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Summary

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and 

disease states are connected by virtue of common gene-expression signatures. Here, we report 

more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made 

possible by a new, low-cost, high throughput reduced representation expression profiling method 

that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, 

and suitable for computational inference of the expression levels of 81% of non-measured 

transcripts. We further show that the expanded CMap can be used to discover mechanism of action 

of small molecules, functionally annotate genetic variants of disease genes, and inform clinical 

trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are 

available at https://clue.io.
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The next generation Connectivity Map, a large-scale compendium of functional perturbations in 

cultured human cells coupled to a gene expression read-out, facilitates the discovery of 

connections between genes, drugs, and diseases.
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Introduction

The sequencing of the human genome provided the parts list of life, and this in turn has led 

to an explosion of new insights into the genetic basis of disease. Genome-wide association 

studies have identified risk-associated loci for major diseases, and the sequencing of human 

tumors has similarly identified the somatic mutations that underlie many types of cancer. 

The research community has benefitted from these genomic resources by being able to 

readily look up sequence variants in large-scale compendia of genomic variation. Such look-

up tables of biology have transformed how modern research is done.

A challenge, however, is that a parts list and its association with disease is generally not 

sufficient to establish causality, or to provide mechanistic and circuit-level biological 

insights. Truly understanding cellular function requires perturbing the system – modulating 

the expression of a gene of interest, and monitoring the downstream consequences. 

Unfortunately, large-scale compendia of the cellular effects of genetic perturbation have yet 

to be established as a community resource.

Similarly, there has been no method to systematically determine the cellular effects of 

chemical compounds. For example, it would be desirable to be able to query a functional 

look-up table to discover unexpected activities of a compound – such activities often being 
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discovered only late in the drug development process, resulting in side effects that limit 

clinical use.

Hughes and colleagues were the first to suggest that such inference of function could be 

gleaned from a compendium of gene expression profiles (Hughes et al., 2000). Working in 

yeast, they showed that genetic variants and pharmacologic treatment could be related by 

virtue of common gene expression signatures they induce.

We subsequently hypothesized that the compendium concept could be extended to human 

signatures representing genetic or pharmacologic perturbation. Signatures that proved to be 

similar might thus represent previously unrecognized connections (e.g., between two 

proteins operating in the same pathway, between a small molecule and its protein target, or 

between two small molecules of similar function but structural dissimilarity). Such a catalog 

of connections could thus serve as a functional look-up table of the human genome, and we 

termed this the Connectivity Map (Lamb et al., 2006).

We piloted the Connectivity Map (CMap) concept by treating cells with 164 drugs and tool 

compounds, and then performing mRNA expression profiling using Affymetrix microarrays, 

thereby generating a public resource with over 18,000 users. Examples of CMap use include 

the anthelmintic drug parbendazole as an inducer of osteoclast differentiation (Brum et al., 

2015), celastrol as a leptin sensitizer (Liu et al., 2015), compounds targeting COX2 and 

ADRA2A as potential diabetes treatments (Zhang et al., 2015), small molecules that 

mitigate skeletal muscular atrophy (Dyle et al., 2014) and spinal muscular atrophy (Farooq 

et al., 2009), and new therapeutic hypotheses for the treatment of inflammatory bowel 

disease (Dudley et al., 2011) and cancer (Singh et al., 2016); (Muthuswami et al., 2013; 

Wang et al., 2008); (Schnell et al., 2015); (Fortney et al., 2015; Wang et al., 2011); 

(Churchman et al., 2015); (Rosenbluth et al., 2008); (Saito et al., 2009); (Stockwell et al., 

2012).

Despite the popularity of the pilot Connectivity Map pilot dataset, its small scale limits its 

utility. With only 164 drug perturbations in only 3 cancer cell lines, the database lacks the 

necessary richness of a truly genome-scale resource. Missing is a diversity of chemical 

perturbations, genetic perturbations as well as a diversity of cell types. Unfortunately, the 

high cost of commercial gene expression microarrays and even RNA sequencing precludes 

such a genome-scale Connectivity Map. We therefore describe here a new approach to gene 

expression profiling based on a reduced representation of the transcriptome. This method, 

which we call L1000, is high-throughput and low-cost, and is thus well-suited to a large-

scale Connectivity Map. We report here the first 1,319,138 L1000 profiles as part of the NIH 

LINCS initiative.

Results

Reduced representation of transcriptome

We hypothesized that it might be possible to capture at low cost any cellular state by 

measuring a reduced representation of the transcriptome. To explore this, we analyzed 

12,031 Affymetrix HGU133A expression profiles in the Gene Expression Omnibus (GEO). 
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We used these to identify the optimal number of informative transcripts, which we term 

‘landmark’ transcripts, k. If k was too small, too much information might be lost, whereas if 

k was too large, sufficient cost reduction compared to the entire transcriptome might be not 

be achieved. This analysis showed that 1,000 landmarks were sufficient to recover 82% of 

the information in the full transcriptome (see STAR Methods). The selection of the 1,000 

landmarks was done using a data-driven approach rather than selecting transcripts based on 

prior biological knowledge, as detailed in STAR Methods.

L1000 assay platform

To measure the 1,000 landmark transcripts, we adapted a method involving ligation-

mediated amplification (LMA) followed by capture of the amplification products on 

fluorescently-addressed microspheres (Peck et al., 2006). We extended this method to a 

1,000-plex reaction (Figure 1A; protocols at clue.io/sop-L1000.pdf). Briefly, cells growing 

in 384-well plates were lysed and mRNA transcripts captured on oligo-dT-coated plates. 

cDNAs were synthesized and subjected to LMA using locus-specific oligonucleotides 

harboring a unique 24-mer barcode sequence and a 5′ biotin label. The biotinylated LMA 

products were detected by hybridization to polystyrene microspheres (beads) of distinct 

fluorescent color, each coupled to an oligonucleotide complementary to a barcode, and then 

stained with streptavidin-phycoerythrin. Thus, each bead was analyzed both for its color 

(denoting landmark identity) and fluorescence intensity of the phycoerythrin signal 

(denoting landmark abundance). Because only 500 bead colors are commercially available, 

we devised a strategy that allows two transcripts to be identified by a single bead color 

(STAR Methods and Figure 1B). 955 shRNAs targeting landmark transcripts were used to 

empirically validate L1000 probes (Figure 1C). The final assay, which we call L1000, 

contains 1,058 probes for 978 landmark transcripts and 80 control transcripts (Table S2) 

chosen for their invariant expression across cell states (see STAR Methods). The reagent 

cost of the L1000 assay is approximately $2.

Having chosen the L1000 landmark transcripts using an entirely data-driven approach 

optimized for maximal information rather than on biological function, we asked whether the 

landmarks were enriched in any particular functional class (e.g., transcription factors). We 

computed hypergeometric overlap statistics and found no substantial enrichment for any 

particular protein class (see STAR Methods). Similarly, we found no evidence of 

developmental lineage bias based on an analysis of landmark expression patterns across 30 

tissue types (Figure S1B).

L1000 reproducibility

Technical replicates of 6 cancer cell lines in which aliquots of the same RNA sample were 

subjected to replicate L1000 profiling (12 replicates in each of 3 batches, yielding 36 

replicates per cell line) showed that for 88% of all pairwise comparisons of replicates, 

Spearman correlation was >0.9, suggesting low sample-to-sample variability (Figure S1C). 

Furthermore, intra-batch variation (median pairwise correlation 0.97) was comparable to 

inter-batch variation (median pairwise correlation 0.95), indicating high technical 

reproducibility.
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Comparison of L1000 to RNA-seq

RNA sequencing (RNA-seq) has become the standard for gene expression profiling, and thus 

we sought to benchmark L1000 against it. We note that while RNA-seq is attractive given its 

unbiased nature, it suffers from inability to detect non-abundant transcripts without deep 

sequencing that results in higher costs. The L1000 platform is hybridization-based, thus 

making the detection of non-abundant transcripts feasible. As an initial assessment of cross-

platform performance, mRNA samples from 6 cell lines were profiled on L1000, Affymetrix 

U133A and Illumina BeadChip arrays, and by RNA-seq. Hierarchical clustering of these 

data grouped samples by cell type, not measurement platform (Figure 1D and 1E, upper 

panel).

To more extensively compare L1000 to RNA-seq, we analyzed 3,176 samples (previously 

sequenced by the GTEx Consortium (The GTEx Consortium, 2015)) profiled on both 

platforms. This analysis showed that cross-platform similarity was high (median self-

correlation 0.84), with a right-shifted distribution compared to non-self correlations (Figure 

1E, lower panel left). Recall analysis similarly showed that 98% of samples had a sample 

recall > 99% (indicating 99th percentile) (see STAR Methods). Taken together, these results 

indicate a strong degree of similarity of profiles across L1000 and RNA-seq platforms.

Inferring gene expression from L1000 landmarks

Using 8,555 RNA-seq samples (Dataset DSGTEx-rnaseq) as an independent test set, we used 

landmark transcript measurements to infer the remainder of the transcriptome. As a test of 

inference accuracy, we analyzed gene-level recall (Rgene) for each of the inferred genes and 

assessed performance by comparing the result to a null distribution of correlations between 

all inferred transcripts and all measured transcripts. This analysis showed that inference was 

accurate (defined as Rgene > 0.95) for 9,196 of the 11,350 inferred genes (81%). When 

combined with the 978 measured landmarks, the L1000 platform thus measures or infers 

with high fidelity 83% of transcripts, but yields poor inference for 17% (Figure 1E, lower 

panel right and Table S3). Inferences for these 17% were therefore not used in any of the 

analyses that follow.

Generation of the first million L1000 Connectivity Map profiles

Having validated L1000, we set out to expand on the CMap pilot dataset in several 

dimensions. First, we increased the small molecule perturbations from 164 drugs to 19,811 

small molecule drugs, tool compounds and screening library compounds including those 

with clinical utility, known mechanism of action, or nomination from the NIH Molecular 

Libraries Program. Each compound was profiled in triplicate, either at 6 or 24 hours 

following treatment.

