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Abstract

Asthma, hay fever (or allergic rhinitis) and eczema (or atopic dermatitis) often coexist in the same 

individuals1, partly because of a shared genetic origin2–4. To identify shared risk variants, we 

performed a genome-wide association study (GWAS, n=360,838) of a broad allergic disease 

phenotype that considers the presence of any one of these three diseases. We identified 136 

independent risk variants (P<3x10-8), including 73 not previously reported, which implicate 132 

nearby genes in allergic disease pathophysiology. Disease-specific effects were detected for only 

six variants, confirming that most represent shared risk factors. Tissue-specific heritability and 

biological process enrichment analyses suggest that shared risk variants influence lymphocyte-

mediated immunity. Six target genes provide an opportunity for drug repositioning, while for 36 

genes CpG methylation was found to influence transcription independently of genetic effects. 

Asthma, hay fever and eczema partly coexist because they share many genetic risk variants that 

dysregulate the expression of immune-related genes.

The analytical approach used is summarized in Supplementary Fig. 1. We tested for 

association with allergic disease 8,307,659 genetic variants that passed quality control filters 

(Supplementary Table 1), comparing 180,129 cases who reported having suffered from 

asthma and/or hay fever and/or eczema, and 180,709 controls who reported not suffering 

from any of these diseases (Supplementary Table 2), all of European ancestry. Meta-analysis 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding author: Manuel A R Ferreira, PhD, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane 
Hospital, Herston QLD 4029, Australia, Phone: +61 7 3845 3552, Fax: +61 7 3362 0101, manuel.ferreira@qimrberghofer.edu.au.
10Current address: GlaxoSmithKline, Stevenage, UK
18A full list of members and affiliations appears in the Supplementary Note
§These authors jointly supervised this work.

Author Contributions 
Data collection and analysis in the contributing studies. AAGC study: M.A.F., M.C.M., S.C.D., L.M.B., P.J.T., N.G.M., D.L.D.; 
LifeLines study: J.M.V., G.H.K.; GENEVA study: H.B., E.R., M.H., A.F., N.N., H.S.,S.K., C.G., K.S., S.W.; GENUFAD studies: I.M., 
F.R., J.E-G., S.G., A.A., G.H., C.O.S., N.H., Y-A,L.; 23andMe study: C.T., D.A.H.; GERA study: J.D.H., J.S.W., R.B.M, E.J.; NTR 
study: Q.H., J-J,H., G.W., D.I.B.; CATSS, TWINGENE and SALTY studies: A.T., V.U., Y.L., P.K.E.M., C.A., R.K.; ALSPAC study: 
L.P.; HUNT study: B.M.B., L.F., M.E.G., J.B.N., W.Z., K.H., A.L., O.L.H., M.L., G.A., C.W.; UK Biobank study: L.P., M.A.F.
Methylation analysis: J.vD., D.I.B., R.J.
Biological and drug annotation: M.A.F., C.W.M., E.M., K.B., O.H., J.Z., J.A.R., J.B., B.B.
Quality control, meta-analysis, tables and figures: M.A.F.
Writing group: M.A.F., J.M.V., I.M., C.T., J.D.H., Q.H., A.T., V.U., J.vD., Y.L., J.E-G., B.M.B., J.B., S.C.D., S.W., P.K.E.M., R.J., 
E.J., Y-A.L., D.I.B., C.A., R.K., G.H.K., L.P.
Study design and management: M.A.F., D.A.H., B.M.B., S.W., P.K.E.M., R.J., E.J., Y-A.L., D.I.B., C.A., R.K., G.H. K., L.P.

Competing Financial Interests 
The authors declare no competing financial interests.

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2018 June 06.

Published in final edited form as:
Nat Genet. 2017 December ; 49(12): 1752–1757. doi:10.1038/ng.3985.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.nature.com/authors/editorial_policies/license.html#terms


of results from the 13 contributing studies (Supplementary Fig. 2) identified 99 genomic 

regions (i.e. loci) located >1 Mb apart containing at least one genetic variant associated with 

allergic disease at a genome-wide significance threshold of 3x10-8 (Fig. 1 and 

Supplementary Table 3). Based on approximate conditional analysis5, 136 genetic variants 

in these 99 loci had a statistically independent association with disease risk (Supplementary 

Table 4). Henceforth, we refer to these as “sentinel risk variants”, which either represent, or 

are in linkage disequilibrium (LD) with, a causal functional variant. These included 86 (in 

50 loci) located <1 Mb from risk variants reported in previous GWAS of allergic disease 

(Supplementary Table 5). Of note, 23/86 sentinel variants were in low linkage disequilibrium 

(LD, r2<0.05) with the previously reported risk variants, indicating that they represent novel 

associations in these loci. The remaining 50 sentinel variants (in 49 loci) were located >1Mb 

from previously reported associations (Supplementary Table 6), of which 17 were in low LD 

with nearby variants reported for other diseases or traits (Supplementary Table 7). Eighteen 

loci had multiple independent association signals (Supplementary Table 3). Altogether, we 

identified 73 (50+23) genetic associations with allergic disease that are new, a substantial 

increment over the 89 associations reported previously (Supplementary Fig. 3 and 

Supplementary Table 8).

As expected from a study design that maximized power to identify shared risk variants6, we 

found that 130 of the 136 sentinel variants had similar allele frequencies in case-only 

association analyses that compared three non-overlapping groups of adults: those who 

reported suffering from asthma only (n=12,268), hay fever only (n=33,305) or eczema only 

(n=6,276) (Supplementary Table 9). There was thus no evidence that these 130 variants have 

differential effects on the three individual diseases. The six variants with evidence for 

stronger effects in one allergic disease when compared to the other two were located in five 

known allergy risk loci (e.g. FLG and GSDMB, Fig. 2). On the other hand, many sentinel 

variants (26 or 19%) were also associated with the age at which symptoms of any allergic 

disease first developed (n=35,972, Supplementary Table 10), the allele associated with a 

higher disease risk being always associated with earlier age-of-onset (Supplementary Fig. 4). 

