
Evaluating the contribution of genetic and familial shared 
environment to common disease using the UK Biobank

María Muñoz1, Ricardo Pong-Wong1, Oriol Canela-Xandri1, Konrad Rawlik1, Chris S. 
Haley1,2, and Albert Tenesa1,2,3

1The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, 
Easter Bush Campus, Midlothian, EH25 9RG, UK

2MRC Human Genetics Unit at the MRC Institute of Genetics and Molecular Medicine, University 
of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK

Abstract

Genome-wide association studies have detected many loci underlying susceptibility to disease, but 

most of the genetic factors that contribute to disease susceptibility remain unknown. Here we 

provide evidence that part of the missing heritability can be explained by an overestimation of 

heritability. We estimated the heritability of twelve complex human diseases using family history 

of disease in 1,555,906 white European individuals from the UK Biobank. Estimates using simple 

family-based statistical models were inflated on average by ~47% comparing with those from 

Structural Equation Models (SEM) that specifically accounted for shared familial environmental 

factors. In addition, heritabilities using SNP data explained an average of 44.2% of the simple 

family-based estimates across diseases and an average of 57.3% of SEM estimated heritability and 

accounted for almost all of the SEM heritability for hypertension. Our results show that both 

genetics and familial environment make substantial contributions to familial clustering of disease.

Introduction

The causation of most common human diseases is complex, being influenced by a 

combination of genetic and environmental factors1. The development of genome-wide 

association studies (GWAS) has allowed the detection of many genetic variants associated 
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with these diseases. However, these variants only explain a fraction of the heritability 

estimated in previous family-based studies and hence there is a “missing heritability” that 

remains unidentified2. One possible explanation for this missing heritability is that previous 

heritability estimates could be inflated because family environmental effects were not 

specified in the model or because they could not be estimated due to the study design3. 

Furthermore, comparisons of heritability explained by SNPs identified through GWAS or the 

hidden heritability estimated from genome-wide arrays (that is, the SNP heritability which 

captures the contribution of common variants including those not yet detected as genome-

wide significant due to lack of power) with published estimates of heritability possess some 

important challenges. For instance, the populations from which family-based heritability 

estimates were obtained may differ from those used in the GWAS studies in definition or 

prevalence of disease or genetic background. These, and other factors3, make assessments of 

heritability estimates for disease from familial and GWAS studies difficult and in some 

instances inappropriate.

The objective of the current study was to estimate the heritability of twelve complex human 

diseases using self-reported personal and family history of disease in 1,555,906 white 

European participants and relatives from the UK Biobank, which comprise over 2% of the 

UK population.

Results

Data overview and Relative Risks

The UK Biobank contains disease and trait data, as well as biological samples collected 

from around 500,000 participants and has as its main objective to identify ways of 

improving the prevention, diagnosis and treatment of complex diseases4. UK Biobank 

participants were measured for multiple traits and questioned about their lifestyle, 

environmental risk factors and medical history and gave their informed consent following 

strict protocols5. Here we use information from the family disease history reported by 

participants to estimate the heritability and the environmental contributions to the liability of 

twelve broadly defined complex diseases: heart disease, stroke, chronic bronchitis, 

hypertension, diabetes, Alzheimer's disease, Parkinson's disease, severe depression and lung, 

bowel, prostate and breast cancers (Supplementary Table 1). Accuracy of self-reported 

health status was assessed and is discussed in the supplementary information 

(Supplementary note and Supplementary Tables 2 and 3).

Disease prevalence was higher among men than among women for all diseases except for 

severe depression, which was more prevalent among women (Supplementary Table 4). 

Generally, disease prevalence was higher among the parents of the participants than among 

the participants and their siblings, suggesting an age-related increase in disease liability. The 

relative risks (RR) of parents (RRPO) and siblings (RRSIB) of ill individuals participating in 

UK Biobank were estimated for each disease. In addition, the relative risk for partners of 

affected individuals was estimated using information from the parents of the participants 

(RRPAR). All the relative risks were significantly larger than one (Supplementary Figure 1). 

Overall, the relative risks for the estimates of RRPO and RRSIB that combined information 

from blood and adopted relatives were higher than those for RRPAR, except for hypertension 

Muñoz et al. Page 2

Nat Genet. Author manuscript; available in PMC 2018 June 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and lung cancer. These estimates of relative risks suggest that combinations of both genetics 

and shared environmental risk factors contribute to the causation of these diseases 

(Supplementary Figure 1).

Heritability Estimates using Falconer’s Method

We estimated heritability values (h2) from either the correlations or regression coefficients 

(b) of the first-degree family pairs: parents-offspring (participants), siblings-participants and 

parents-siblings of participants (to provide h2
PO, h2

SIB, and h2
PSIB, respectively) following 

Falconer’s Method (Methods). Correlations or regression coefficients using information of 

adoptive parent-offspring (bAPO) and adoptive sibling (bASIB) pairs, and parents of 

participants (partners, bPAR) were also calculated. Estimates among concordant and 

discordant gender pairs were calculated using a method that takes into account differences 

between sexes1, then these estimates were combined using a weighted mean of b across all 

gender pairs. Across generation differences in disease prevalence were taken into account 

using a control population of the same age for comparison1. Genetic correlations between 

genders were close to one, but tended to be lower than one (Supplementary Table 5).