Second, we expanded in the dimension of genetic perturbation by knocking down and 

overexpressing 5,075 genes selected on the basis of their association with human disease or 

membership in biological pathways. Each genetic perturbation was profiled in triplicate, 96 

hours after infection. For overexpression studies, a single cDNA clone was used, whereas 

three distinct shRNAs targeting each gene were profiled.
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Third, we expanded in the dimension of cell lines. Well-annotated genetic and small 

molecule perturbagens were profiled in a core set of 9 cell lines, yielding a reference dataset 

we refer to as Touchstone v1. Uncharacterized small molecules without known mechanism 

of action (MOA) were profiled variably across 3 to 77 cell lines, yielding a dataset we refer 

as Discovery v1 (Table S4).

In total, we generated 1,319,138 L1000 profiles from 42,080 perturbagens (19,811 small 

molecule compounds, 18,493 shRNAs, 3,462 cDNAs, and 314 biologics), corresponding to 

25,200 biological entities (19,811 compounds, shRNA and/or cDNA against 5,075 genes, 

and 314 biologics) for a total of 473,647 signatures (consolidating replicates), representing 

over a 1,000-fold increase over the CMap pilot dataset. We term this first release of an 

L1000-based compendium CMap-L1000v1 (Figure 2A). All data, at multiple levels of pre-

processing are available via GEO (accession GSE92742 and pre-processing code via 

GitHub), and for easier use via the CLUE analysis environment (https://clue.io; see below 

and Figure 2B).

CMap query methodology

The connectivity workflow involves interrogating the CMap database of signatures with a 

query (a set of differentially expressed genes representing a biological state of interest). 

Each of the signatures in the database represents a weighted average across the 3 biological 

replicate perturbations (see STAR Methods). This moderated z-score procedure serves to 

mitigate the effects of uncorrelated or outlier replicates (Figure 2C). The similarity of the 

query to each of the CMap signatures is computed, thus yielding a rank ordered list of the 

473,647 signatures in the CMap-L1000v1 dataset. However, simply sorting by degree of 

similarity can be misleading because it does not address issues such as magnitude of gene 

expression change or specificity of observed connections.

We therefore developed a Connectivity Score (Figure 2D) that provides three measures of 

confidence: 1) a nominal p-value derived by comparing the similarity between the query and 

reference signature, using the Kolmogorov-Smirnov enrichment statistic (Subramanian et 

al., 2005), to a null distribution of random queries; 2) a false discovery rate (FDR) that 

adjusts the p-value to account for multiple hypothesis testing; and 3) Tau (τ), which 

compares an observed enrichment score to all others in the database (see STAR Methods).

These Connectivity Score metrics constitute a statistical framework that provides a holistic 

quantification of the relationship between a query and a perturbagen, as opposed to merely 

sorting by degree of similarity. Additionally, while the Connectivity Scores are generated on 

each cell type individually, we summarize those scores across all profiled cell types and thus 

provide a measure of robustness. Importantly, this analytical approach is platform-

independent, allowing users to create query signatures from any gene expression platform.

Feasibility of querying a million-profile compendium

We next tested the CMap for its ability to produce biologically meaningful connections. 

While our analysis of replicate measurements demonstrated that L1000 is robust, it is 

conceivable that as the size of the dataset increased, so might biological and technical noise, 

thereby obscuring real signal. To address this, we compiled 7,578 perturbational signatures 
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from public sources from which we identified 1,143 perturbational profiles (across multiple 

expression platforms; Table S5)–that matched a CMap-L1000v1 perturbagen, and were 

therefore eligible for Recall analysis. For each query, we assessed whether it connected to its 

equivalent in CMap-L1000v1 at a high level of confidence (defined as NP <=0.05, FDR <= 

0.25 and |τ| >= 90). 909/1,143 queries (80%) exhibited the expected connectivity. We note 

that the inference of expression values from landmarks was essential to recovering 

connections. 20% of connections were lost when the analysis was restricted to landmarks 

only. Furthermore, 48 query signatures contained zero landmark transcripts and were 

therefore not analyzable without inference of the remainder of the transcriptome.

Discovering off-target effects of shRNAs

The scope of the L1000 dataset provides an unprecedented opportunity to examine the 

biological effects of shRNAs, in particular, their off-target effects. We analyzed 13,187 

shRNAs targeting 3,799 genes across 9 cell lines, and compared each pair of shRNA-

induced L1000 profiles, comparing similarity between shRNAs targeting the same gene 

(“shared gene”) and shRNAs targeting different genes but sharing the 2-8 nucleotide seed 

sequence known to contribute to off-target effects (“shared seed”) (Jackson et al., 2003). 

Figure 3A shows that shared gene similarity is only slightly greater than random. In contrast, 

shared seed pairs were dramatically more similar compared to the null distribution, 

indicating that the magnitude of off-target effects of shRNAs substantially exceeds the 

magnitude of their on-target effect. We reasoned that while on-target gene expression effects 

of different shRNAs targeting the same gene should be the same, their off-target effects 

should not. We therefore developed an algorithm to produce a Consensus Gene Signature 

(CGS) that reflects the consistent (and therefore on-target) gene expression effects of 

shRNAs and used the CGS output for all analyses that follow. The CGS method and its 

validation are described in detail elsewhere (Smith et al., 2017) .

Characterizing small molecule function

A theoretical feature of a large-scale CMap is the ability to determine mechanism of action 

(MOA) of a small molecule, based simply on similarity to profiles of genetic perturbagens or 

compounds of known function. We first determined whether known MOAs could be 

recovered by the CMap. This is challenging, however, because the definitive list of protein 

targets (and their associated pathways) of small molecule drugs is unknown. Nevertheless, 

we used multiple resources to associate 1,902 compounds to protein targets and associated 

pathway members profiled in the CMap. This led to 58,820 expected relationships that could 

plausibly be recovered in the CMap (see STAR Methods) (Corsello et al., 2017). We then 

sought to recover those relationships from among the approximately 160 million pairwise 

relationships (connections) that could be assessed across CMap.

For each compound, we computed the true positive rate (i.e., recovery of expected 

relationships). We refer to these expected relationships as expected pairs. To estimate the 

false positive rate, we counted the connections between compounds and genetic or 

pharmacologic perturbagens annotated as having a relationship with a different small 

molecule in the dataset. We refer to such relationships as null pairs. We then plotted the true 

positive rate against the false positive rate at various thresholds of statistical significance, 
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thereby generating an ROC curve from which an AUC could be calculated. An AUC >0.6 is 

typically regarded as signifying a positive signal. At that cut-off, an average of 45% of 

expected relationships were recovered in any one of the 9 cell lines tested (range 29%-58%). 

This number rose to 63% when Connectivity Scores were summarized across all 9 lines (see 

STAR Methods, Table S6).

Defining perturbagen classes (PCLs)

A challenge in CMap interpretation is that the analysis returns a rank-ordered list of 

connections, leaving the user to extract biological meaning from the list. We reasoned that 

while any given member of an MOA class would likely have a multitude of targets, 

integrating signatures across several examples of an MOA class would sharpen the on-target 

signal, while diminishing off-target effects. We codified this by identifying compounds that 

share MOA and by identifying genetic perturbagens belonging to the same gene family or 

were targeted by the same compounds. These perturbagen classes (PCLs) were then further 

refined by excluding compounds that failed to connect with their cognate class members 

based on L1000 connectivity analysis (see STAR Methods and Figure 4A). This yielded 171 

high confidence PCLs (Table S7).

To test the hypothesis that PCLs would increase confidence in biological interpretation, we 

profiled 137 test compounds known to share a mechanism with one or more of 54 small 

molecule PCLs, but which were not used in the construction of the PCL. For 41/54 classes 

(76%), the test compounds connected to their designated PCL in multiple cell types (Figure 

4B). For an additional 7/54 (13%), a selective connection was observed in a single cell type. 

The remaining 6/54 (11%) did not connect at a threshold of τ >90.

We next performed PCL connectivity analysis on 3,333 drugs and 2,418 unannotated 

compounds and observed a variety of strong, selective connections to PCLs. Importantly, 

many drugs showed strong PCL connections to mechanisms other than those for which the 

drugs were developed, representing potential off-target or secondary effects (Figure 4C and 

Figure S3A). 132 drugs (3.9%) had such off-target connections (see STAR Methods). For 

example, compounds showing connectivity to the protein kinase C (PKC) inhibitor PCL 

were often also strongly connected to the GSK3 inhibitor PCL. 44 such dually connected 

compounds were found (τ>=95, selectivity >=0.85), including the PKC inhibitor enzastaurin 

which showed dose-responsive connectivity to both PKC and GSK3 inhibitor classes 

(τGSK=99.79 τPKC=99.47, selectivity=0.88) (Figure 4D). Interestingly, synergy between 

compounds targeting these pathways has been reported (Rovedo et al., 2011), and the 

biochemical profiling confirms that enzastaurin is indeed also a potent GSK3 inhibitor with 

a KD of 8 nM (Davis et al., 2011).

In the future, splitting PCLs to reflect subclasses with distinct patterns of selectivity may be 

possible. For example, the histone deacetylase (HDAC) inhibitor PCL class currently has 20 

members, each with varying selectivity against the 13 HDAC proteins. Clustering the L1000 

gene expression data revealed clear substructure within the PCL, with pan-HDAC-inhibitory 

compounds forming a distinct cluster, and compounds selective for either HDAC6 or 

HDAC1,3 and 8 forming distinct clusters (Figure 5A).
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Cellular context

To study the effect of cellular context on perturbational responses, we compared the 

signatures of 2,429 drugs across 9 cancer cell lines. On average, 38% of compounds scored 

as transcriptionally active in any single cell type (range 28%-45%) and 92% of small 

molecule drugs scored as active in at least one cell line. Of 1,399 (58%) compounds active in 

at least 3 cell lines, 26% (corresponding to 15% of all compounds) produced highly similar 

signatures across the entire panel, whereas the remainder were active in only 1 or 2 cell lines 

or produced a diversity of cellular signatures (see STAR Methods and Figure S2B, S2C).