For 18 of those 26 variants, the effect on age-of-onset was not significantly different 

between individual diseases (Supplementary Table 10), suggesting that they influence the 

age at which symptoms first develop for all three diseases.

We then used LD-score regression analysis7 (see Methods) to quantify the liability-scale 

heritability of the three individual diseases that was collectively explained by the 136 top 

associations in the Nord-Trøndelag Health Study (HUNT, up to n=20,350), which was not 

part of the discovery meta-analysis. This was found to be 3.2% for asthma, 3.8% for hay 

fever and 1.2% for eczema, respectively representing about a fifth, a sixth and a tenth of the 

overall heritability of each disease that is explained by common single nucleotide 

polymorphisms (SNPs; Supplementary Table 11). Therefore, the inheritance of risk alleles at 

these loci partly explains why these three conditions coexist.

To understand the biological consequences of allergy risk variants, we then identified 

plausible target genes of the 136 sentinel variants. There were 5,739 transcripts annotated 

near (+/- 1 Mb) sentinel variants, including 2,569 protein-coding genes. For 132 of these 

transcripts, the nearby sentinel variant was in high LD (r2≥0.8) with either a non-
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synonymous SNP (22 genes; Supplementary Table 12) or a sentinel expression quantitative 

trait locus (eQTL) identified in relevant tissues or cell types (additional 110 genes; 

Supplementary Tables 13 and 14). We refer to these 132 transcripts as plausible target genes, 

which were located in 54 of the 99 risk loci (Fig. 1 and Supplementary Table 15). Studies 

that confirm the target gene predictions and identify the underlying functional variants are 

warranted; genes that could be prioritized for functional follow-up include 78 identified 

using a more conservative LD threshold (r2≥0.95; Supplementary Table 15) or 61 predicted 

to be the likely targets based on independent evidence from publicly available functional 

data (Supplementary Tables 16 and 17; see Methods for details). Of note, 79 (60%) of the 

132 plausible target genes have not previously been co-cited with allergy-related terms 

(Supplementary Table 15), and so potentially represent novel key contributors to disease 

pathophysiology (examples in Table 1).

Next, based on data from the GTEx consortium8, we identified broad tissue types in which 

the plausible target genes were disproportionally expressed, using the Tissue Specific 

Expression Analysis (TSEA) approach described previously9. We excluded genes located in 

the major histocompatibility complex (MHC) or not present in the TSEA GTEx database, 

leaving 112 plausible target genes for analysis. When compared to the remaining 17,671 

non-MHC genes in the genome, we found that the list of plausible targets was enriched for 

genes specifically expressed in whole-blood and lung (Fig. 3A). Both associations remained 

significant (Supplementary Fig. 5) after restricting the background gene list to the subset of 

12,804 non-MHC genes with eQTLs reported in the same studies used to identify the 

plausible target genes (Supplementary Table 13). These results indicate that the plausible 

targets are enriched for genes preferentially expressed in whole-blood and lung, and that this 

is unlikely to arise because the plausible targets were also enriched for genes with eQTLs in 

those tissues.

The enrichment in whole-blood and lung expression could be a general feature of arbitrary 

genes located near the sentinel risk variants. To address this possibility, we determined how 

often the enrichment observed with the plausible target genes was exceeded when analyzing 

1,000 lists of random genes. When genes were randomly selected from the same 98 non-

MHC allergy risk loci identified in the meta-analysis, matching on the number of plausible 

target genes identified per locus (range 0 to 11) and in total (i.e. 112), the enrichment 

observed in whole-blood was not exceeded in any of the 1,000 random lists when 

considering results for all 25 tissues tested (Fig. 3A and Supplementary Table 18). Similar 

results were observed for lung. For comparison, arbitrary genes were also selected from 2 

Mb loci drawn at random from the genome, or simply from all genes in the genome, and 

results were very similar (Fig. 3A and Supplementary Table 18). Randomly selecting genes 

from the subset with eQTLs also had no impact on the results (Supplementary Fig. 5). 

Therefore, we conclude that the enrichment in expression observed in whole-blood and lung 

was specific to the genes identified as plausible targets of sentinel risk variants.

To identify specific cell types that were likely to contribute to the enrichment in whole-

blood, we used an orthogonal approach10 that quantifies tissue-specific enrichments in SNP 

heritability rather than in gene expression. Specifically, this approach quantifies the trait 

heritability that is explained by SNPs that overlap cell type-specific regulatory annotations 
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measured by the ENCODE project in 100 different cell types. In this analysis, the strongest 

enrichment in SNP heritability was observed for regulatory annotations measured in helper 

T cells (including Th17, Th1 and Th2), regulatory T cells, CD4+ and CD8+ memory T cells, 

CD56+ NK cells and CD19+ B cells (Fig. 3B and Supplementary Table 19). These results 

are consistent with previous findings11 and the widely documented contribution of these T 

cell subsets to allergic responses. Similar results were obtained after removing the 136 top 

associations from our GWAS results (Supplementary Fig. 6 and Supplementary Table 19), 

indicating that the observed enrichments extend beyond genome-wide significant SNPs. 

These results demonstrate that genetic risk variants shared between asthma, hay fever and 

eczema, including but not limited to the ones that reached genome-wide significance, 

operate to a large extent by modulating gene expression in cells of the immune system.

To help understand how the sentinel variants might influence immune cell function, we then 

identified biological processes over-represented amongst the plausible target genes when 

compared to the rest of the genes in the genome (MHC excluded), using GeneNetwork12. 