All heritability estimates from first-degree family pairs were significantly different from 

zero (Table 1). The highest h2
PO value was noted for depression (0.491±0.007) whereas the 

highest h2
SIB was observed for prostate cancer (0.707±0.062). Estimates of h2

PO were 

significantly lower than those of h2
SIB for heart disease, stroke, hypertension, diabetes, and 

prostate and breast cancers, suggesting the existence of non-additive genetic effects or a 

greater environmental similarity between siblings than between parents and their children. 

The highest value of the regression from adoptive parent-offspring pairs, bAPO, was 

observed for severe depression (0.250±0.036) suggesting an important influence of shared 

family environmental effects on this disease. The adoptive parent-offspring regression, 

although much smaller than for depression, was also significantly greater than zero for heart 

disease, bronchitis and breast cancer. Hypertension had a high value for the correlation 

between partners, bPAR, (0.203±0.002) and a low value for bAPO (0.035±0.021) indicating 

the importance of environmental effects shared by partners but that are not shared between 

parents and their offspring, and/or positive assortative mating for hypertension or a trait or 

combination of traits highly correlated with hypertension.

Significant positive regression or correlation coefficients from adopted pairs and partners 

(e.g. parents of participants) suggest the potential existence of various environmental effects 

shared by family members. Hence estimates of heritability obtained using only blood 

relatives or from models that do not account for the full complexity of shared environmental 

effects may be inflated (Supplementary Table 6)6–13.

Heritability Estimates using Structural Equation Modelling

Heritabilities estimated from SEM were in general lower than those estimated using 

Falconer’s method, with significant family environmental effects detected for all the diseases 

except for Parkinson’s disease (Table 2, Supplementary Table 7). Although for most 

diseases, genetic effects were the major attributable contribution to disease liability, for 

hypertension the sum of the effects due to shared familial environment was more important 

Muñoz et al. Page 3

Nat Genet. Author manuscript; available in PMC 2018 June 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



than genetic effects (A = 0.28 and C+S+P = 0.33). The estimated partner effect (P = 0.13) 

for hypertension and the common family effect (C = 0.15) for depression were high. High 

values of P inform about shared environment among partners or perhaps the presence of 

assortative mating. The physiological nature of hypertension mitigates against the possibility 

of assortative mating and it seems more likely that the high estimate for P is due to 

environmental factors shared by partners such as diet. However we cannot conclusively 

differentiate among these possibilities without more information such as the length of 

cohabitation14. The relatively large estimate of the common family effect for depression 

(C=0.15) would account for approximately half the correlation in the liability for depression 

between first degree relatives (as the expected correlation = A/2 + C) and would be 

important to consider in future studies of depression. Similarly our estimates suggest that at 

least a half of the correlation in disease liability between siblings is due to the combined 

effects of common family (C) and sibling (S) environment for heart disease, hypertension 

and lung cancer.

Simulations

To test the performance of our analytical methods we simulated data for the twelve different 

diseases using the genetic and environmental contributions to liability estimated under the 

full model for each disease and the corresponding values of prevalence for fathers, mothers, 

participants and siblings (Supplementary Table 8). We analyzed ten replicated simulations 

for each disease to estimate the liability components. The means of liability components of 

the ten replicates were similar to those used to perform the simulations (Supplementary 

Tables 8 and 9). Performing model comparison within each replicate (Methods), recovered 

the model used to simulate data in more than 50% of the replicates for 4 of the 12 diseases 

(heart disease, hypertension, severe depression and prostate cancer) (Supplementary Table 

10). However, even for the instances where the true generating model was not recovered, the 

means of genetic parameters across replicates were similar to those used to simulate data 

(Supplementary Table 11). Fitting an AE model ignoring familial environment to the 

simulated data yielded an overestimation of the heritability for all diseases (Supplementary 

Table 12).

Heritability using SNPs

We obtained SNP heritability estimates using 525,242 SNPs in the genotyped subsample of 

114,264 unrelated individuals for those diseases with prevalence higher than 0.50% 

(Methods). The SNPs explained an average of 44.2% of the Falconer’s method estimates, 

44.0% of the SEM family–based heritability estimates using the AE model (Omitting family 

environmental factors - Supplementary Table 13) and 57.3% of the SEM family–based 

heritability estimates under the most parsimonious adequate model including family 

environmental factors, respectively, across diseases. The SNP heritability explained ~100% 

of the SEM heritability estimate for hypertension (Figure 1, Table 3), which suggests that, 

for this high-prevalence disease where we could model a large number of familial 

environmental factors, there might be little or no missing heritability. Conclusions from SNP 

heritability estimates were similar when SNPs were split into common and rare minor allele 

frequency (MAF) groups and the joint heritabilities of these two groups were estimated 

(Supplementary Table 14). However, as previously reported by Mancuso et al15 and Yang et 
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al16 and) these estimates were generally slightly lower than estimates based on a single 

variance component of common and rare variants.