As might be expected, connections with support across multiple cell types tended to target 

core cellular processes (e.g., ribosomal function, proteasome complex), whereas compounds 

with reproducibly cell-type-selective patterns of connectivity tended to target more 

specialized mechanisms. For example, connectivity between multiple glucocorticoid 

receptor agonists was strongest in those cell types in which the glucocorticoid receptor was 

expressed (Figure S2D, upper panel). Connectivity between multiple PPARG agonists was 

greatest in HT29 and PC3, the two core cell lines with the highest baseline expression of 

PPARG (Figure S2D, lower panel). Similarly, the connection between androgen receptor 

(AR) knockdown and the AR antagonist nilutamide was strongest in the AR-expressing cell 

line VCAP (Figure S2E). We also note that the naturally occurring genetic diversity can be 

informative. For example, connections between genetic perturbation of the MAP kinase 

pathway and small molecule inhibitors of RAF or MEK kinases were strongest in the cell 

lines that harbor BRAF V600E kinase-activating mutations (Figure S2E).

Identifying bioactive subsets of small molecule screening libraries

It is now possible to create large numbers of structurally diverse small molecule compounds. 

However, many compounds fail to engage specific protein targets or to even enter living 

cells. We asked whether an L1000 profile could serve as a sensor for biological activity. If 

so, screening chemical libraries with L1000 might enable rapid elimination of compounds 

lacking obvious activity and help prioritize others for subsequent cell-based screening. 

Consistent with our earlier studies (Wawer et al., 2014), we found that whereas 2,232/2,429 

(92%) established drugs yielded a strong L1000 transcriptional response (defined as 

Transcriptional Activity Score (TAS) >0.2; see STAR Methods), only 2,418/16,527 (15%) 

un-optimized compounds had high TAS scores. We note, however, that compounds with 

cell-type selective bioactivity might be missed by this approach.

Interestingly, the TAS-low drugs were enriched in antimicrobial agents that would not be 

expected to target human proteins (Figure 5B). An exception to this was the antimicrobial 

triclosan, which yielded a high TAS score, consistent with its having effects in mammalian 

cells. The safety of triclosan has recently been questioned (Dinwiddie et al., 2014; Yueh et 

al., 2014).

Discovery of MOA of unannotated small molecules

Having demonstrated the ability to recover MOA from optimized drugs and tool compounds, 

we next asked whether CMap could identify the MOA of previously uncharacterized 

compounds. Projection of TAS-high compounds in two dimensions shows that many 
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uncharacterized compounds cluster with existing PCLs (Figure 5C). We focused on novel 

kinase inhibitors simply because of the availability of methods for validating CMap 

predictions. For example, our analysis indicated that the unannotated compound BRD-2751 

showed strong connectivity to the Rho-associated protein kinase (ROCK) PCL, suggesting 

that it might in fact be a ROCK inhibitor. To test this hypothesis, we subjected the compound 

to kinome-wide binding measurements (using the Kinomescan assay) and found that 

precisely as predicted, the compound has a KD of 56 nM against ROCK1 (Figure 6A). We 

note that while the compound had not been previously reported to be a ROCK1 inhibitor, its 

chemical structure is reminiscent of canonical ROCK inhibitory compounds. As another 

example, several compounds (BRD-5161, BRD-5657, and BRD-9186) were predicted to 

function as MTOR and/or PI3 kinase inhibitors. Kinomescan dose-response profiling 

confirmed that the three compounds were indeed MTOR/PI3K inhibitors, spanning a range 

of potencies and selectivities (Figure S3B).

Discovery of a selective CSNK1A1 inhibitor

We next asked whether we could use the CMap to discover a compound with a particular 

activity – in this case, Casein Kinase 1A1 (CSNK1A1). CSNK1A1 is a serine-threonine 

kinase that was reported as an essential gene in certain subtypes of myelodysplastic 

syndrome and acute myeloid leukemia, and also has been shown to be targeted for 

degradation by the drug lenalidomide, which is particularly effective in MDS patients with 

chromosome 5q deletion (the locus of the CSNK1A1 gene) (Järås et al., 2014; Krönke et al., 

2015; Schneider et al., 2014). Furthermore, CSNK1A1 has been reported as a mediator of 

drug resistance to EGFR inhibitors in lung cancer (Lantermann et al., 2015). Unfortunately, 

potent and selective CSNK1A1 small molecule inhibitors have yet to be reported.

As CSNK1A1 was among the 3,799 genes subjected to shRNA-mediated knock-down, we 

used the CMap to generate a signature of CSNK1A1 loss of function. We then queried all 

compounds in the database against this signature to identify perturbations that phenocopied 

CSNK1A1 loss. One unannotated compound, BRD-1868, showed strong connectivity to 

CSNK1A1 knockdown in two cell types. This suggested that BRD-1868 might function as a 

novel CSNK1A1 inhibitor. To test this hypothesis, we subjected the compound to kinase 

specificity profiling, testing its ability to bind to 456 kinases using the Kinomescan assay. 

This confirmed BRD-1868's ability to bind CSNK1A1 with high specificity and modest 

potency (KD 2.2 uM). Follow-up enzymatic assays confirmed that BRD-1868 not only binds 

CSNK1A1, but also inhibits its enzymatic activity (Figure 6B), making it an strong 

candidate for further chemical optimization. Most importantly, the result highlights the 

power of the L1000 Connectivity Map as a starting point for drug discovery – even in the 

absence of prior examples of the drug class.

Using L1000 data to assess allele function

The preceding analyses focused primarily on using CMap to annotate chemical compounds. 

We next asked whether a similar strategy could be used to annotate the function of an allelic 

series of genes. Building on our prior results (Berger et al., 2016), we sought to determine 

whether the CMap could distinguish the downstream consequences of overexpression of 

cDNAs harboring particular somatic mutations observed in human tumors. For example, the 
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ubiquitin ligase FBXW7 is a negative regulator of MYC protein expression. As expected, 

CMap showed that overexpression of wild-type FBXW7 strongly connected to knock-down 

of MYC. In addition, overexpression of 6 cancer-associated alleles (I347M, V464E, R465C, 

R465H, A502V, and R505C) all lost this connection to MYC loss-of-function, whereas 4 

other alleles retained connectivity to MYC knockdown (Figure 7A, lower panel). 

Examination of the substrate-bound FBXW7 crystal structure (Hao et al., 2007) indicated 

that the mutations predicted by the CMap to be damaging map to the substrate-recognition 

pocket, whereas the non-damaging alleles do not (Figure 7A, upper panel).

The CMap similarly predicted the functional impact of the tumor suppressor KEAP1. 

Nineteen alleles of KEAP1 were subjected to L1000 profiling. Whereas over-expression of 

wild-type KEAP1 showed the expected CMap connection to knock-down of its 

transcriptional target NFE2L2, multiple alleles of KEAP1 lacked the NFE2L2 connection, 

suggesting that these were KEAP1 loss-of-function alleles. A subset of these alleles were 

recently functionally characterized and reported to result in loss of KEAP1 function, as 

predicted by the CMap analysis (Hast et al., 2014) (Figure S3C, left panel). A similar 

phenomenon was observed with alleles of the phosphatase PTEN, which negatively 

regulates PI3K activity. Whereas overexpression of wild-type PTEN showed connectivity to 

signatures of PI3K inhibitors, such connectivity was lost with PTEN mutations at residues 

M35 (mutated in Cowden's syndrome), G127 (important for active site conformation) and 

G129 (required for phosphatase activity) (Figure S3C, right panel).

Using CMap to interpret clinical trial results

The CMap has been developed to support research, not routine clinical care. However, we 

hypothesized that there might be potential to inform clinical investigation. Toward that end, 

we analyzed two oncology clinical trials in which tumor samples were obtained before and 

after treatment.

In the first study, 21 patients with melanoma were treated with the RAF inhibitors 

dabrafenib or vemurafenib and 9 patients were treated with dabrafenib plus the MEK 

inhibitor trametinib (Carlino et al., 2013; Long et al., 2014). Biopsies were obtained prior to 

treatment and at the time of relapse, and on-treatment biopsies were taken in four patients. 

The authors performed expression profiling on the Illumina beadchip platform (GSE50509, 

GSE61992). Comparing four on-treatment biopsies to the pre-treatment biopsies, we 

observed strong positive connectivity to multiple signatures of MAP kinase inhibition, 

consistent with drug-induced silencing of the MAP kinase pathway. Analysis at the time of 

relapse showed that several patients showed strong negative connectivity to these same 

CMap perturbations, suggestive of reactivation of the MAP kinase pathway – a known 

mechanism of drug resistance in melanoma (Wagle et al., 2014). One of those patients 

(patient 10) had a MAP kinase-activating BRAF splice variant, consistent with the CMap 

results (Figure 7B). Pathway reactivation was also detected in a resistant tumor with 

MAP2K1 mutation (patient C1) and in a resistant tumor with BRAF amplification (patient 

C10).

In the second study, patients with solid tumors were treated with the pan-CDK inhibitor 

PHA-793887 in a phase I clinical trial. Seven patients from that trial were subjected to gene 
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expression profiling of biopsies pre-treatment and on-treatment using Agilent microarrays 

(Locatelli et al., 2010; Massard et al., 2011). For each patient, the on-treatment expression 

profile was compared to their pre-treatment profile and the difference used as a signature to 

query the the CMap. This analysis showed an association between duration of therapy (a 

proxy for clinical benefit) and connectivity to the overexpression of key negative regulators 

of the cell cycle such as CDKN1A and CDKN2A. Strong connectivity was also observed to 

knock-down of the cyclin-dependent kinase CDK4 – one of the targets of the drug (Figure 

7C). Interestingly, the patients with rapidly progressive disease showed anti-correlation to 

this cell cycle inhibition signature, possibly reflective of a feedback mechanism to reactivate 

the cell cycle in the face of CDK4 inhibition. These results, while reflecting only a small 

number of patients, are encouraging. First, they suggest that while PHA-793887 may be a 

pan-CDK inhibitor, inhibition of CDK4 may be the most clinically relevant. Second, on-

treatment biopsy coupled to Connectivity Map analysis may prove useful as an early 

molecular readout of target engagement in patients.

Accessing Connectivity Map data

All of the CMap data described in this report are available without restriction–to the research 

community including commercial entities. To enhance accessibility and utility, we developed 

a number of computational-visualization tools that enable users to interact with data at 

multiple levels (from raw to processed to normalized data), using methods optimized for 

technical and non-technical users (e.g., restful Application Programming Interfaces (APIs) 

for computational biologists and software engineers, and web applications for biologists). 