As for the analysis of tissue-specific enrichment in gene expression, for each specific 

biological process, we compared the enrichment observed with the list of plausible target 

genes with that observed with 1,000 lists of genes randomly drawn from the same allergy 

risk loci. After correcting for the 3,770 biological processes tested, we found 35 pathways 

for which the enrichment observed with the plausible target genes was exceeded in <5% of 

the random gene lists (Fig. 3C and Supplementary Table 20). These included biological 

processes related to T and B cell activation, B cell proliferation and isotype switching, 

interleukin (IL-) 2 and IL-4 production, confirming a key role for the sentinel variants and 

the likely target genes on lymphocyte-mediated immunity. Other noteworthy enrichments 

were observed for pathways related to induction of cell death, lipid phosphorylation and NK 

cell differentiation.

Consistent with a widespread effect of allergy risk variants on immune cell function, many 

sentinel risk variants have been reported to associate with other immune-related traits, 

notably blood cell counts (Supplementary Table 21) and auto-immune diseases 

(Supplementary Table 22). The genetic overlap with auto-immune diseases was not 

restricted to sentinel variants, as evidenced by significant positive genetic correlations with 

celiac disease, Crohn's disease and inflammatory bowel disease obtained after excluding the 

136 top associations from our GWAS results (Supplementary Table 23). Other significant 

genetic correlations were observed for obesity- and depression-related traits, both previously 

suggested by twin studies13. The former provides support for a role of allergy risk variants 

in the regulation of metabolic homeostasis.

We then investigated whether any of the plausible target genes identified could potentially 

represent a new opportunity for drug repositioning, as shown by others14. We found that 29 

genes have been or are being considered as drug targets, including nine for the treatment of 

allergic diseases (Supplementary Table 24), four for auto-immune diseases (Supplementary 

Table 25) and 16 for other diseases (Supplementary Table 26), mostly cancer. Therefore, for 

20 genes, drugs currently in development for other indications might influence biological 

mechanisms underlying allergic disease. For six of these genes, the effect on gene 

expression of the allergy protective allele (Supplementary Table 27) and the existing drug 
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matched (Table 2), suggesting that the latter might attenuate (and not exacerbate) allergy 

symptoms, and so could be prioritized for pre-clinical testing.

Finally, based on data from the BIOS consortium15 (n=2,101), we found that a substantial 

fraction of target genes (36 or 27%) had a nearby CpG site for which methylation levels 

were significantly correlated with mRNA levels in blood, independently of SNP effects 

(Supplementary Table 28). This observation raises the possibility that environmental effects 

on the methylation state of these CpGs might influence target gene expression and, by 

extension, allergic disease risk. Well powered studies that address this possibility are 

warranted. In exploratory analyses, we tested the association between five established risk 

factors for allergic disease (see Methods) and the methylation state of expression-associated 

CpGs for those 36 genes (largest n=1,221). We observed only one significant association, 

between smoking and the methylation state of PITPNM2 (Supplementary Table 29), which 

was reported in a previous study16. These results indicate that smoking might influence the 

risk of allergic disease partly by modulating the methylation state of expression-associated 

CpGs for PITPNM2, a PYK2-binding protein17 potentially involved in neutrophil 

function18,19.

In conclusion, we substantially increased the number of known risk variants for allergic 

disease through a large GWAS of a multi-disease phenotype defined based on information 

from three genetically correlated diseases, asthma, hay fever and eczema. With a few 

exceptions, the variants identified had similar effects on the individual disease entities. The 

risk variants, and their likely target genes, are predicted to influence overwhelmingly the 

function of immune cells. Novel drugs for allergy are proposed based on genomics-guided 

drug repositioning. Finally, our results raise the possibility that environmental factors such 

as smoking might influence allergic disease risk through modulation of target gene 

methylation.

Online Methods

Meta-analysis of allergic disease GWAS results conducted in 13 studies (n=360,838)

In each of 13 participating studies (Supplementary Tables 1 and 2), a GWAS was performed 

using an additive genetic model in individuals of European descent that reported suffering 

from asthma and/or hay fever and/or eczema (case-group, total n=180,129), against those 

who never reported suffering from any of these three conditions (control group, total 

n=180,709). A detailed description of the procedures used to identify cases and controls, as 

well as for SNP genotyping, imputation and association testing, is provided for each study in 

the Supplementary Note.

Prior to the meta-analysis, standard quality control (QC) filters were applied to results from 

individual studies (Supplementary Table 1). After QC, and restricting the analysis to SNPs 

present in at least the two largest studies (UK Biobank and 23andMe, Inc., combined 

n=256,623), results were available for 8,307,659 variants, of which most (89%) were 

available in >95% of the overall sample size. Intercept estimates from LD score regression 

analysis 7, which reflect inflation of test statistics that are likely due to technical biases, 

ranged between 1.00 and 1.16 (Supplementary Table 1). Results from individual studies 
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were adjusted for the observed inflation by multiplying the square of the standard error of 

each genetic effect estimate by the respective LD score regression intercept. We then used 

METAL 20 to combine association results across studies using an inverse-variance-

weighted, fixed-effects meta-analysis. P-values from the meta-analysis were further adjusted 

for the meta-analysis LD score regression intercept of 1.04. The genome-wide significance 

threshold was set at 3x10-8, as suggested previously for GWAS analyzing variants with 

MAF≥1% 21.