SNP heritability estimates from self-reported and medical records (Supplementary Table 15) 

were not significantly different from each other, supporting the usefulness of the self-

reported records. This was further confirmed by the similarity in the number of published 

GWAS hits with significant associations in the UK Biobank data using the self-reported 

definition of disease or the definition of disease from medical records (Supplementary Table 

16).

Discusion

In the current study, we estimated the heritabilities of twelve diseases from family-based 

data using a model which does not take into account environmental factors shared by the 

family members (Falconer’s method) and a SEM method which enables joint estimation of 

these environmental factors and genetic factors. For most diseases, we obtained lower 

heritability values with the SEM method than with Falconer’s method associated with 

significant shared environmental effects. Therefore, the heritability estimates using SNPs 

were closer to SEM family-based heritability values than to those from Falconer’s method. 

Indeed for hypertension the heritability estimates using SNPs was similar to the SEM 

family-based heritability.

Recently, Yang et al16 have used information from simulated and observed data and analysis 

of high density imputed data to conclude that there is limited evidence for missing 

heritability for height and BMI once potential overestimation of heritability in family-based 

studies is taken into account. Zaitlen et al17 studied twenty three traits in the Icelandic 

population and suggested that most of the “missing heritability” is likely due to rare variants 

not included in the genotyping array but also reported that the excess correlation among 

close relatives was mostly accounted for by shared environment. Finally, Liu et al18 have 

also shown that models accounting for a diverse source of shared environmental effects 

should be tested to avoid bias in heritability estimation for a number of quantitative traits. In 

agreement with Zaitlen et al17, our very large study provides evidence that part of the 

missing heritability may be due to previous inflated heritability estimates and demonstrates 

this for important binary disease traits.

This study was based on a large cohort from the UK population, allowing us to estimate 

heritability with much narrower confidence intervals than in previous studies. In addition, 

models accounting for different environmental components shared by family members could 

be implemented due to the information available for different first-degree blood and adoptive 

relatives. The twelve diseases analyzed in this large cohort of individuals show significant 

but moderate values of heritability and an important impact of shared familial environmental 

effects and support the case for combining these factors with genetic marker information in 

order to improve the performance of disease-risk prediction methods19,20. Our results are 

very relevant when assessing the potential for the development of personalized medicine, 

providing realistic expectations of the value of genetic testing. In addition, demonstration of 
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the importance of environmental risk factors that contribute to the aggregation of disease 

within families motivates research to identify and moderate these factors.

Online Methods

UK Biobank Data

The UK Biobank database) includes 502,682 participants who were aged between 49-69 

years when recruited between 2006 and 2010 from across UK to take part of the project. The 

study was approved by the National Research Ethics Committee (REC reference: 11/NW/

0382). The participants filled several questionnaires about their lifestyle, environmental risk 

factors and medical history and gave their informed consent4. The comprehension and 

acceptability of each question, the time taken to complete each of them, and their response 

distributions were examined in pilot studies, which aided the final selection and presentation 

of suitable questions. Self-reported medical history was confirmed by a trained nurse and 

where necessary by a medical doctor. Moreover, a pre-visit questionnaire was provided to 

participants before attending the assessment center, this questionnaire afforded participants 

the opportunity to record personal information such as family history before the visit to the 

assessment center to minimize problems of recalling. These details were entered directly 

into the assessment center computer and the questionnaire was not retained5. The UK 

Biobank contains information on about 445 types of diseases and 81 cancers in participants 

and the familial medical history of twelve broadly defined diseases among blood and 

adoptive fathers, mothers and siblings. Participants were considered as adopted when they 

answer “Yes” to the question: “Were you adopted as a child?”.

Family pairs (parent-offspring, sib-sib, parent-sibs and partners) were characterized for these 

twelve diseases, which include different subcategories in participants. The diseases analyzed 

were: heart disease (twenty-five subcategories), stroke (three subcategories), chronic 

bronchitis (three subcategories), hypertension (two subcategories), diabetes (four 

subcategories), Alzheimer's disease, Parkinson's disease, severe depression, lung cancer (two 

subcategories), bowel cancer (five subcategories), prostate and breast cancers 

(Supplementary Table 1). Those participant who answered “not to know” or “prefer not to 

answer” when they were asked about the disease status of relatives were removed from the 

analyses. Disease status of sibling was only considered when participants reported to have 

one sibling since they just had to report if at least one sibling had the corresponding disease 

and it was not possible to know how many siblings had suffered the disease when 

participants had more than one sibling. Disease status of 470,640 participants, 464,302 

blood mothers, 459,716 blood fathers, 152,887 blood siblings, 4,962 adoptive mothers, 

4,580 adoptive fathers and 1,819 adoptive siblings were used in the analyses. Those 

participants declared to have “white”, “British”, “Irish” or “Other white” ethnic background.

Medical Records

Data from medical records were used to test the accuracy of ten self-reported diseases. The 

type of medical record used to define a disease was different depending on the disease and 

was chosen because it was considered to be the best indicator of the disease available. 

Supplementary Table 2 shows the categories used to define each disease. There were 
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available three kinds of medical records in the UK Biobank: data of hospitalization, 

medication/treatment and cancer register.