The most efficient method of accessing the data and tools is via the secure, cloud-based 

computing environment that we termed CLUE (Connectivity Map Linked User 

Environment), at https://clue.io. To enable computational researchers to reproduce our 

findings exactly, code is available at GitHub, and the entire preprocessing workflow is 

available as a container in the AWS Docker registry. Raw data are also available for 

download from GEO (accession GSE92742), but users will find it more efficient to interact 

with the data using CLUE.

Discussion

This study demonstrates the feasibility of a large-scale compendium of functional 

perturbations coupled to an information-rich gene expression read-out. By making L1000 

expression profiling inexpensive, scale up became tractable. The L1000 platform has certain 

attributes and limitations worth considering. Because L1000 is hybridization-based, it is 

possible to monitor the expression of non-abundant transcripts. While such rare transcripts 

(e.g., encoding transcription factors) can also be detected by RNA-seq, high depth of 

sequence coverage is needed, and this can become cost-prohibitive. Nevertheless, as 

sequencing costs drop, RNA-sequencing-based approaches such as Perturb-Seq (Dixit et al., 

2016) should be considered.

We chose the ∼1,000 landmark transcripts in an unbiased manner, based on their orthogonal 

expression patterns. Alternative probe-selection methods, however, have been proposed 
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(Donner et al., 2012). Whether alternative sets of 1,000 transcripts would improve the ability 

to discover connections (the primary goal of CMap) remains to be established.

The ability to infer the expression of genes not directly measured in the L1000 assay was 

also explored. We found that a simple ordinary least squares model predicted the expression 

of 81% of non-measured transcripts. We also note that while our inference method was 

successful in the cell types tested, it is conceivable that it might perform less well in cell 

types dissimilar to those used to train the model.

The 1,319,138 L1000 profiles reported here represent 42,080 genetic and small molecule 

perturbations profiled across a variable number of cell types. To our knowledge, this far 

exceeds any other publicly available resource of cellular perturbation. An important 

question, however, is the extent to which this CMap resource can be used to discover 

important biological connections (e.g., to inform MOA of compounds, to discover pathway 

membership of gene products, or to connect disease states to pathways and small 

molecules).

For example, we used the annotation of protein targets of small molecule drugs and tool 

compounds to determine whether such targets could be recovered from the CMap. Our 

analysis showed that the CMap results were highly enriched in the correct targets for up to 

63% of small molecules tested. While this result is encouraging, 37% of compounds showed 

no evidence of connection to their expected targets. Failure to recover such connections 

could be explained by many factors including i) incomplete inhibition of the target by the 

compound, ii) off-target effects of compounds and genetic perturbations, iii) missing 

information in the L1000 read-out, iv) incorrect literature-based annotations of compounds, 

v) biological differences between small molecule inhibition of specific aspects of protein 

function (e.g., enzymatic inhibition) compared to complete loss of function (e.g., scaffolding 

functions) induced by shRNA-mediated knock-down, and vi) the existence of previously 

unrecognized bona fide connections that effectively penalize the known connections – 

particularly if the novel connections are stronger than the expected ones.

Perhaps the most interesting use of CMap is to functionally annotate previously 

uncharacterized small molecules. For example, we discovered a novel inhibitor of the casein 

kinase CSNK1A1 – a newly emerging protein essential for survival of certain myeloid 

malignancies and also implicated in EGFR inhibitor resistance. The compound, BRD-1868, 

was discovered entirely through computational analysis; no laboratory experiments were 

needed to generate the CSNK1A1 inhibitory hypothesis. We note that this discovery 

underscores the value of having a large-scale compendium of genetic and pharmacologic 

perturbations.

Our analysis of 18,493 shRNA profiles showed that the off-target effects of shRNAs far 

exceed their on-target effects, consistent with recent reports (Tsherniak et al., 2017). 

However, the generation of a Consensus Gene Signature (CGS) that identifies gene 

expression changes common to multiple shRNAs targeting the same gene substantially 

improved the ability to discover on-target connections by minimizing off-target effects. 

Nevertheless, the CGS procedure is imperfect, and some off-target effects likely remain. 
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Preliminary studies of CRISPR/Cas9-mediated gene knock-out suggest that genome editing 

approaches may recover some genetic connections to small molecules that were missed by 

RNA interference-based perturbation. Two caveats bear mentioning. First, we and others 

have shown that CRISPR/Cas9-based genome editing results in non-specific toxicity directly 

proportional to the number of cuts to the genome (Aguirre et al., 2016). The extent to which 

such non-specific effects can be computationally corrected in the context of CMap analysis 

remains to be determined. This is particularly relevant when performing genetic 

perturbations in cancer cell lines that often harbor copy number alterations. Second, it 

remains to be determined whether complete gene knock-out (via CRISPR) or partial knock-

down (via shRNA) better phenocopies the effect of a small molecule.

Our analysis across multiple cell types revealed that some perturbations yielded universal 

signatures, whereas 43% of compounds yielded cell-type selective gene expression 

signatures. The fact that many compounds yield a universal signature regardless of cell type 

also has important implications. Specifically, the value of continuing to profile such 

compounds across a large number of cell lines is probably low. Future iterations of the 

CMap might therefore benefit from an adaptive experimental design whereby the selection 

of future cell lines is chosen based on the performance of an initial set.

Importantly, the CMap concept is not restricted to mRNA expression. Other groups are 

generating proteomic or high-content imaging readouts following perturbation (Litichevskiy 

et al., 2017); (Rohban et al., 2017) consistent with early reports of feasibility of annotating 

compounds based on cellular consequences (Seiler et al., 2008).

Biomedical research in the 21st century reflects a dramatic increase in the sheer amount of 

data available for analysis, and a commensurate need for increasingly sophisticated 

computational tools. In the past, researchers would download genomic datasets to their own 

computers, and run computational analyses locally. In the era of big data, however, it is 

advantageous to bring computation to the data. While the present 1.3 million L1000 profiles 

are not too large to download, making the data available to users on the cloud will increase 

computational efficiency. We have therefore created a cloud-based data storage and analysis 

system called CLUE. In the CLUE environment, users can access all publicly available 

CMap data, append their private data, and access a collection of user-friendly analysis apps 

designed for intuitive use by experimental biologists. Computational biologists can access 

data using data APIs at clue.io/api. We note that additional L1000 analytical tools developed 

by others are available through the LINCS data coordinating center at lincsproject.org.

A future, comprehensive CMap might expand in multiple dimensions. First, the number of 

small molecules profiled would increase to include much larger collections. Second, the 

genetic perturbations would include allelic series of important disease-associated genes. 

Third, future iterations of the CMap should explore new cell types including patient-derived 

iPS cells and genome-edited isogenic cell lines. Fourth, future expansion should include 

different types of perturbational read-outs (e.g., high content imaging, limited proteomic 

profiling). An important goal for the years ahead should be to establish which of these 

alternative data types are most complementary to transcriptional profiling.
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As with all large-scale community resources, the full potential of the Connectivity Map will 

only be realized with time. Whether it proves most useful for elucidating small molecule 

mechanism of action, for providing functional readouts of genetic variants, or for generating 

new therapeutic hypotheses remains to be seen. Such emerging utility should guide the 

further expansion of a future CMap.

Star Methods

Contact for Reagents and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Todd Golub (golub@broadinstitute.org).

Experimental Model and Subject Details

Cell lines—Cell lines were obtained from ATCC (https://www.atcc.org/) unless otherwise 

indicated. Information on tissue, tumor type and optimal growth conditions, (for normal 

growth and or profiling) were obtained from the CCLE project (https://

portals.broadinstitute.org/ccle) and the protocols including the number of cells employed for 

these L1000 experiments are described at https://clue.io/sop-cell.pdf.

Method Details

Dataset for Landmark selection (DSGEO)

We assembled a large, diverse collection of 12,063 gene expression samples profiled on 

Affymetrix HG-U133A microarrays from the Gene Expression Omnibus (GEO) (Edgar et 

al., 2002). These data were used to identify the subset of universally informative transcripts 

to be measured, which we term ‘Landmark Genes’ (Dataset DSGEO).

Selecting landmark transcripts

As DSGEO contains a non-uniform representation of various aspects of biology (for example 

certain tumor types such as breast and lung cancer were disproportionately represented), we 

applied Principal Component Analysis (PCA) as a dimensionality reduction procedure to 

minimize bias toward any particular lineage or cellular state. In this reduced eigenspace of 

386 components (which explained 90% of the variance), cluster analysis was performed to 

identify tight clusters of commonly co-regulated transcripts. We applied an iterative peel-off 

procedure to select the centroids (Tseng and Wong, 2005). Specifically, at each iterative step 

in the tight clustering process, the k-means algorithm with K ranging 20-100 was applied 

repeatedly on 100 independent random subsamples each comprising 75% of the original 

data. This procedure yielded a consensus matrix that contained the proportion of trials a pair 

of genes were in the same cluster. Thresholding the consensus matrix yielded sets of genes 

that co-clustered in more than 80% of the trials. The genes belonging to the stable clusters 

were noted, excluded from the data and the procedure was repeated to identify additional 

clusters. Because high-dimensional data is challenging to partition into definitive clusters, 

the advantage of this approach is that gene-gene clusters are derived through the tendency of 

genes to be grouped together under repeated resampling and hence are more robust to the 

initialization and cluster size thresholds. Transcripts nominated as landmarks through this 
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process were then tested empirically to assess ability to measure levels accurately in the 

L1000 assay as described in “Probe and primer design for the L1000 assay” and 

experimental validation as described in the L1000 reproducibility sections below.

Evaluating performance of reduced representations of the transcriptome

To simulate performance of measuring a subset of the transcriptome, we asked what number 

of landmarks (k) would optimally recover the observed connections seen in the pilot 

Connectivity Map dataset based on Affymetrix arrays (Dataset DSCMAP-AFFX). Specifically, 

prior work indicated that 25 query signatures yielded robust and expected connections to 

small molecules in the CMap pilot dataset (Table S1). We therefore used those 25 signatures 

to query the inferred DSCMAP-AFFX dataset for various values of k, counting how often we 

recovered the connections observed in the original dataset at a comparable rank based on the 

Kolmogorov-Smirnov statistic. At values of k ranging from 100-10,000, we generated an 

imputed version of DSCMAP-AFFX using OLS regression (trained on samples from DSGEO) 

with the k landmarks as the independent variables, queried it with the benchmark signatures, 

and assessed the percentage of connections that were recovered.

