATAC-seq data by selecting the single-cell ATAC-seq cell with the 

maximum correlation coefficient. ScRNA-seq cells with low correlation values (R<0.9) were 

discarded from further analysis.

Integration of promoter capture Hi-C data—Processed promoter-capture Hi-C loops 

for CD34+ (Mifsud et al., 2015) and monocytes (Javierre et al., 2016) were downloaded 
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from the supplemental resources associated with each of the original publications. While the 

authors reported only significant loops for the CD34+ data, we filtered loops from the full 

dataset, thresholding the interaction score to > 5 as recommended by the authors. In 

instances where the promoter bait spanned two or more defined gene promoters (as reported 

in the original data file), loops were considered for each promoter gene separately. In total, 

275,848 significant loops for CD34+ and 443,980 significant loops for monocytes were 

considered in our downstream analyses, 36,962 loop were overlapping (same target 

promoter; same distal regulatory annotation).

Monocyte cis-eQTL data—A list of statistically significant cis-eQTL associations were 

downloaded from the supplemental materials from Fairfax et al. (Fairfax et al., 2014). Only 

cis-eQTLs within the longer list of dynamic regulatory elements were considered (n = 

14,005), not other filtering was performed. The filter for variable genes was reduced to 

generate a longer gene list (std. > 2, n = 1,983). Using this expanded list 370 cis-eQTLs with 

associated dynamic peak-gene pairs were available for analysis.

Data and software availability

The GEO accession number for the sequencing data reported in this paper is: GSE96772. 

Processed scATAC-seq data, which include PC values and TF scores per cell can be found in 

DataS1. The software developed for analyzing these data, which includes projecting 

scATAC-seq profiles onto bulk hematopoietic PCs and pairing single-cell ATAC-seq with 

single-cell RNA-seq, as well as processed data from this manuscript can be found in DataS2.

Additional resources

The data can be visualized in the UCSC genome browser using the track hubs representing 

bulk data (https://s3.amazonaws.com/JasonBuenrostro/scATAC_heme_label/hub.txt) and 

clusters of single-cell ATAC-seq data (https://s3.amazonaws.com/JasonBuenrostro/

scATAC_heme/hub.txt). This manuscript is accompanied by a web resource for visualizing 

the single-cell ATAC-seq data, which can be found at: http://schemer.buenrostrolab.com/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell chromatin accessibility reveals a heterogeneous hematopoietic 

landscape

• TF motif-associated chromatin variability in HSCs follow erythroid/lymphoid 

paths

• Characterization of two GMP subsets with chromatin and transcriptome 

differences

• Integrative analysis enables regulatory insights into cis and trans acting 

factors
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Figure 1. Single-cell ATAC-seq profiles chromatin accessibility within single hematopoietic 
progenitors
(A) A schematic of human hematopoietic differentiation. (B) Sorting strategy for CD34+ 

cells. (C) Single-cell ATAC-seq workflow used in this study. (D) Single-cell epigenomic 

profiles along the TET2 locus. (E) Percent fragments in peaks by number of fragments in 

peaks, red lines show cutoffs used for determining which cells pass filter; points are colored 

by density. (F) TF motif variability analysis in all single-cell epigenomic profiles collected 

for this study.
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Figure 2. Lineage projection of human hematopoietic progenitors
(A) (top) Hierarchical clustering of single-cell epigenomic profiles (columns) and TF motif 

accessibility z-scores (rows), (bottom) single cell profiles colored by their sorted 

immunophenotype identity. (B) t-SNE of TF z-scores shown in (A), cells are colored by 

their sorted immunophenotype identify. (C,D) Single-cell epigenomic landscape defined by 

PCA projection (see methods) colored by (C) cell type identity using immunophenotype and 

(D) density (see methods) overlaid with nominal trajectories expected from the literature, as 

shown in Figure 1A. PC projection colored by (E) GATA, (F) CEBPB, (G) ID3 and (H) 