• Data of hospitalization. Summary of the distinct main diagnoses codes a 

participant has had recorded across all their episodes in hospital. Heart disease, 

stroke, bronchitis, diabetes and Parkinson’s and Alzheimer’s diseases were 

defined with records from this register.

• Medication/treatment. Medication self-reported by the participant used to treat 

the disease. Hypertension, diabetes and depression were defined with records 

form this registers.

• Cancer Register. Data from the UK Cancer Register was used to define the 

cancer diagnoses.

Accuracy of self-reported data and family health status

Accuracy of self-reported health status was evaluated estimating the sensitivity, specificity, 

positive (PPV), and negative (NPV) predictive values among self-reported data and medical 

records from cancer register, hospitalization records and medication. The sensitivity was 

estimated as the percentage of individuals who self-reported having a disease among all 

those who appeared in the corresponding register as ill or taking the medication for the 

disease analyzed, the specificity was calculated as the percentage of those who self-reported 

being healthy for a particular disease among those who did not appear in the corresponding 

register or did not report taking medication for the corresponding disease. Positive predictive 

value (PPV) is the percentage of individuals who appeared in the corresponding register or 

were taking medication for a particular disease among those who self-reported having a 

disease, and the negative predictive value (NPV) is the proportion of those who did not 

appear in the registers or they did not report taking medication for the disease analyzed 

among those who did not report to have a particular disease. There were a total of 305,695 

participants with hospitalization records that were used to estimate the accuracy of the self-

reported phenotypes.

Prevalence

Prevalence of diseases in the UK Biobank were estimated as the number of people found to 

have a disease divided by the total number of individuals studied and their standard errors 

(SE) were estimated using the following formula:

SE = p(1‐p)
n

where p is the prevalence and n is the total number of individuals studied.

Relative Risks

Relative risks of disease in the UK Biobank were estimated as follow21:
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RR =
a

a + b
a + c

a + b + c + d

where a was the number of ill relatives of ill participants, b was the number of healthy 

relatives of ill participants, c was the number of ill relatives of healthy participants and d was 

the number of healthy relatives of healthy participants. The relative risk of parents (RRPO) 

and the relative risk of siblings (RRSIB) were estimated using this formula. The relative risks 

of partners, who are parents of participant, (RRPAR) was calculated in a similar way. The 

95% confidence intervals (CI95%) were estimated as:

CI95 % = e
loge(RR) ± 1.96s

where RR is the corresponding relative risks and s is estimated as:

s = a2 + bc
a(a + b)(a + c) ‐ 1

a + b + c + d

The minimum number of pairs in which both individuals are affected needed to estimate RR 

is one. In our dataset, the lowest number of pairs available to estimate RR was 33.

Heritability estimates

Diseases were treated as binary traits assumed to be determined by an underlying normal 

distribution of liability to disease. The correlation or regression among relatives (b) was used 

to estimate the heritability (h2 = 2b) of liability to disease. Method 4 described by Falconer1 

was used to estimate b:

b =
pg(Xc‐Xr)

αg

where pg is the prevalence of the disease in the relevant population within the UK Biobank, 

xc is the deviation of the threshold of liability that defines disease status from the mean of 

relatives of healthy participants, xr is the deviation of the threshold of liability that defines 

disease status from the mean of relatives of ill participants, and αg is the mean liability 

deviation of the ill participants from the mean liability of the relevant population within the 

UK Biobank. The sampling variance (Vb) of b was estimated according to appendix C of 

Falconer1 and confirmed by bootstrapping. The minimum number of pairs in which both 

individuals are affected needed to estimate b was one. In our data set the lowest number of 

pairs available to estimate b was three (in the adoptive pairs).

Across generation differences in disease prevalence were taken into account using an 

appropriate control population for comparison. Since prevalences among genders were 

different, four estimates according gender pairs were estimated using this method, which 
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allows controlling for differences in gender and age prevalence when the variance in mean 

liability is different. The following sets of relatives were used: parent-offspring, sib-sib and 

parent-sib of participants (blood and adoptive) except for prostate and breast cancers where 

we only estimated same gender correlations. Moreover, b was estimated among the parents 

of the participants. For each relationship class, the correlations or regressions obtained from 

the four gender-parings were combined into a single weighted mean (bw), the weight being 

the reciprocal of the sampling variance of each regression coefficient. The sampling variance 

(Vbw) was calculated as the reciprocal of the sum of the weights and the standard error of 

the heritability was obtained as the square root of 4Vbw.

Genetic correlation

Genetic correlation (rG) between sexes was calculated for all the diseases except for prostate 

cancer and breast cancer which are expressed mostly in one sex. The following formula was 

used22:

rG = (bFEMALE‐MALEbMALE‐FEMALE)/(bFEMALE‐FEMALEbMALE‐MALE)

where bFEMALE-MALE is the regression/correlation of mother-son or sister-brother 

bMALE-FEMALE, the regression/correlation of father-daughter or brother-sister, 

bFEMALE-FEMALE, the regression/correlation of mother-daughter or sister-sister and 

bMALE-MALE the regression/correlation of father-son or brother-brother.