Baseline expression of landmark genes across a diversity of tissue types

Our procedure for selecting Landmark Genes was data-driven and the simulations presented 

above indicate that both the landmark and inferred genes capture relevant information about 

cell state. However, given a new state, any inference algorithm will only work if a fair 

number of the landmark genes are expressed in that state. We examined expression across 

lineage using the Genotype Tissue Expression (GTEx) RNA-seq dataset (DSGTEx-RNA-seq) 

of 3,176 patient-derived expression profiles from 30 different tissue types (Figure S1B). We 

quantified the expression levels of the landmark genes reported in the dataset and observed 

that at a RPKM threshold of 1 at least 86% of Landmark Genes are expressed in each of the 

3,176 samples (with an average of 92% expressed in each sample), and that range of 

expression is similar across tissue types.

Functional enrichment analysis of landmark gene content

Our data-driven procedure suggested genes to include as landmarks based on analysis of the 

12,063 sample compendium DSGEO. We then asked if genes suggested by this data driven 

approach were enriched in particular known biological pathways or categories.

For every landmark gene we accessed from NCBI entrez its current gene description and 

family assignment. We also annotated every landmark gene with the pathway (as defined in 

MSigDB) in which it is thought to function (when available). Finally, we looked up its 

biological/molecular category from Gene Ontology (GO). These annotations were analyzed 

for functional enrichment to ask if the landmarks, when considered as a set, are dominated 

by a few functions or if on the whole they map to many different functions. For example, at 

one extreme the transcriptionally active genes could belong to basic regulatory processes 

(e.g transcription factors).

To do this analysis we intersected the 978 landmarks with a database of 1,533 gene sets 

compiled in Gene Ontology using the hypergeometric statistic (gene to GO gene ontology, 
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conditional test for over-representation). We used the R Bioconductor package GOstats 

(v2.36.0) and the ontology from GO.db (v3.2.2). The results show that while some 

categories are enriched (e.g ATP binding, nucleoside/nucleotide activity, transcription factor 

binding, kinase regulator activity) the percentage of the 978 genes that are in any such set is 

small. While we did observe a number of classes to be enriched in the landmark genes, these 

categories tend to be generic (e.g. enzyme binding, protein kinase binding, catalytic activity, 

ATP binding) and/or contain only a small fraction of the landmark genes (e.g. protein kinase 

binding, which contains 84 of 978 landmarks). Taken together, we did not find any particular 

functional category dominating the list of landmarks chosen.

Probe and primer design for the L1000 assay

Each transcript of interest was targeted with an upstream and downstream probe pair. 

Upstream and downstream probes were each designed with a 20nt gene specific region (40nt 

contiguous sequence per probe pair), a unique identifying barcode, and a universal primer 

site. The gene specific sequences were blasted against the human genome to verify that each 

is unique to the targeted gene of interest, as described in the steps below. In addition to gene 

specific sequence, upstream probes contained a T7 primer site, and a 24-nucleotide (nt) 

barcode, and downstream probes, which were 5′ phosphorylated, contained the T3 primer 

site. Barcode sequences are shown in supplementary Table S2. Probes were synthesized by 

IDT (Integrated DNA Technologies).

We followed an iterative process of probe design followed by empirical probe validation, as 

follows, until we achieved ∼1,000 landmark genes with a validated probe.

1. Landmark genes proposed based on computational analysis.

2. For each gene, select a 40 base sequence using the following design principles, 

then split into two 20-mers

a. Empirical probe design rules:

i. the region must be contiguous with no gaps

ii. must be 3′ biased to minimize RNA degradation

iii. choose regions with few repeats to minimize cross-reactivity

3. Perform computational sequence QC by aligning against human reference 

genome (assembly HG19) using BLAT (Kent, 2002)

a. Ensure a perfect alignment to intended gene's reference sequence

b. Check for non-specific alignment of the probe sequence to other genes

c. If either checks (a) or (b) fail, then redesign the probe sequence

4. Build upstream and downstream probes using T7 and T3 primer sites and 

FlexMAP tag

a. T7 primer site 5′ TAA TAC GAC TCA CTA TAG GG 3′

b. T3 primer site 5′ TCC CTT TAG TGA GGG TTA AT 3′
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c. Uni-bio-T7 5′/5Bio/TAA TAC GAC TCA CTA TAG GG 3′

d. Uni-T3 5′ ATT AAC CCT CAC TAA AGG GA 3′

Cell lysate preparation

Cells were cultured in appropriate media and 40 μl was transferred into each well of a 384-

well clear bottom, tissue culture treated plate with an automatic liquid handler. Plates were 

incubated at 37°C, 5% CO2. Cells were either treated with chemical or genetic perturbations, 

the details of which are reported in section 6 below. For cell lysis, media was removed from 

the wells without disturbing the cells and 25 μl/well of TCL Lysis Buffer (Qiagen) was 

added. Plates were sealed with adherent foil seals and incubated at room temperature for 30 

minutes prior to storage at -80°C.

Coupling barcodes to Luminex beads

To detect gene-specific sequences, Luminex beads were coupled to DNA barcodes 

complementary to each barcode used in our collection of probes. Because Luminex produces 

500 distinct bead colors and the L1000 set consists of 978 genes, 2 barcodes were coupled to 

beads of each color (see below); this was done in separate batches - one barcode per batch - 

and then the pairs were mixed in a 2:1 ratio prior to use. Luminex magnetic beads were 

added in 500 μl aliquots to each well of 96 deep-well plates. Beads were pelleted and 

resuspended in 62.5 μl binding buffer (0.1 M 2- [N-morpholino]ethanesulfonic acid; pH 

4.5), to which was added 100 pmol capture barcode. 6.25 μl of freshly prepared 10 mg/ml 

aqueous solution of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (Pierce, 

Milwaukee, WI, USA) was added to each well followed by incubation at room temperature 

in the dark for 30 minutes. This step was repeated and then 180 μl 0.02% Tween-20 was 

added. Beads were pelleted and washed in 0.1% SDS in TE, pH 8.0 buffer. Beads were 

stored in TE in the dark at 4°C for up to one month. Mixtures of beads were freshly prepared 

in 1.5× TMAC buffer (4.5 mol/l tetramethylammonium chloride, 0.15% N-lauryl sarcosine, 

75 mmol/l tris-HCl [pH 8.0], and 6 mmol/l EDTA [pH 8.0]).

Ligation-mediated amplification

For mRNA capture, 20 μl lysate was transferred to Turbocapture (Qiagen) plates coated with 

oligo dT. Following a 60-minute incubation at room temperature, unbound lysate was 

removed by inverting the plates onto a highly absorbent towel followed by centrifugation at 

1000 rpm for one minute. First-strand cDNA was prepared from the mRNA by adding 5 μl 

master mix consisting of # units M-MLV reverse transcriptase and # umol/l of each dNTP. 

Plates were incubated at 37°C for 90 minutes. Probes were annealed to the first-strand 

cDNA using 5ul Probe Anneal master mix, which contains 100 femtomole of each probe in 

1× Taq ligase buffer. Denaturation was accomplished by incubating the plates at 95°C for 2 

minutes and then decreasing the temperature from 70°C to 40°C over a 6-hour period. Plates 

were then inverted onto an absorbent towel and spun at 1,000 RPM for 1 minute to remove 

unbound probe.

To ligate juxtaposed probe pairs, 5 μl mix containing 2.5 units Taq DNA ligase in ligase 

buffer was added, plates were sealed, and incubation proceeded at 45°C for 1 hour followed 
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by 65°C for 10 minutes. The plate wells were emptied as described above, and the resulting 

amplification templates were subject to PCR using T3 and 5′-biotinylated T7 universal 

primers. PCR was initiated by adding 15 μl master mix, containing 1.5 umole of each 

primer, 2.4 nmol of each dNTP, and 4.8e-4 units of HotStarTaq in reaction buffer. Plates 

were sealed and loaded into a Thermo Electron MBS 384 Satellite Thermal Cycler. Initial 

denaturation was performed at 95°C for 15 minutes, and then the plates were subjected to 29 

cycles as follows, one minute per step: 92°C(denature), 60°C (anneal), 72°C (elongation). 

The resulting amplicons were gene-specific, barcoded, and biotinylated.

Hybridization of amplicon to bead

Because a sequence complementary to the barcode on each probe has also been coupled to a 

Luminex bead, the amplicons (and hence the gene-specific sequence) can be identified by 

hybridization to the beads. A volume of 5 μl of PCR amplicon was transferred to a well 

containing 30 μl of L1000 bead mix (∼ 100 beads/region/well). The plate was sealed and 

incubated at 95°C for 2 minutes to denature the DNA. Incubation continued at 45°C for 18 

hrs. Beads were pelleted, washed, and stained with 20 μl of 10 ng/ul streptavidin R-

phycoerythrin conjugate (Molecular Probes) in 1× TMAC buffer (3 mol/l 

tetramethylammonium chloride, 0.1% N-lauryl sarcosine, 50 mmol/l tris-HCl [pH 8.0], 4 

mmol/l EDTA [pH 8.0]) at 45°C for ten minutes.

Tag Duo dual detection and peak deconvolution

The Luminex FlexMap 3D platform is capable of detecting 500 different bead colors while 

the L1000 assay needs to measure ∼1,000 mRNA transcripts. One option would be to read 

these in 2 different detection sets, each of 500. However, that would introduce inevitable 

batch effects and also reduce detection throughput by half.

Therefore it was provident to devise a strategy that allows two different transcripts to be 

identified by a single bead color. The 978 landmarks were divided into pairs and barcodes 

representing each gene were coupled to beads of the same color (one gene per bead). Genes 

coupled to the same bead type (color) in two separate batches were combined in a ratio of 

2:1 prior to use. When the beads are hybridized with the sample templates and analyzed by 

the Luminex scanner, two values are obtained from each bead: one indicating the color of 

the bead and the other indicating the intensity of the signal, which is a reflection of the 

expression of the gene. Identification of the bead color associates the intensity to the correct 

gene pair and signal intensity provides a measure of the abundance of the transcripts of the 

two genes. Deconvolution of the composite fluorescent intensity signal into its component 

gene expression values is done computationally as described below. To make it easier to 

resolve the peaks, rather than pairing genes at random, during design of the L1000 system, 

we optimized pairing of genes to maximize the average difference in their expression levels 

across the training GEO compendium.