HOXA9 TF motif accessibility z-scores.
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Figure 3. Molecular characterization of data-defined clusters
(A) Single-cell epigenomic landscape defined by PCA projection, colored by data-driven 

cluster number. (B) Medoids of data-driven centroids depicted on the PCA sub-space. (C) 

Confusion matrix of data-driven clusters representing the percent frequency of 

immunophenotypically defined cell types. (D) TF motif accessibility z-scores averaged 

across data defined clusters and hierarchically clustered. Scores are normalized by the max 

value of each TF motif. (E) TF motif variability and direction – log10 p-value for each TF 

motif for the HSC EIPP cluster, TFs sharing a similar motif are highlighted. (F-H) TF motif 

accessibility z-scores of HSC profiles for (F) RELA, (G) GATA2 and (H) MESP1 motifs, 

arrows denote the direction of the signal bias and are colored by the target cell type.
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Figure 4. Identifying continuous differentiation trajectories
(A–D) PC2 by PC3 projection of single-cells highlighting cells progressing through the 

inferred (A) erythroid, (B) lymphoid, (C) pDC and (D) myeloid developmental trajectory 

(black line), cells used for inference are colored by sorted identity, all other cells are shown 

in grey. (E) Sorting schema for different GMP progenitors defined by CD123 expression, 

marked by CD123 low (GMP-A, light-grey), CD123 medium (GMP-B, grey) and CD123 

high (GMP-C, dark-grey). (F) Bulk RNA-seq log2-fold-change and -(log p-value) for 

expressed genes comparing GMP-C and GMP-A. (G) Single-cells used for the myeloid 

trajectory colored by (left) their cluster identity (cluster colors as in Figure 3) or (right) their 

density along the trajectory. (H) Density of myeloid progression scores for 

immunophenotypically defined cell types, including the GMP subsets.
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Figure 5. Transcription factor dynamics across myeloid differentiation
(A) K-medoids clustering of TF motif accessibility (left) and PWM logos (right) for 

dynamic TF motif profiles across myeloid development. (B,C) Smoothed profiles of TF 

motif accessibility z-scores in myeloid progression for (B) HSC active TFs GATA1 (blue) 

and HOXB8 (green), and (C) monocyte active regulators CEBPD (yellow) and BCL11A 

(red), error bars (grey) denote 95% confidence intervals. (D) t-SNE of scRNA-seq data 

showing HSC, CMP, GMP and Monocyte cells. (E) Density of myeloid pseudo-time scores 

for (top) scATAC-seq and (bottom) computationally matched scRNA-seq profiles (see 

methods). (F,G) Log2 mean expression profiles for TFs (F) CEBPD and (G) GATA2 across 

myeloid pseudo-time, (top) individual cells are colored by their sorted identity, CD34+ cells 

are shown in black and (bottom) smoothed profiles are shown in red. (H) (left) Expression 

and (right) TF motif accessibility dynamics across myeloid pseudo-time for correlated (R > 

0.5) gene-motif pairs.
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Figure 6. Regulatory element dynamics links distal elements to genes
(A) Fragments per cell for a CEBPD distal element ordered by myeloid pseudo-time, (top) 

cells are colored by their sorted identity and (bottom) values are smoothed (blue), error bars 

(grey) denotes 95% confidence intervals. (B) Cis-regulatory and expression dynamics across 

four regulatory elements near the myeloid regulator CEBPD. (C) Accessibility (top) and 

expression (bottom) dynamics across myeloid pseudo-time, rows are sorted by their peak 

intensity in the myeloid trajectory. (D) Regulatory profiles surrounding the CEBPD gene, 

dynamic enhancers are highlighted in grey with significant (blue) and non-significant (grey) 

correlated peak-gene pairs shown as loops. (E,F) Mean Pearson correlation coefficients 

binned by (E) genomic distance to the gene and (F) loop confidence, error bars represent 1 

standard deviation on the estimate of the mean. (G) P-value of enriched peak-gene 

correlation or promoter capture HiC at cis-eQTLs overlapping dynamic enhancers.
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