Liability components

The liability to disease is the sum of genetic and different environmental effects. The 

distribution of the liability has a threshold value which differentiates between healthy and ill 

individuals. This threshold is based on the prevalence of the disease. As the prevalences are 

different in parents, siblings and participants, different thresholds must be assumed.

To estimate the liability parameters we can define the following structural equation:

L = A + C + S + P + E

where, A are genetic effects (assumed additive in the liability scale)23; C are environmental 

effects shared in common by all family members; S are environmental effects shared by 

siblings but not their parents which may include non-additive genetic effects; P are 

environmental effects shared among parents of participant (i.e. among partners) but not their 

children; and E are residual effects (including environmental effects specific to an individual 

and measurement error).

The correlations between each pair of blood and adoptive relatives for genetic and 

environmental components are set to fixed values according to their degree of genetic and 

environmental relationship. For example, blood parents-offspring pairs are correlated 0.5 for 

the genetic factors and 1 for common environmental effects. All the corresponding 

correlation values are shown in the Supplementary Figure 2. The relative importance of 
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these components was evaluated using structural equation models (SEM) using OpenMx 

software version 1.4-353224.

Data of 210,787 blood and 4,184 adoptive families with one or two offspring (i.e. the 

participant and one sibling) were used to estimate liability components. A full model 

including all the effects (ACSPE) and all reduced models including genetic effects but 

removing one or more environmental effects were fitted. Each model was run 1,000 times 

and the run that converged with the maximum likelihood was chosen for model comparison. 

The relative fit of nested models was compared using hierarchic chi-square tests because the 

difference between the likelihood for a reduced model and that for the full model is 

approximately distributed, as a chi-square with df = df(full model) - df(reduced model). For 

each disease we started with the simplest model and included more parameters until we 

obtained the most parsimonious but adequate model that did not fit the data significantly 

worse than the full model.

Simulations

We simulated pedigrees with the same structure of families as in the real data comprising 

210,787 blood and 4,184 adoptive families. To simulate the diseases, the prevalences of each 

disease in fathers, mothers, participant and siblings were used together with the parameters 

obtained using the full model (Supplementary Table 8). The full model was fitted using 

OpenMx following the same procedure as with real data. Analyses with 10 simulation 

replicates for each disease were performed to estimate liability parameters. The means and 

standard deviations of the 10 replicates for each of the liability components were estimated. 

Model comparison for each replicate was carried out in the same way as with real data.

Genotype Quality Control

We use data from the genotyped individuals in phase 1 of the UK Biobank genotyping 

program. In this phase, 49,979 individuals were genotyped using the Affymetrix UK 

BiLEVE Axiom array and 102,750 individuals using the Affymetrix UK Biobank Axiom 

array. Further details regarding genotyping procedure and genotype calling protocols are 

available at the UK Biobank website. We excluded multi-allelic markers, SNPs with an 

overall missing rate higher than 2% or with a strong platform specific missing bias (Fisher’s 

exact test, P < 10-100). We also excluded individuals with a missing rate higher than 5%, 

with a self-reported sex different from the genetic sex estimated from the X chromosome 

inbreeding or those with an excess of heterozygosity according to the UK Biobank internal 

QC procedures.

A reduced dataset of 151,532 individuals remained after filtering. In addition to this, 

common and rare variants (i.e. with a MAF > 0.0036) and those that did not exhibit 

departure from Hardy-Weinberg equilibrium (P < 10-50) in the unrelated (subset of 114,264 

individuals with a relatedness below 0.0625) White-British cohort were kept. The genotype 

quality control and data filtering was performed using plink25.
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SNP heritability estimates

SNP heritability estimates were estimated in a subset of 114,264 individuals for nine out of 

the twelve diseases with a prevalence in the population higher than 0.50% (heart disease, 

stroke, chronic bronchitis, hypertension, diabetes, severe depression and bowel, prostate and 

breast cancers) using self-reported data and medical records.

To estimate the heritability for each disease and data set, the genetic relationship matrices 

(GRMs) were computed fitting simultaneously 525,242 SNPs in the following mixed lineal 

model:

y = Xβ + Wu + ϵ

where y is the vector of phenotypes (diseases), β is the vector of fixed effects and covariates 

which included age of participant, the 20 first principal components and gender (except for 

prostate and breast cancer), u is the vector of SNP effects distributed as u ∼ N 0, I,u
2 , I is the 

identity matrix, and ϵ is a vector of residual effects distributed as ϵ ∼ N(0, Iσϵ
2) . W is a 

genotype matrix defined by the equation:

Wik =
(sik − 2pk)

2pk(1 − pk)

where sik is the number of copies of the reference allele for the SNP k of the individual i, 
and pk is the frequency of the reference allele for the SNP k. Under this model, the variance 

of y is:

var(y) = Aσg
2 + Iσϵ

2

Where A is the GRM, σ2
g the genetic variance and σ2ε the residual variance. Variance 

components were estimated using restricted maximum likelihood (REML). These analyses 

were performed using DISSECT26.