Detection

Hybridization of amplicon to complimentary barcodes was detected using a Luminex 

FlexMap 3D flow cytometer, which detects both bead color (i.e., transcript identity) and the 
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biotin label on the probe (i.e. transcript abundance; as measured by the phycoerythrin 

channel). Analysis was done using a sample volume of 40 μl.

Invariant genes as controls for data QC and normalization

We developed a set of internal controls to assess quality, to provide real-time feedback 

during the scanning process, and to use in normalization. Importantly, rather than using a 

single “housekeeping” gene (e.g. GAPDH), we adopted an approach that utilizes control 

values across the entire spectrum of gene expression. We adapted the approach described in 

the Illumina BeadChip studio (Illumina Inc., 2007) by defining a set of genes that are rank 

invariant across all samples. To identify these genes, we analyzed human gene expression 

profiles from DSGEO and selected genes whose expression is relatively invariant (coefficient 

of variation < 10%) across a variety of tissue types and experimental conditions. To further 

minimize the variance, rather than picking single genes as invariants, we grouped the genes 

into 10 sets of 8 genes each based on their level of expression across all samples. The 10 

gene sets were ordered by increasing levels of expression, with the first level corresponding 

to genes with the lowest expression and the tenth level to genes most highly expressed. 

Because these gene sets exhibit a consistent expression pattern, they can be used to adjust 

the data for non-biological variation. Importantly, in addition to being useful for data 

normalization, the invariant genes provide a simple quality check in real time as detection 

occurs, which is valuable in a high-throughput process.

Quantification and Statistical Analysis

L1000 reproducibility using reference mRNA

Samples of purified total RNA from six human cancer cell lines, purchased from Life 

Technologies, were subjected to L1000 profiling. L1000 expression profiles were generated 

for six cell lines in 3 independent LMA batches, each with 12 technical replicates, for a total 

of 216 total profiles (6 cell line × 12 replicates × 3 batches = 216). Within each cell line, we 

computed the Spearman correlation between all pairwise combinations of replicates (data 

level 3, see below), excluding the comparison of each replicate to itself. Three examples of 

paired comparisons and the full spectrum of correlations are shown in Figure S1C. We then 

computed the median correlation between each replicate and all others, yielding 36 values 

per cell line; and finally summarized using the median of medians so as to derive one value 

per cell line. These analyses showed that in general the L1000 assay has very high technical 

reproducibility.

L1000 reproducibility using reference mRNA and cross platform analysis

Samples of purified total RNA from six human cancer cell lines were purchased from Life 

Technologies. One gene-expression profile per sample was generated using the Affymetrix 

GeneChip HG-U133 Plus 2.0 Array, the Illumina Human HT-12 v4 Expression BeadChip 

Array and mRNA-seq (Illumina Hi-Seq) by Expression Analysis, a genomics contract 

research organization. The L1000 samples were profiled in multiple replicates. Data were 

normalized within platform (level 3, see below for details). For each cell line, we selected 

the L1000 replicate with highest technical quality (by LISS goodness of fit, see below) for 

comparison with the other three platforms. We then performed ComBat batch correction to 
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adjust for cross-platform differences (Johnson et al., 2007), and subjected the data to 

hierarchical clustering in the space of the 952 genes commonly measured by all four 

platforms. We observe that the data cluster by cell line and not by platform, suggesting that 

the cross-platform differences are smaller than the biological differences between cell lines.

L1000 reproducibility using shRNAs

The fidelity of L1000 depends on being able to quantify endogenous levels of intended 

landmark genes accurately and specifically. In synthesizing landmark gene-specific 

oligonucleotide probes we followed several computational procedures that maximized 

matches to the target DNA sequence while minimizing non-specific hybridization. However, 

as sequence-based QC methods are imperfect and measurement of a transcript might 

degrade in a multiplexed gene assay (e.g due to cross hybridization), we designed an 

experiment to empirically confirm probe performance.

To assess the specificity of L1000 landmark probe measurements, we procured shRNAs that 

target landmark genes from The RNAi Consortium (TRC). We restricted this experiment to 

shRNAs that had been validated to down-regulate their intended target through RT-PCR 

assays conducted by TRC. We plated MCF7 and PC3 cells onto 384-well plates and used 

standard arrayed lentiviral protocols to infect the cells with these shRNAs, each of which 

targets a specific landmark gene, and then profiled the cells by L1000.

The resulting L1000 signature was used to calculate the targeted landmark gene down-

regulation and rank relative to all other shRNAs in the experiment. For each gene in each 

sample, we computed differential expression values (z-scores) by comparing the gene's 

expression value in the given sample to that same gene's expression values in all other 

samples in the cohort and then collapsed replicate samples (DSLM-KD). The resulting dataset 

contains, as columns, an individual shRNA targeting a landmark gene performed in either 

MCF7 or the PC3 cancer cell line. Rows are replicate-collapsed z-scores (level 5, see below) 

of all measured landmark genes.

A probe designed against a landmark gene was progressed if its z-score when targeted by an 

shRNA was -2.0 or lower. When the initial probe design showed non-specific reactivity, 

failed to correlate with reference mRNA standards or failed to register adequate knockdown, 

we redesigned the probe sequence and retested. After a few cycles of iteration between 

design and empirical testing, we were able to show that 846 of the 955 targeted landmark 

genes (89%) were down-regulated by at least one targeting shRNA (z-scores less than -2). 

However, a low z-score doesn't in itself imply specificity—for example, a sample corrupted 

by dead cells might have yielded low mRNA across the board, leading to many genes with 

low z-scores. To guard against nonspecific reduction of z-scores, we compared the 

distribution of targeted gene z-scores to non-targeted gene z-scores and observed that the 

former was significantly left-shifted, indicating that the observed down-regulation is largely 

specific to the targeted genes (Figure 1C, middle panel). For each targeted gene, we 

computed the rank of its z-score in the experiment in which it was targeted relative to all 

other experiments in the dataset where it was not targeted. We observe that 841 of 955 genes 

(88%) rank in the top 1% and 907 of 955 (95%) rank in the top 5% (Figure 1C, bottom 
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panel). These results indicate that the large majority of L1000 probes are specifically 

measured.

Definition of Recall

An absolute measure of similarity (e.g. Spearman correlation) between samples or genes 

does not in itself convey how uncommon that similarity is. Hence, in addition to computing 

the similarity (sim) between designated samples or genes, it is also useful to compare this 

similarity value to a reference distribution of similarity values (SIMnull), which can aid in 

interpretation of sim. To that end, we compute recall (R) as the fraction of SIMnull that is 

lower than sim. High R values correspond to unusually high values of sim. Thus, R provides 

an assessment of how well a particular pair of samples or genes match each other relative to 

an appropriate null.

L1000 comparison to RNA-seq

We sought to compare expression profiles generated using L1000 with those generated using 

Affymetrix and RNA-seq, the most widely employed platforms for gene expression 

profiling. In conjunction with the NIH's Genotype Tissue Expression (GTEx) project (http://

commonfund.nih.gov/GTEx/index), we profiled 3,176 samples on L1000 and obtained from 

GTEx the RNA-seq (Illumina TrueSeq RNA sequencing) data for different aliquots of these 

same samples (DSGEO-RNA-seq and DSGEO-L1000). The data were quantile normalized 

independently by platform (level 3, see below) and then batch-corrected using the ComBat 

algorithm, an empirical Bayes-based method commonly used to remove batch effects across 

gene expression datasets (Johnson et al., 2007).

A small subset of these samples were also profiled on Affymetrix, and Figure 1E, top panel, 

shows comparisons of the platforms with each other for a single such sample. We observe 

that L1000 measurements and inferred expression values are as similar with RNA-seq as 

RNA-seq is with Affymetrix.

To more thoroughly compare L1000 to RNA-seq, we then computed sample self-

correlations (using Spearman rank correlation) for the 3,176 samples in the space of the 970 

genes directly measured by both platforms. There are 8 L1000 landmark genes that were not 

included in the DSGEO-RNA-seq. Level 3 L1000 data were used, and the GTEx RNA-seq data 

were quantile normalized, log2 scaled 1+RPKM values. We then computed sample self-

correlations for the 3,176 samples and the median sample self-correlation was 0.84, with a 

notably right-shifted distribution relative to non-self correlations (Figure 1E, lower panel 

left). We also measured sample Recall (Rsample, see STAR Methods), wherein a given L1000 

profile is forced to compete with all other RNA-seq profiles in order to find its RNA-seq 

counterpart. This analysis yielded 3,103/3,176 samples (98%) with a Rsample > 0.99 

(indicating 99th percentile) and all but 5 (99.84%) had a Rsample > 0.95 (Figure S1D).

Identifying well inferred genes

We sought to assess the inference quality of the 12,232 features corresponding to inferred-

only genes in DSGEO-OLS. For this test, we used a compendium of 8,555 RNA-seq profiles, 

generated as part of the GTEx project. We applied the DSGEO-OLS inference model on 
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DSGTEx-RNA-seq-lmonly which resulted in DSGTEx-RNA-seq-INF. To assess inference 

performance, we computed the correlation of every inferred feature in DSGTEx-rnase-INF to its 

corresponding gene in DSGTEx-RNA-seq. We then analyzed these data to identify genes with 

statistically significant inferred to measured correlation, as these genes represent the most 

reliable inference predictions. To generate a null distribution of correlations, we computed 

the correlation between every inferred probeset in DSGTEx-RNA-seq-INF and every non-

matched gene in DSGTEx-RNA-seq. We then computed p-values for every inferred gene by 

computing the percentage of the null distribution with higher correlation than the given 

inferred gene. We observed that 9,196 of the 11,350 inferred genes (81%) correlated with p-

value less than or equal to 0.05. This set of 9,196 inferred genes, plus the 978 landmarks, are 

referred to as the Best Inferred Genes (BING) and are presented in Table S3.

Gene space summary

The L1000 assay directly measures 978 genes and infers 11,350 more, for a total of 12,328 

genes. Of the 11,350 inferred genes, 9,196 are considered well inferred, based on the 

analysis described above. All datasets are provided in the full 12,328 gene space. Table S3 

indicates which genes are measured or well-inferred.