Identification of independent associations through approximate conditional analyses

For each chromosome, we identified all SNPs with a P≤3x10-8, sorted these based on base 

pair position, and then grouped variants into the same locus if the distance between 

consecutive variants was <1Mb. Variants located >1 Mb from the previous genome-wide 

significant variant were assigned to a new locus. Next, for each of these loci, we identified 

statistically independent associations using approximate conditional analyses, as 

implemented in GCTA 5. We refer to these as sentinel risk variants. In these analyses, LD 

calculations were based on a subset of 5,000 individuals from the UKBiobank study. Briefly, 

for each locus, we (1) identified the most significantly-associated SNP [i]; (2) adjusted the 

summary statistics of all SNPs in that locus by the effect of that top SNP; (3) identified the 

most significantly-associated SNP [j] that remained genome-wide significant in that locus; 

(4) adjusted the summary statistics of all SNPs in that locus by the effects of SNPs i and j. 
We repeated this process until there were no SNPs associated with allergic disease at 

P≤3x10-8 after adjusting for the effect of other, more strongly independently associated 

variants in that locus. Lastly, we estimated the LD between sentinel variants located in 

different risk loci (i.e. >1 Mb apart) and confirmed that the r2 was always close to 0 (no pairs 

of sentinel variants with r2>0.02).

Determining the novelty status of independent SNP associations with allergic disease

Previous GWAS identified 185 SNPs associated with the risk of various allergic conditions, 

which we grouped into 89 independent associations based on the LD between variants (see 

Supplementary Note). We used that information to classify each of our independent SNP 

associations into two major groups: located in known (<1Mb from any of those 185 

previously reported associations; “KnownLocus”) or new (>1Mb from those variants; 

“NewLocus”) allergy risk loci. For the first group, we then estimated the LD between each 

sentinel variant identified in our study and all variant(s) reported in previous GWAS. If all 

reported variants had an r2<0.05 with our sentinel variant, then our association was 

considered to represent a new risk variant in a known risk locus (“KnownLocus-

NewVariant”). Alternatively, when at least one reported variant had an r2≥0.05, our 

association was considered to be a known risk variant in a known risk locus (“KnownLocus-

KnownVariant”). The second major group was composed of variants located in new allergy 

risk loci. Within this group, we used the same approach just described to determine if our 

associations were novel when considering any disease or trait with genome-wide significant 

associations reported in the NHGRI-EBI GWAS catalog.
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Comparison of risk allele frequencies between individuals suffering from a single allergic 
disease

By combining information from asthma, hay fever and eczema in the case-control definition 

used in our GWAS, we expected our study design to improve power to identify risk variants 

shared between, but not specific to any of, the three diseases 6. To understand if the 

associations discovered in our GWAS were indeed likely to represent risk factors shared 

across allergic diseases, we took advantage of the observation that not all affected 

individuals report allergic co-morbidities 1,22,23, and compared allele frequencies between 

three groups of adults: asthma-only cases (n=12,268), hay fever-only cases (n=33,305) and 

eczema-only cases (n=6,276). The studies that contributed to this analysis are indicated in 

Supplementary Table 1 and described in detail in the Supplementary Note. We performed 

three sets of association analyses contrasting three non-overlapping groups of individuals: 

asthma-only (g1) vs. hay fever-only (g2); asthma-only (g1) vs. eczema-only (g3); and hay 

fever-only (g2) vs. eczema-only (g3). These analyses are statistically independent from the 

case-control analysis carried out as part of the GWAS, which facilitates interpretation of the 

results. For a given sentinel SNP, results from these analyses indicate if the risk allele is 

more (odds ratio [OR] >1) or less (OR<1) common in e.g. group 1 (g1) when compared to 

group 2 (g2). For example, if a SNP contributed similarly to the risks of asthma and hay 

fever but not eczema, then one would expect an OR~1 in the asthma-only vs. hay fever-only 

comparison, but an OR>1 in the asthma vs. eczema and hay fever vs. eczema analyses. The 

significance threshold for these analyses was set at 1.2x10-4, which corresponds to a 

Bonferroni correction for the 136 SNPs and three sets of analyses performed (i.e. P<0.05/

(136x3)).

Association between sentinel risk variants and variation in allergy age-of-onset

There is considerable variation in the age allergic diseases are first reported, and this has 

been shown to be influenced by genetic risk factors 24. We therefore studied the association 

between the sentinel variants identified in our GWAS and age-of-onset observed in the UK 

Biobank study (n=35,972). For each individual, we first considered the earliest age of any 

allergic disease (asthma or hay fever/eczema; the latter two were covered by the same 

question, and so could not be differentiated) being reported. SNPs were tested for 

association with this phenotype, with sex and a SNP array variable included as covariates. 

The significance threshold used for this analysis was 3.6x10-4 (i.e. P<0.05/136). Because 

significant SNP associations with this broad age-of-onset phenotype could be driven by 

different risk allele frequencies amongst cases suffering from different individual conditions 

(for example, a FLG variant might be associated with earliest age-of-onset because it is 

more prevalent in eczema cases, which tends to precede the development of asthma and hay 

fever 25), we repeated the analysis by considering individuals who had reported suffering 

only from a single disease: asthma-only (n=7,445), hay fever-only (n=4,232) and eczema-

only (n=1,225). For a given SNP, differences in effect size (beta) between groups were 

quantified using the formula z = sigma / SE_sigma, where sigma = beta_groupA – 

beta_groupB, and SE_sigma = sqrt(SE_beta_groupA^2 + SE_beta_groupB^2), which 

follows a normal distribution.
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Estimating the contribution of the sentinel variants to the heritability of asthma, hay fever 
and eczema

Five steps were involved. First, we performed a GWAS of the individual diseases in the 

HUNT study, which was not included in the discovery meta-analysis. The HUNT study is 

described in greater detail in the Supplementary Note. Briefly, based on self-reported 

questionnaire information, we identified 1,875 cases and 16,463 controls for the asthma 

GWAS; 6,939 cases and 12,844 controls for the hay fever GWAS; and 2,630 cases and 

16,131 controls for the eczema GWAS. After quality control filters, we analyzed 7.6 million 

common variants (genotyped and imputed) for association with each individual phenotype. 