In addition to this, a two variance component model splitting the SNPs into 319,037 

common SNPs (MAF>0.05) and 206,205 rare SNPs (0.0036<MAF<0.05) was fitted for each 

disease.

y = Xβ + Wcommonucommon + Wrareurare + ϵ

where, ucommon and urare are the vectors of SNP effects for common and rare variants, 

respectively. Wcommon and Wrare are the genotype matrices defined for common and rare 

variants, respectively.

Under this model, the variance of y is:
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var(y) = Acommonσgcommon
2 + Arareσgrare

2 + Iσϵ
2

where Acommon and the Arare are the GRMs computed using the common and rare variants, 

respectively. σ2
gcommon and σ2

grare are the genetic variances explained by the common and 

rare variants, respectively.

The heritability estimates were transformed to the liability scale using the following 

equation:

hL
2 = h(0, 1)

2 P(1‐P)

Z2

where h2
L is the heritability in the liability scale is the heritability in the liability scale h2

(0,1) 

is the heritability in the observed scale obtained from the REML analyses, P is the 

prevalence of the disease in the cohort and Z is the height of the standard normal probability 

density function at the threshold that truncates the proportion P23.

The percentage of SEM family-based estimates of heritability explained by SNPs was 

calculated as the ratio between h2
SNPs and h2

SEM multiplied by 100 and the standard error of 

the percentage was calculated according to Stuart et al27 as:

SE % =
hC + RSNPs
2

hSEM
2

2 σ
hC + RSNPs
2

2

hC + RSNPs
4 +

σ
hSEM
2

2

hSEM
4 − 2COV C + RSNPs, SEM

hC + RSNPs
2 hSEM

2 × 100

where h2
C+RSNPS is the heritability explained by common and rare SNPs, h2

SEM is the 

heritability using SEM family-based, σ2h2
C+RSNPs is the standard deviation of h2

C+RSNPS, 

σ2h2
SEM is the standard deviation of h2

SEM, C+RSNPs are related to the distribution of the 

estimates of h2
C+RSNPS and SEM related to the distribution of the estimates of h2

SEM. We 

cannot estimate 2COV(C+RSNPs,SEM) and assume this value is equal to 0.

Testing of GWAS hits for self-reported and clinical definitions of disease

GWAS hits for breast cancer, prostate cancer, bowel cancer, Type 2 diabetes, Hypertension, 

Stroke and Cardiovascular Artery Disease were downloaded from the GWAS catalogue. In 

total, we found that 278 of these SNPs were genotyped in our array, and tested them for 

association with our self-reported and clinical definitions of disease (breast cancer, prostate 

cancer, bowel cancer, Type 2 diabetes, Hypertension, Stroke and Heart Disease) using a chi-

square test as implemented in the plink2 option (--assoc)25. Significant SNPs at a p-value of 

0.05 and 0.00018 (i.e. 0.05/278) were counted for the two definitions of disease (self-

reported and clinical). Only the subset of genotyped samples with clinical information was 

used to compare the power of the two alternative phenotype definitions.
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Figure 1. Heritability estimates using SEM family-based models (self-reported data) and SNPs 
(self-reported data and medical records).
Black and grey sets show the three heritability estimates for each disease using SEM family-

based models (self-reported data) and SNPs (self-reported data and medical records).

Muñoz et al. Page 15

Nat Genet. Author manuscript; available in PMC 2018 June 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Muñoz et al. Page 16

Ta
b

le
 1

F
am

ily
-b

as
ed

 h
er

it
ab

ili
ty

 e
st

im
at

es
 n

ot
 a

cc
ou

nt
in

g 
fo

r 
sh

ar
ed

 e
nv

ir
on

m
en

ta
l e

ff
ec

ts
 c

al
cu

la
te

d 
by

 F
al

co
ne

r’
s 

m
et

ho
d 

an
d 

re
gr

es
si

on
 

co
ef

fi
ci

en
ts

 d
er

iv
ed

 f
ro

m
 d

if
fe

re
nt

 r
el

at
iv

e 
pa

ir
s.

D
is

ea
se

h2 P
O

 (
SE

)
h2 SI

B
 (

SE
)

h2 P
SI

B
 (

SE
)

b A
P

O
 (

SE
)

b A
SI

B
 (

SE
)

b P
A

R
 (

SE
)

H
ea

rt
 D

is
ea

se
0.

36
8 

(0
.0

05
)

0.
55

7 
(0

.0
18

)
0.

51
4 

(0
.0

10
)

0.
11

4 
(0

.0
26

)
0.

14
5 

(0
.1

08
)

0.
15

1 
(0

.0
03

)

St
ro

ke
0.

16
2 

(0
.0

10
)

0.
30

5 
(0

.0
44

)
0.

26
0 

(0
.0

17
)

-0
.0

57
 (

0.
05

4)
-

0.
03

8 
(0

.0
04

)

B
ro

nc
hi

tis
0.

42
0 

(0
.0

09
)

0.
50

1 
(0

.0
34

)
0.

56
7 

(0
.0

17
)

0.
16

9 
(0

.0
39

)
0.

33
8 

(0
.1

38
)

0.
10

8 
(0

.0
05

)

H
yp

er
te

ns
io

n
0.