Data preprocessing

The L1000 automated data processing pipeline captures raw data from Luminex scanners as 

it is generated, deconvolutes 978 transcripts from only 500 Luminex bead colors, normalizes 

the data based on 80 invariant control genes, infers the expression of the non-measured 

transcripts, determines differentially expressed genes following a perturbation compared to 

controls, and generates composite signatures across biological replicates.

Level 1 - Raw (LXB)

Level 1 data comprises the bead identity and raw fluorescent intensity (FI) values measured 

for every bead detected by the Luminex scanner. The FI is proportional to the amount of 

amplicon bound to the bead, and hence also proportional to the transcript abundance of the 

genes that particular bead is interrogating.

Level 2 - Deconvolute (GEX)

The raw FI values associated with each bead color are analyzed in a peak deconvolution step 

to associate the expression levels with the appropriate genes. This step is necessary because 

each bead color is associated with two genes rather than one. To facilitate the analysis, 

separate bead batches that identify each gene are mixed in a 2:1 ratio for use in the assay. To 

deconvolute the composite expression signal into two values and associate them with the 

appropriate genes, we construct a histogram of FI values. This yields a distribution that 

generally consists of two peaks, a larger one that designates expression of the gene for which 

a larger proportion of beads are present, and a smaller peak representing the other gene. 

Using the k-means clustering algorithm, the distribution is partitioned into two distinct 

clusters, such that the ratio of cluster membership is as close as possible to 2:1, and the 

median expression value for each cluster is then assigned as the expression value of the 

appropriate gene.
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Level 3 - Normalization (NORM)

In order to reduce artifacts (non-biological sample variation) from the data, we use a 

rescaling procedure called L1000 Invariant Set Scaling, or LISS, involving 80 control 

transcripts (8 each at 10 levels of low to high expression) that we empirically found to be 

invariant in expression across the DSGEO. The 80 genes are used to construct a calibration 

curve for each sample. Each curve is computed using the median expression of the 8 

invariant genes at each of the 10 pre-defined invariant levels. We then loess-smooth the data 

and fit the following power law function using non-linear least squares regression:

y = axb + c

where x is the unsealed data and a, b, and c are constants estimated empirically. The entire 

sample is then rescaled using the obtained model. LISS therefore serves as a method to both 

adjust for technical variation and to convert between measured Luminex intensity and more 

traditional Affymetrix log2-expression values.

After applying LISS, we standardize the shape of the expression profile distributions on each 

plate by applying quantile normalization, or QNORM. This is done by first sorting each 

profile by expression level, and then normalizing the data by setting the highest-ranking 

value in each profile to the median of all the highest ranking values, the next highest value to 

the median of the next highest values, and so on down to the data for the lowest expression 

level.

Normalization yields the expression values of the 978 landmark genes. To obtain expression 

values for all the remaining genes in the transcriptome, we assume that an unmeasured gene 

x can be predicted from the measured landmark genes li via linear regression:

x = w0 + ∑
i = 1

978
wili

where the wi constitute the model weights and have been estimated using DSGEO. These 

weights are provided in the dataset DSGEO-OLS. Repeating this procedure for all unmeasured 

genes gives predicted measurements of all 12,328 genes reported (measured plus inferred) 

by the L1000 assay.

Level 4 - Differential Expression (ZSPC)

To obtain a measure of relative gene expression, we use a robust z-scoring procedure to 

generate differential expression values from normalized profiles. We compute the 

differential expression of gene x in the ith sample on the plate as

zi =
xi − median X

1.4826 ⋅ MAD X
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where X is the vector of normalized gene expression of gene x across all samples on the 

plate, MAD is the median absolute deviation of X, and the factor of 1.4826 makes the 

denominator a consistent estimator of scale for normally distributed data.

Level 5 - Replicate-consensus signatures (MODZ)

L1000 experiments are typically done in 3 or more biological replicates. We derive a 

consensus replicate signature by applying the moderated z-score (MODZ) procedure as 

follows. First, a pairwise Spearman correlation matrix is computed between the replicate 

signatures in the space of landmark genes with trivial self-correlations being ignored (set to 

0). Then, weights for each replicate are computed as the sum of its correlations to the other 

replicates, normalized such that all weights sum to 1. Finally, the consensus signature is 

given by the linear combination of the replicate signatures with the coefficients set to the 

weights. This procedure serves to mitigate the effects of uncorrelated or outlier replicates, 

and can be thought of as a ‘de-noised’ representation of the given experiment's 

transcriptional consequences.

Identifying batches in CMap data

Because the CMap resource was generated over a number of years, it is inherently 

comprised of multiple smaller batches of data. The most predominant form of batch is the 

384 well plate in which each experiment was performed. Samples on a given physical plate 

were processed together in the lab (i.e cell plating, treatments, amplification and detection). 

To mitigate plate-level effects, normalization and differential expression are computed 

within individual plates (see data levels 3 and 4 above). Each profile is labelled with the 

name of the plate and the individual well in which the experiment was done. These fields are 

named ‘rna_plate’ and ‘rna_well’, respectively, in the provided sample metadata.

Query methodology

The fundamental unit of CMap analysis is the query. A query (q) consists of a set of genes 

corresponding to any biological state of interest. Each gene in the query carries a sign 

indicating whether it is up-regulated or down-regulated. Thus each query yields a pair of 

mutually exclusive gene lists (qup, qdown). The query is compared to each signature in the 

CMap reference database (Touchstone) using the similarity metric described below to assess 

connectivity viz. the degree to which the up-regulated query genes (qup) appear toward the 

top of the rank-ordered signature and the down-regulated query genes (qdown) appear toward 

the bottom of the signature (positive connectivity) or vice-versa (negative connectivity). The 

result of a query is a rank ordered list of CMap signatures ordered by their connectivity 

scores.

Computing similarities - Weighted Connectivity Score (WTCS)

The weighted connectivity score (WTCS) represents a non-parametric, similarity measure 

based on the weighted Kolmogorov-Smirnov enrichment statistic (ES) described previously 

(Subramanian et al., 2005). WTCS is a composite, bi-directional version of ES. For a given 

query gene set pair (qup, qdown) and a reference signature r, WTCS is computed as follows:
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wq, r = ESup − ESdown)/2, if sgn ESup ≠ sgn ESdown
0, otherwise

Where ESup is the enrichment of qup in r and ESdown is the enrichment of qdown in r. WTCS 
ranges between -1 and 1. It will be positive for signatures that are positively related and 

negative for those that are inversely related, and near zero for signatures that are unrelated. A 

null (0) score is assigned for cases when both ESup and ESdown are the same sign.

Normalization of Connectivity Scores

To allow for comparison of connectivity scores across cell types and perturbation types, the 

scores are normalized to account for global differences in connectivity that might occur 

across these covariates. Given a vector of WTCS values w resulting from a query, we 

normalize the values within each cell line and perturbagen type to obtain normalized 

connectivity scores (NCS) as follows:

NCSc, t =
wc, t /μc, t

+ if sgn wc, t > 0

wc, t /μc, t
− otherwise

where NCSC,t, wC,t, μc, t
+  and μc, t

−  are the normalized connectivity scores, raw weighted 

connectivity scores, and signed means of the raw weighted connectivity scores (the mean of 

positive and negative values evaluated separately) within the subset of Touchstone signatures 

corresponding to cell line c and perturbagen type t, respectively.

Overall, this procedure is similar to that used in Gene Set Enrichment Analysis, with the 

addition of bidirectional gene sets (i.e up and down) as queries.

Connectivity Map Score

Tau (τ) compares an observed enrichment score to all others in a reference database. In 

principle, τ can be computed by comparison to scores from any database of reference 

signatures, and the most common approach is to generate a null distribution by random 

permutation. However, a more stringent test that avoids having to make assumptions 

regarding the complex correlation structure of gene expression data is to use a compendium 

of diverse, biologically relevant perturbational signatures, such as those in CMap-LlOOOvl, 

as it is these reference signatures against which any novel connection must compete. Thus, 

query results are scored with τ as a standardized measure ranging from -100 to 100; a τ of 

90 indicates that only 10% of reference perturbations showed stronger connectivity to the 

query. Because the reference is fixed, τ can be used to compare results across queries - a 

connection with a significant p-value and FDR but low τ would suggest a highly 

promiscuous relationship whose connections are not unique.
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Calculating τ

While meaningful comparisons can be made between the NCS values of reference signatures 

with respect to query q, it is also useful to assess if the connectivity between q and a 

particular signature r is significantly different from that observed between r and other 

queries. This is done by comparing each observed NCS value ncsq,r between the query q and 

a reference signature r to a distribution of NCS values representing the similarities between a 

reference compendium of queries (Qref) and r. This procedure results in a standardized 

measure we refer to as Tau (τ) that ranges from -100 to +100 and represents the percentage 

of queries in Qref with a lower |NCS| than |ncsq,r|, adjusted to retain the sign of ncsq,r:

τq, r = sgn ncsq, r
100
N ∑

i = 1

N
[ |ncsi, r | < |ncsq, r | ]

where ncsq,r is the normalized connectivity score for signature r w.r.t query q, ncsi,r is the 

normalized connectivity score for signature r relative to the i-th query in Qref and N is the 

number of queries in Qref Our standard practice is that Qref be comprised of queries obtained 

from exemplar signatures of Touchstone perturbagens that match the cell line and 

perturbation type of signature r. In principle any arbitrary compendium of gene sets (as long 

as they are large enough) could be used.