The genomic inflation factor (i.e. lambda) for these analyses were 1.049 for asthma, 1.078 

for hay fever, and 1.041 for eczema. Second, for each of the three diseases, we quantified the 

overall SNP-based heritabilities with LD score regression 7 using a subset of 1.2 million 

HapMap SNPs. To obtain a heritability estimate on the liability scale, we set the population 

prevalence to be the same as the sample prevalence, given that this was a population-based 

study. Third, we removed the 136 sentinel variants (and all correlated variants, r2>0.05) from 

the individual disease GWAS results. Fourth, we re-estimated SNP-based heritabilities as 

described for step two, but now using the GWAS results without the 136 top associations. In 

the fifth and final step, the contribution of the 136 sentinel variants towards the heritability 

of each disease was calculated as the difference between the SNP-based heritability 

estimated in steps two (all SNPs) and four (without 136 top associations).

Identification of plausible target genes of sentinel risk variants

Two independent strategies were used to identify plausible target genes underlying the 

observed associations. By 'target gene' we mean a gene for which protein sequence and/or 

variation in transcription is associated with a sentinel risk variant or one of its proxies 

(r2>0.8).

First, we used wANNOVAR 26 to identify genes containing non-synonymous SNPs 

amongst all variants in LD (r2>0.8) with any sentinel risk variant. SNPs in LD with sentinel 

risk variants were identified using genotype data from individuals of European descent from 

the 1000 Genomes Project 27 (n=294, release 20130502_v5a).

Second, to identify genes with transcription levels associated with a sentinel risk variant or 

one of its proxies (r2>0.8), we queried publicly available results from 39 published 

expression quantitative trait loci (eQTL) studies conducted in 19 tissues or cell types 

relevant to allergic disease (Supplementary Table 13). We used a conservative significance 

threshold to identify significant SNP-gene expression associations, specifically a P<2.3x10-9 

for cis effects (<1 Mb). We selected this threshold based on a Bonferroni correction that 

considers the total number of protein-coding genes (G) and the number of SNPs likely to 

have been tested per gene (M): P<0.05/(GxM). G was set at 21,742, based on the GeneCards 

database28, queried on October 19th, 2016. We approximate M to be 1,000, as indicated by 

others 29–31, and so the threshold becomes P=0.05/(21,472 genes x 1,000 SNPs per 

gene)=2.3x10-9. We did not use information from trans eQTLs to identify plausible target 

genes of sentinel risk variants, because often these are thought to involve indirect effects32 
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(e.g. sentinel SNP influences the expression of a transcript in cis, which in turn affects the 

expression of many other genes in trans).

For each eQTL study, and within each study for each tissue, we created a list of SNPs 

associated with gene expression in cis at a P<2.3x10-9. Then, for each gene in that study-

tissue dataset, we used the --clump procedure in PLINK to reduced the list of expression-

associated SNPs (which often included many correlated SNPs) to a set of ‘sentinel eQTLs’, 

defined as the SNPs with strongest association with gene expression and in low LD (r2<0.05, 

LD window of 2 Mb) with each other. This procedure was repeated for each of the 94 study-

tissue datasets listed in Supplementary Table 13. Finally, we identified as a likely target of a 

sentinel allergy risk variant any gene for which a sentinel eQTL in any of the 94 study-tissue 

datasets had an LD r2>0.8 with the sentinel risk variant. That is, we only considered genes 

for which there was strong LD between a sentinel variant and a sentinel eQTL, which 

reduces the chance of spurious co-localization. We did not use statistical approaches 

developed to distinguish co-localization from shared genetic effects because these have very 

limited resolution at high LD levels (r2>0.8) 33.

To help prioritize plausible target genes for functional validation in subsequent studies, we 

identified genes for which publicly available functional data supported not just the presence 

of chromatin interactions between an enhancer and a gene promoter (based on 5C34, 

promoter capture Hi-C35, ChIA-PET36 or in situ Hi-C37 data), but also an association 

between variation in enhancer epigenetic marks and variation in gene transcription levels 

(based on PreSTIGE38, H3K27ac enhancer and super-enhancer annotation 39, IM-PET40 or 

FANTOM541 analyses). We considered data from immune cell types, lung and skin 

(Supplementary Table 16) and putative enhancers that overlapped a sentinel risk variant (or 

one of its strongly correlated proxies, r2>0.95).

Genes that were unlikely to have been previously implicated in the pathophysiology of 

allergic disease were identified using the procedure described in the Supplementary Note.

Enrichment in tissue-specific gene expression

We used the TSEA approach 9 to identify tissues that were likely to be affected functionally 

by the biological effects of the sentinel risk variants. We implemented this approach locally 

using custom scripts. Specifically, for each of 25 broad tissue types studied by the GTEx 

consortium, we tested if genes with tissue-specific expression (based on a Specificity Index 

threshold 9 [pSI] of 0.05; listed in file 

TableS3_NAR_Dougherty_Tissue_gene_pSI_v3-1.txt, downloaded from http://

genetics.wustl.edu/jdlab/psi_package/) were enriched amongst the list of plausible target 

genes, when compared to the rest of the genes in the genome. After excluding genes without 

a pSI value and in the MHC, there were 112 plausible target genes and 17,671 background 

genes available for analysis. To test if the plausible target genes were enriched for genes 

with specific expression in a given tissue, we used Fisher’s exact test (one-sided). To rule out 

the possibility that a significant enrichment could arise because the list of plausible targets 

was enriched for genes with eQTLs, we repeated the analysis after restricting the 

background gene list to a subset of 12,804 genes that were found to have eQTLs in the same 