36
6 

(0
.0

09
)

0.
69

1 
(0

.0
10

)
0.

47
7 

(0
.0

08
)

0.
03

5 
(0

.0
21

)
0.

19
0 

(0
.0

56
)

0.
20

3 
(0

.0
02

)

D
ia

be
te

s
0.

47
4 

(0
.0

07
)

0.
69

2 
(0

.0
19

)
0.

48
5 

(0
.0

12
)

0.
06

7 
(0

.0
37

)
0.

18
5 

(0
.0

98
)

0.
10

9 
(0

.0
04

)

A
lz

he
im

er
’s

0.
23

8 
(0

.0
61

)
-

0.
34

9 
(0

.0
36

)
-

-
0.

06
0 

(0
.0

05
)

Pa
rk

in
so

n’
s

0.
24

7 
(0

.0
38

)
-

0.
21

4 
(0

.0
53

)
-

-
0.

02
8 

(0
.0

13
)

D
ep

re
ss

io
n

0.
49

1 
(0

.0
07

)
0.

44
3 

(0
.0

19
)

0.
64

2 
(0

.0
13

)
0.

25
0 

(0
.0

36
)

0.
18

4 
(0

.0
83

)
0.

16
2 

(0
.0

05
)

L
un

g 
ca

nc
er

0.
11

7 
(0

.0
38

)
-

0.
31

4 
(0

.0
25

)
-

-
0.

11
9 

(0
.0

05
)

B
ow

el
 c

an
ce

r
0.

26
0 

(0
.0

17
)

0.
38

7 
(0

.0
57

)
0.

30
0 

(0
.0

23
)

0.
17

1 
(0

.1
20

)
-

0.
03

2 
(0

.0
05

)

Pr
os

ta
te

 c
an

ce
r

0.
36

1 
(0

.0
22

)¥
0.

70
7 

(0
.0

62
)¥

0.
32

1 
(0

.0
36

) 
¥

-0
.0

53
 (

0.
18

3)
-

-

B
re

as
t c

an
ce

r
0.

28
7 

(0
.0

14
)Ψ

0.
39

3 
(0

.0
39

)Ψ
0.

30
1 

(0
.0

25
)Ψ

0.
14

4 
(0

.0
70

)
-

-

h2
PO

: h
er

ita
bi

lit
y 

es
tim

at
es

 u
si

ng
 d

at
a 

of
 p

ar
en

ts
 a

nd
 o

ff
sp

ri
ng

; (
SE

):
 S

ta
nd

ar
d 

er
ro

rs
 b

et
w

ee
n 

br
ac

ke
ts

; h
2 SI

B
: h

er
ita

bi
lit

y 
es

tim
at

es
 u

si
ng

 d
at

a 
of

 s
ib

lin
gs

; h
2 PS

IB
: h

er
ita

bi
lit

y 
es

tim
at

es
 u

si
ng

 d
at

a 
of

 

pa
re

nt
s 

an
d 

si
bl

in
gs

 o
f 

pa
rt

ic
ip

an
ts

; b
A

PO
: r

eg
re

ss
io

n 
co

ef
fi

ci
en

t o
f 

pa
re

nt
s 

on
 a

do
pt

ed
 o

ff
sp

ri
ng

; b
A

SI
B

: r
eg

re
ss

io
n 

co
ef

fi
ci

en
t o

f 
ad

op
tiv

e 
si

bl
in

gs
; b

PA
R

 r
eg

re
ss

io
n 

co
ef

fi
ci

en
t o

f 
pa

re
nt

s 
of

 p
ar

tic
ip

an
ts

 

(p
ar

tn
er

s)
; -

: E
ff

ec
t w

as
 n

ot
 e

st
im

at
ed

 a
s 

th
er

e 
w

as
 le

ss
 th

an
 o

ne
 p

ai
r 

w
ith

 b
ot

h 
m

em
be

rs
 a

ff
ec

te
d

¥ O
nl

y 
m

al
e-

m
al

e 
pa

ir
s

Ψ
O

nl
y 

fe
m

al
e-

fe
m

al
e 

pa
ir

s.

Nat Genet. Author manuscript; available in PMC 2018 June 06.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Muñoz et al. Page 17

Ta
b

le
 2

G
en

et
ic

 a
nd

 e
nv

ir
on

m
en

ta
l e

ff
ec

ts
 e

st
im

at
ed

 u
si

ng
 t

he
 p

ar
si

m
on

io
us

 r
ed

uc
ed

 S
E

M
 m

od
el

.

D
is

ea
se

M
od

el
A

 (
C

I±
0.

95
)

C
 (

C
I±

0.
95

)
S 

(C
I±

0.
95

)
P

 (
C

I±
0.

95
)

E
 (

C
I±

0.
95

)

H
ea

rt
 D

is
ea

se
A

C
SP

E
0.

27
 (

0.
24

-0
.2

7)
0.

08
 (

0.
07

-0
.1

2)
0.

08
 (

0.
07

-0
.0

8)
0.

06
 (

0.
06

-0
.0

7)
0.

51
 (

0.
49

-0
.5

7)

St
ro

ke
A

PE
0.

23
 (

0.
21

-0
.2

5)
-

-
0.

04
 (

0.
03

-0
.0

4)
0.

73
 (

0.
71

-0
.7

6)

B
ro

nc
hi

tis
A

C
E

0.
29

 (
0.

25
-0

.3
3)

0.
10

 (
0.

10
-0

.1
1)

-
-

0.
61

 (
0.

60
-0

.6
4)

H
yp

er
te

ns
io

n
A

C
SP

E
0.

28
 (

0.
28

-0
.2

9)
0.

06
 (

0.
06

-0
.0

6)
0.

14
 (

0.
14

-0
.1

4)
0.

13
 (

0.
12

-0
.1

3)
0.

39
 (

0.
38

-0
.3

9)

D
ia

be
te

s
A

SP
E

0.
50

 (
0.

49
-0

.5
2)

-
0.

11
 (

0.
09

-0
.1

3)
0.

07
 (

0.
06

-0
.0

8)
0.

32
 (

0.
29

-0
.3

4)

A
lz

he
im

er
’s

A
C

E
0.

25
 (

0.
17

-0
.3

3)
0.

05
 (

0.
03

-0
.0

6)
-

-
0.

70
 (

0.
63

-0
.7

8)

Pa
rk

in
so

n’
s

A
E

0.
26

 (
0.

20
-0

.3
4)

-
-

-
0.

74
 (

0.
72

-0
.8

1)

D
ep

re
ss

io
n

A
C

E
0.

25
 (

0.
21

-0
.2

9)
0.

15
 (

0.
15

-0
.1

5)
-

-
0.

60
 (

0.
58

-0
.6

3)

L
un

g 
ca

nc
er

A
C

E
0.

09
 (

0.
02

-0
.1

4)
0.

11
 (

0.
09

-0
.1

3)
-

-
0.

81
 (

0.
75

-0
.8

6)

B
ow

el
 c

an
ce

r
A

C
SE

0.
24

 (
0.

21
-0

.2
6)

0.
03

 (
0.

01
-0

.0
3)

0.
06

 (
0.

03
-0

.1
2)

-
0.

67
 (

0.
65

-0
.7

1)

Pr
os

ta
te

 c
an

ce
r

A
SE

0.
38

 (
0.

32
-0

.4
4)

-
0.

19
 (

0.
11

-0
.2

6)
-

0.
43

 (
0.

36
-0

.5
1)

B
re

as
t c

an
ce

r
A

SE
0.

29
 (

0.
26

-0
.3

3)
-

0.
06

 (
0.

01
-0

.1
0)

-
0.

65
 (

0.
60

-0
.6

9)

A
: A

dd
iti

ve
 g

en
et

ic
 e

ff
ec

ts
; C

: E
nv

ir
on

m
en

ta
l e

ff
ec

ts
 c

om
m

on
 to

 th
e 

w
ho

le
 f

am
ily

; S
: S

ib
lin

g 
en

vi
ro

nm
en

ta
l e

ff
ec

ts
; P

: P
ar

tn
er

 e
nv

ir
on

m
en

ta
l e

ff
ec

ts
; E

: R
es

id
ua

l e
nv

ir
on

m
en

ta
l e

ff
ec

t; 
C

on
fi

de
nc

e 
In

te
rv

al
 

at
 9

5%
 b

et
w

ee
n 

br
ac

ke
ts

. -
: P

ar
am

et
er

 d
ro

pp
ed

 f
ro

m
 p

ar
si

m
on

io
us

 r
ed

uc
ed

 m
od

el
.

Nat Genet. Author manuscript; available in PMC 2018 June 06.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Muñoz et al. Page 18

Table 3
Heritability estimates of disease using common + rare SNPs and structural equation 
modelling (SEM) from self-reported data.

Disease h2
C+R (CI95%) h2

SEM (CI95%) %(h2 C+R /h2
SEM) (SE)

Heart Disease 0.11 (0.08-0.15) 0.27 (0.24-0.27) 40.74 (9.79)

Stroke 0.09 (0.00-0.17) 0.23 (0.21-0.25) 39.13 (29.07)

Bronchitis 0.16 (0.10-0.22) 0.29 (0.25-0.33) 54.43 (15.72)

Hypertension 0.32 (0.30-0.34) 0.28 (0.28-0.29) 114.29 (3.29)

Diabetes 0.35 (0.30-0.39) 0.50 (0.49-0.52) 70.00 (5.23)

Depression 0.07 (0.03-0.10) 0.25 (0.23-0.27) 24.00 (13.79)

Bowel cancer 0.12 (0.00-0.28) 0.24 (0.21-0.26) 50.0 (49.75)

Prostate cancer 0.23 (0.06-0.40) 0.38 (0.32-0.44) 60.53 (30.42)

Breast cancer 0.18 (0.10-0.26) 0.29 (0.26-0.33) 62.07 (19.05)

h2C+R: Heritability estimates using SNPs in the liability scale; (CI95%): Confidence intervals; %(h2C+R /h2SEM): Percentage of SEM family-

based estimate of heritability explained by SNPs. (SE): Standard error
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