eQTL studies that were used to identify plausible target genes of sentinel variants.
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We also tested if a significant enrichment in tissue-specific expression could be a general 

feature of genes near sentinel risk variants, and not specific to the list of genes identified as 

plausible targets. To address this possibility, we generated 1,000 arbitrary gene lists, each 

containing 112 random genes instead of the plausible target genes. We selected genes at 

random from the 17,783 with an available pSI value and not in the MHC, using three 

strategies. First, genes were randomly drawn from allergy risk loci (+/- 1 Mb of a sentinel 

variant). To generate each list of random genes, for each non-MHC allergy risk locus L, we 

randomly selected a locus R from the subset of non-MHC allergy risk loci for which the 

number of genes available for selection was the same or greater than the actual number of 

plausible target genes (T) selected for that locus L. Then, for that locus R, we selected T 
genes at random from the available genes in that locus. This procedure was repeated for all 

non-MHC allergy risk loci, ensuring that the same locus was not selected twice in a given 

random dataset.

In the second strategy, genes were randomly drawn from 2 Mb loci selected at random from 

the genome. In this case, to generate each list of random genes, we first partitioned the 

autosomes (excluding the MHC) into 1,430 consecutive 2 Mb loci, and counted how many 

genes with an available pSI value were present in each of these loci. Then, for each non-

MHC allergy risk locus L, we randomly selected a locus R from the subset of 2 Mb loci for 

which the number of genes available for selection satisfied the following criteria: (1) was the 

same or greater than the actual number of plausible target genes (T) selected for that locus L; 

and (2) matched (within 10%) the number of genes available for selection for that locus L. 

This was important to ensure that the randomly selected locus R was comparable to the 

allergy risk locus L in terms of the number of genes available for selection. Then, for that 

locus R, we selected T genes at random from the available genes in that locus.

In the third and final strategy, we simply selected genes at random from all 17,783 non-

MHC genes with an available pSI value, ignoring where the genes were located in the 

genome. As a result, for a given random list, the genes selected could only be in close 

proximity to other genes in that same list by chance alone.

The same approach used to test the enrichment in tissue-specific expression for the plausible 

target genes was then used to analyze each of the 1,000 lists of random genes. For each of 

these lists, the smallest P-value observed across all 25 tissues tested was retained (Pmin). The 

proportion of random gene lists (out of 1,000) with a Pmin that was the same or lower than 

the enrichment P-value observed with the plausible target genes (Pobs) was then calculated. 

This corresponds to the probability of exceeding that enrichment when analyzing the 

random gene lists, after correcting for the 25 tissues tested. As we did for the analysis of the 

plausible target genes, we repeated the generation and analysis of random gene lists after 

restricting the genes available for selection (and the background gene list) to the subset of 

genes with a known eQTL.

Enrichment in tissue-specific SNP heritability

Finucane et al. 10 developed an approach to identify tissues likely affected by the functional 

effects of disease risk variants, called stratified LD score regression. This approach 

quantifies the contribution of SNPs located in tissue-specific regulatory annotations to the 
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overall disease heritability. As such, it does not require the identification of likely target 

genes of allergy risk variant and considers all SNPs in the genome, not just those with a 

genome-wide significant association with disease risk. Specifically, up to four histone marks 

(H3K4e1, H3K4me3, H3K9ac and H3K27ac) measured by the ENCODE project are used to 

define regulatory annotations (e.g. enhancers) in 100 different cell types. SNPs that overlap 

these regulatory annotations are then identified and their contribution as a group to the 

disease heritability quantified. As recommended by Finucane et al. 10, we ranked cell types 

based on the P-value of the regression coefficient, rather than the P-value of total 

enrichment. To ensure that significant SNP heritability enrichments were not explained by 

the effects of sentinel variants, we removed the top SNPs (and any variants with r2>0.05 

with these) from the meta-analysis GWAS results and repeated the LD score regression 

analysis.

Enrichment of biological processes

To identify biological processes enriched amongst the non-MHC target genes, we used 

GeneNetwork 12. With this approach, gene sets originally included in a given GO biological 

process (BP) were expanded to include other genes based on a 'guilt-by-association' 

procedure 12. After excluding BPs with <10 or >500 genes, 3,770 BPs were available for 

analysis. For each BP, we tested its enrichment amongst the list of plausible target genes as 

follows. First, we downloaded a gene set file containing z-scores for each of 19,976 unique 

genes in the genome from http://129.125.135.180:8080/GeneNetwork/resources/ontology?

ontology=GO_BP&term=[pathway]], where ‘pathway’ was replaced with the actual name of 

the BP being tested (e.g. “GO:0000002”). The z-score for gene X in that file reflects the 

probability that gene X is part of that BP. Second, we compared the distribution of z-scores 

between the list of plausible target genes (107 non-MHC genes were in the GeneNetwork 

gene set files, and so were available for analysis) and a background gene list of 18,193 genes 

(obtained after excluding MHC genes, the 107 plausible target genes and genes not listed in 

GENCODE release 19), using a one-sided Wilcoxon rank-sum test. The P-value from this 

test represents the probability that genes in that BP are enriched amongst the list of plausible 

target genes, when compared to the background gene list.

As for the enrichment analysis of tissue-specific expression, we estimated how often a BP 

enrichment observed with the list of plausible target genes would be expected had we 

sampled genes at random from the allergy risk loci or from random loci. This analysis 

addresses the possibility that an observed enrichment might not be a specific feature of the 

plausible target genes identified but instead a general feature of genes located near sentinel 

allergy risk variants, or simply in close proximity to each other. We used the same three 

strategies described above to generate 1,000 lists of random genes, sampling from the 

18,300 non-MHC with an available z-score and in GENCODE release 19. To determine if 

using eQTL information to identify plausible target genes could have biased the enrichment 

analysis, we generated and analysed random gene lists after restricting the genes available 

for selection to the subset with known eQTLs (12,913), but found very similar results (not 

shown).
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Common traits and diseases associated with allergic disease risk variants

We first identified all variants in LD (r2>0.8) with a sentinel risk variant using data from 

Europeans of the 1000 Genomes Project 27 (n=294, release 20130502_v5a), and extracted 

any associations with these reported in the NHGRI-EBI GWAS catalog database 42 (queried 

on December 13, 2016) or by Astle et al. 43, a large GWAS of blood cell counts 

(n=173,480). To complement this analysis, we estimated the SNP-based genetic correlation 

between our GWAS and results reported for 229 common traits or diseases, using LD Hub 

44. In these analyses, results from our meta-analysis were not corrected for the LD score 

intercept, either at the study level or after the meta-analysis.

Identification of target genes considered as drug targets for human diseases

To identify genes that encode transcripts that are targets of drugs considered for clinical 

development, we queried the Thomson Reuters Cortellis™ Drug database between 

November 7 and 15, 2016, which included 63,417 drugs. The drug search was carried out 

individually for each gene. First, a search query was built based on the following format: 

HGNC approved gene name OR alias_1 OR … OR alias_N. Gene name aliases were 

obtained from the Bioconductor annotation package org.Hs.eg.db. For example, to find 

drugs that target IL6R, the search query used was: "CD126" OR "IL-6R-1" OR "IL-6RA" 

OR "IL6Q" OR "IL6RA" OR "IL6RQ" OR "gp80" OR "IL6R" OR "interleukin 6 receptor". 

Second, after running the search query, results were filtered based on the ascribed “Target-

based Actions”, keeping only entries that corresponded to the gene name or an alias. For 

example, of the 65 results obtained with the IL6R query above, only for 20 did the target-

based action mention IL6R or an alias. Third, drug results were downloaded, and the gene 

and respective drug allocated to one of three groups: (1) gene with at least one drug 

considered for the treatment of allergic diseases; (2) gene considered for the treatment of 

immune-related conditions, but not allergic diseases specifically; and (3) gene considered for 

the treatment of other conditions.

Directional effect of the allergy protective allele on target gene expression

In an attempt to predict if existing drugs would be expected to attenuate or exacerbate 

allergic symptoms, we compared the effect on gene expression between the allergy 

protective allele and the existing drug. We acknowledge that this is a simplistic comparison, 

because it assumes that the effect of the protective allele is not tissue- or context-dependent, 

which is true for most but not all expression-associated SNPs 45–47, and extends to protein 

levels.

To determine if the allergy protective allele of a sentinel variant was associated with higher 

or lower target gene expression, we focused on the subset of target genes identified via an 

eQTL (see above). This was straightforward to assess when the sentinel SNP and the 

expression-associated SNP were the same variant: for example, if the allergy-protective 

allele had a negative effect (e.g. beta or z-score) on gene expression in the published eQTL 

study, then that allele was associated with lower gene expression. On the other hand, when 

the two SNPs did not correspond to the same variant, but were in high LD (r2>0.8) with each 

other, we first determined which allele of the expression-associated SNP was on the same 
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haplotype as the allergy-risk allele. Then we used that allele to infer the direction of effect of 

the allergy-risk allele on gene expression.

Modulation of target gene methylation by environmental risk factors

We first tested if variation in DNA CpG methylation was associated with variation in target 

gene expression, independently of SNP effects, using data from the Biobank-based 

Integrative Omics Study (BIOS) consortium that is described in detail elsewhere 15,48. 

Methylation and expression levels in whole blood samples (n=2,101) were quantified 

respectively with Illumina Infinium HumanMethylation450 BeadChip Kit arrays and RNA-

seq (2x50bp paired-end, Hiseq2000, >15M read pairs per sample). For each target gene, we 

identified CpG sites in cis (<250 Kb from gene) for which methylation levels were 

significantly associated with gene expression levels (FDR<5%), after adjusting the 

methylation levels for methylation-associated SNPs and expression levels for expression-

associated SNPs. Such CpG sites, called cis-eQTMs, were identified in a previous study 15 

and downloaded from http://genenetwork.nl/biosqtlbrowser. For most genes, there were 

multiple cis-eQTMs, and so we selected the CpG site most strongly associated with variation 

in gene expression for downstream analyses.

Next, we tested the association between methylation levels at these sentinel CpGs with five 

established risk factors for allergic disease using data from unrelated individuals of the 

Netherlands Twin Register (NTR) study, which was included in the BIOS consortium studies 

15,48. The risk factors tested were current smoking (n=1,221), maternal smoking (n=637), 

BMI (n=1,214), birth weight (n=1,015) and number of older siblings (n=775). Information 

on BMI and current smoking was collected as part of the NTR biobank project 49 at blood 

draw. Birth weight was obtained in multiple NTR surveys as previously described 50. 

Maternal smoking during pregnancy was measured in NTR Survey 10 (data collection in 

2013) with the following question: Did your mother ever smoke during pregnancy? with 

answer categories: no, yes, I don’t know. Information on the number of older siblings was 

obtained through self-report in NTR surveys 2, 3 and 6. For twin pairs, the answers were 

checked for consistency and missing data for one twin were supplemented with data from 

the co-twin where possible. Linear or logistic regression was used to test the association 

between methylation (β-value) and individual risk factors, with the following variables 

included as covariates: sex, age at blood sampling, methylation array row, bisulphite plate 

and white blood cell percentages (% neutrophils, % monocytes, and % eosinophils). The 

association with maternal smoking was tested while also adjusting for smoking status.

Data availability

Summary statistics of the meta-analysis without the 23andMe study are available at https://

genepi.qimr.edu.au/staff/manuelF/gwas_results/main.html. The full GWAS summary 

statistics for the 23andMe discovery data set will be made available through 23andMe to 

qualified researchers under an agreement with 23andMe that protects the privacy of the 

23andMe participants. Please contact David Hinds (dhinds@23andme.com) for more 

information and to apply to access the 23andMe data.
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Figure 1. Loci containing genetic risk variants independently associated with the risk of allergic 
disease at P<3x10-8.
The 136 sentinel risk variants were located in 50 previously reported (86 variants) and 49 

novel (50 variants) risk loci. The numbers of plausible target genes of sentinel risk variants 

identified for each locus are shown, with target gene names listed in blue font. For loci with 

many target genes, only a selection is listed. When no target gene was identified (black font), 

square brackets are used to indicate the location of the sentinel risk variant relative to the 

nearest gene(s). Specifically, when the risk variant was intergenic (indicated by "gene1--[]--

gene2"), the two closest genes (upstream and downstream) are shown; the distance to each 
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gene is proportional to the number of "-" shown. Otherwise, when the risk variant was 

located within a gene, the respective gene name is shown between square brackets (i.e. 

[gene]). Red vertical line in Manhattan plot shows genome-wide significance threshold used 

(P=3x10-8).
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Figure 2. Sentinel variants with significant allele-frequency differences in pairwise case-only 
association analyses contrasting individuals suffering from a single allergic disease.
For each sentinel variant, we performed three case-only association analyses, comparing 

asthma-only cases (n=12,268) against hay fever-only cases (n=33,305); asthma-only cases 

against eczema-only cases (n=6,276); and hay fever-only cases against eczema-only cases. 

After accounting for multiple testing, significant associations for at least one of these 

analyses were only observed for six of the 136 sentinel variants, which are shown in the first 

two rows of the figure. For a given variant, the vertices of the inner triangle point to the 

position along the edges of the outer triangle that corresponds to the allele frequency 
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difference observed between pairs of single-disease cases. For example, the rs61816761:A 

allele, which is located in the Fillagrin gene (FLG), was 1.32-fold more common in 

individuals suffering only from eczema when compared to individuals suffering only from 

hay fever (P=7.2x10-8), consistent with this SNP being a stronger risk factor for eczema than 

for hay fever. A similar result (OR = 1.26, P=0.0004) was observed for this variant when 

contrasting eczema-only cases against asthma-only cases. For comparison, a variant with no 

allele frequency differences in all three pairwise single-disease association analyses is also 

shown (rs2228145, in the IL6R gene). In this case, the three estimated odds ratios were 

approximately equal to 1. The color of the OR font reflects the significance of the 

association: red for P<1.2x10-4 (correction for multiple testing), blue for P<0.05 and black 

for P>0.05.
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Figure 3. Tissues and biological processes influenced by allergy risk variants.
(A) Enrichment of tissue-specific gene expression in 25 broad tissues studied by the 
GTEx consortium. We used the TSEA approach9 to test if genes specifically expressed in a 

given tissue were enriched amongst the list of plausible target genes when compared to other 

genes in the genome. The enrichment (y-axis) is shown as the -log10 of the Fisher’s exact 

test P-value. For comparison, we analyzed 1,000 lists of random genes instead of the 

plausible target genes. We selected genes at random using three strategies (see Methods for 

details). First, genes were randomly drawn from the 98 non-MHC allergy risk loci identified 

in our GWAS, matching on the number selected per locus and in total. The enrichment P-

value for each of the 1,000 lists of random genes is shown by a grey circle. The black-solid 

line shows the P-value for the 50th most significant random list (i.e. corresponding to the 5th 

percentile): under the null hypothesis of no enrichment, this P-value should be close to 0.05 

(horizontal grey line). Second, genes were drawn at random from 2 Mb loci selected at 

random from the genome, matching on the number of genes selected (and available for 

selection) per locus and in total. Third, genes were drawn at random from all 18,300 genes 

available for analysis. For the latter two strategies, the P-value for the 50th most significant 

random gene list is shown by the blue and yellow lines, respectively; enrichment results for 

each individual random dataset are not shown. Similar results were obtained after restricting 

the random genes and the background gene list to the subset of genes with eQTLs 

(Supplementary Fig. 5). Genes in the MHC were excluded from these analyses.

(B) Enrichment of SNP-based heritability in 220 individual cell type-specific regulatory 
annotations. We used stratified LD score regression analysis 10 to quantify the contribution 

of SNPs that overlap cell type-specific regulatory annotations to the SNP-based disease 

heritability. Annotations with an enrichment in SNP heritability (-log10 of the P-value of the 

regression coefficient, y-axis) that was significant after correcting for multiple testing 

(P<0.0002) are shown in black circles (top 10 listed in blue font; all results in 

Supplementary Table 19). SNPs in the MHC were excluded from these analyses.

(C) Biological processes enriched amongst the list of plausible target genes. We used 

GeneNetwork12 to test if the plausible target genes as a group were more likely to be part of 

a specific biological process category when compared to the rest of the genes in the genome. 

The enrichment (y-axis) is shown as the –log10 of the Wilcoxon rank-sum test P-value (see 

Methods for details). The top 10 pathways are listed in blue font. For comparison, we 

analyzed 1,000 lists of random genes generated using the same three strategies described 

above. For each of these strategies, the P-value for the 50th most significant random gene list 
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is shown by the black (random genes from allergy loci), blue (random genes from random 

loci) and yellow (random genes selected from all available genes) lines. Similar results were 

obtained after restricting the random genes and the background gene list to the subset of 

genes with eQTLs (not shown). Genes in the MHC were excluded from these analyses.
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