Summarization Across Cell Lines

When examining query results, it is often convenient to obtain a perturbagen-centric 

measure of connectivity that summarizes the results observed in individual cell types. This 

can be particularly helpful when searching for connections that persist across cell lines or 

when one is unsure which cell line to examine. Given a vector of normalized connectivity 

scores for perturbagen p, relative to query q, across all cell lines in which p was profiled, a 

cell-summarized connectivity score is obtained using a maximum quantile statistic:

NCSc, t =
Qhi ncsp, c i f Qhi ncsp, c > = Qlo ncsp, c

Qlo ncsp, c otherwise

where ncsp,c is a vector of normalized connectivity scores for perturbagen p, relative to 

query q, across all cell lines in which p was profiled, and Qhi and Qlo are upper and lower 

quantiles respectively. This procedure compares the Qhi and Qlo quantiles of ncsp,c and 

retains whichever is of higher absolute magnitude. Thus, maximum quantile is more 

sensitive to signal in a subset of the cell lines than measures of central tendency such as 

mean or median. In the analyses presented here, we used Qhi = 67, Qlo = 33

Off-target effects of shRNAs

In an effort to mitigate the strong off-target effects of shRNAs, we developed an algorithm to 

produce a Consensus Gene Signature (CGS) that reflects the consistent (and therefore on-

target) gene expression effects of shRNAs. To generate a consensus gene signature (CGS), 
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we first create a pairwise Spearman correlation matrix between all shRNA signatures 

targeting the same gene, explicitly setting self-correlations to 0. Each shRNA signature is 

then assigned a weight given by the sum of its correlations to the other signatures, with the 

weights normalized to sum to 1. The CGS is computed as the linear combination of the 

shRNA signatures, with coefficients set to the weights.

Assessing recovery of expected connections

To assess the degree to which each perturbagen profiled in L1000 recovered its expected 

connections to other perturbagens in Touchstone we leveraged annotations compiled from 

various sources. First, the annotations were used to construct a pairwise binary association 

matrix for all perturbagens in Touchstone. A pair of perturbagens were considered to be 

associated if they shared at least one type of annotation. For example, a pair of small-

molecules were associated if they shared the same MoA. Similarly a compound and a 

genetic perturbagen could be associated if they shared the same gene target. We retained 

1,902 small-molecule, 994 genetic over-expression, and 1,634 CGS perturbagens after 

excluding those that had too few (<10) or too many (>3,000) connection pairs. Then for each 

perturbagen p, we partitioned all associated perturbagen-pairs into a collection of expected 

connection pairs (Ep) whose members were associated with p and and a collection of 

background pairs (BP) whose members were not associated with p. Finally, ROC analysis 

was performed wherein the connectivities between members of Ep were compared to that 

between members of Bp at different threshold values for connectivity t ranging from (0, 

100). At each threshold we computed true positive rates (TPR) as the fraction of Ep that 

were connected, and false positive rates (FPR) as the fraction of Bp that were connected, 

thereby generating an ROC curve from which an AUC was derived.

To further explore the known relationship between a compound's gene expression signature 

and cell line genotype, we profiled the MDM2 inhibitor AMG-232 in a panel of ten 

MCF10A isogenic cell lines. We observed AMG-232 had a dramatic reduction in TAS only 

in the cell line in which TP53, which is negatively regulated by MDM2, was homozygously 

deleted compared to the other 9 cell lines which were all TP53 wild-type. This result may 

indicate the utility of a more general screening approach by which the potential target(s) of a 

compound could be identified by generating L1000 profiles across a diversity of genetic 

backgrounds.

Defining perturbational classes

In order to define perturbational classes we first obtained annotations for as many 

Touchstone perturbagens as possible. For compounds, mechanism of action and gene target 

annotations were collated from multiple sources (Corsello et al., 2017). For genes, family 

and pathway annotations were obtained from HGNC as of July 2016. Annotations for both 

compounds and genes were manually regularized. We next grouped perturbagens by shared 

annotation to generate candidate classes. For example, all compounds that share the same 

mechanism of action were assigned to the same class.

For each perturbagen member of a candidate class, we assessed whether it sufficiently 

recovered its expected connections to other perturbagens in at least one cell line via ROC 

Subramanian et al. Page 28

Cell. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis (more detail below). The class definition was refined to include only those members 

that passed this criterion. Finally, the classes were assessed for sufficient interconnectivity. 

We required that classes had at least 3 members and exhibited a median pairwise τ of at least 

80 in one or more cell lines. Those classes that passed this filter were codified into 

perturbagen classes (PCLs). This process resulted in 171 PCLs (92 compound, 60 LoF, and 

17 GoF classes) corresponding to 930 unique perturbagens. PCLs range in size from 3 to 44 

members, with an average size of 5.8 members. PCLs were required to contain only 

perturbagens of the same type and although perturbagens were allowed to belong to more 

than one PCL, most PCLs are completely distinct, with a median pairwise overlap of zero 

members. 95% of PCL members belong to just one PCL.

The majority of PCLs show strong inter-member connectivity in multiple cell types with 132 

PCLs (77%) having a cell-summarized median pairwise τ >= 80. 24 PCLs (14%) had 

significantly stronger connectivity in a particular cell type than in cell-summarized mode, 

indicating that for these PCLs the connectivity was driven by cell context. Some examples 

include PPAR receptor agonists in HT29 and PC3 cell lines and estrogen-receptor agonists 

and antagonists in MCF7.

Compound PCLs were also assessed for structural similarity. The 2D structural similarity of 

all pairwise combinations of compounds within each PCL was measured using Tanimoto 

coefficient calculated from binary fingerprints, which were obtained from SMILES strings 

representing structures of the compounds in PCLs. SMILES strings were converted to binary 

fingerprints using the Open Babel implementation of the Daylight fingerprint standard 

(O'Boyle et al., 2011). We found that the vast majority of PCLs were structurally diverse. All 

but one PCL had a median pairwise Tanimoto below 0.8. Detailed information on all PCLs 

is available in Supplementary Table S7.

Computing Connectivity to PCLs

Connectivity of a query to PCLs is computed using the same approach described earlier for 

summarization of connectivities to a perturbagen across cell lines. Given a vector of 

normalized connectivity scores for the members of a PCL p, relative to query q, in a given 

cell line, we apply the maximum quantile procedure to obtain a summarized NCS value 

(NCSPCL). We then compute a PCL-level τ from NCSPCL by comparison to a reference 

distribution comprised of PCL-aggregated scores corresponding to the Qref queries described 

above.

This ensures that t is always computed relative to an equivalent background distribution and 

keeps it on a scale comparable to that of individual perturbagens.

Selectivity of PCL Connections

We define the PCL selectivity s of a query q as the fraction of PCLs whose connectivity to q 
is less than a given threshold τth. The fewer the number of PCLs connected to by q, the 

higher its selectivity.
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sq = 1
N ∑

i = 1

N
[ |τi | < τth]

Where sq is the PCL selectivity of query q, N is the number of PCLs, τi is the connectivity 

of q to the ith PCL and τth is the connectivity threshold.

PCL validation

In order to test the accuracy of PCL connections, we profiled 137 holdout compounds 

known to share a mechanism with one or more of 54 small-molecule PCLs, but which were 

not used in the construction of the PCL itself. We subjected the resulting signatures to 

connectivity analyses as described above and observed that for 41/54 classes (76%), the test 

compounds connected to their designated PCL in multiple cell types (Figure 4B). For an 

additional 7/54 (13%), a selective connection was observed in a single cell type. The 

remaining 6/54 (11%) did not reconnect at a threshold of t >90. Thus, 48 of the 54 assessed 

PCLs (89%) were considered validated in that they successfully connected to their 

corresponding holdout compound(s).

Unexpected Connections Between Drugs and PCLs

We assessed whether a validated PCL had strong, selective, but unexpected connections to 

3,333 annotated small molecule compounds. To focus on unexpected connections, we 

identified all compounds that connected to a validated PCL at τ ≥ 98 of which the given 

compound was not a member and whose members' gene targets did not overlap with the 

given compounds' gene targets. For each compound, we computed its PCL selectivity as the 

fraction of the 171 PCLs to which it failed to connect with τ ≥ 90 and considered only 

compounds with selectivity of at least 0.9. We identified 225 novel connections between 

drugs and validated PCLs, corresponding to 132 drugs (3.9% of total assessed). We applied 

the same analysis to 2,418 unannotated but transcriptionally active compounds and identified 

194 strong, selective connections corresponding to 111 compounds (4.6% of total assessed).

HDAC Inhibitor PCL Clustering

We performed hierarchical clustering on the 22 members of the HDAC inhibitor PCL in the 

space of their pairwise connectivities to each other across 9 cell lines using spearman 

correlation as the similarity metric with complete linkage. Hierarchical clustering of 

pairwise connectivities of the HDAC inhibitor PCL members reveals substructure within the 

class. The pan-HDAC inhibitors generally cluster together, distinct from the more isoform-

selective compounds, suggesting that gene expression can be used to further stratify 

compounds within the same class.

Cellular context

A common question with respect to perturbational signatures is the extent to which they are 

consistent across different cellular contexts. To investigate this, we first restricted our 

analysis to the cell lines in which each perturbagen gave a signature whose transcriptional 

activity score (TAS) was greater than 95% of that of negative controls and considered only 
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perturbagens that had high-TAS signatures in at least three cell lines. Using these thresholds, 

we analyzed 1,399 of 2,429 compounds, 1,088 of 2,160 cDNAs, and 3,926 of 13,187 

shRNAs.

We then computed the pairwise similarity (using WTCS) between signatures of the same 

perturbagen in different cell lines, yielding an N × N matrix of similarity values, where N is 

the number of cell lines in which the perturbagen gave a high-TAS signature. Next, we 

computed the median WTCS between each cell line and all others, yielding a vector of N 
median WTCS values (WTCSmed). We then computed the median of medians (MoM) and 

range of WTCSmed, yielding WTCSMoM and WTCSrange, metrics which indicate the 

aggregate similarity and the variability thereof between signatures of the same perturbagen 

in different cell lines. Perturbagens that give a single signature across multiple cell types 

should have high WTCSMoM and low WTCSrange values, respectively. To estimate 

significance, we computed WTCSMoM and WTCSrange for 1,000 random combinations of N 
high-TAS signatures for values of N between 3 and 9. For a perturbagen to be considered as 

giving a single signature, we required that its WTCSMoM be greater than 95% and its 

WTCSrange be less than 95% of its size-matched null.

Using these thresholds, we found that 26% of compounds, 8% of cDNAs, and 34% of 

shRNAs gave a single signature across multiple cell lines. The comparatively larger 

proportion of shRNAs that give a single signature may be attributed to the higher 

transcriptional activity of shRNAs. We observe that about 36% of genes with at least 3 high-

TAS shRNAs have at least 50% of those shRNAs flagged as single-signature reagents. This 

is not notably different from the 34% rate at which shRNAs give single signatures in 

general, suggesting that whether or not an shRNA gives a single signature is more dependent 

on the shRNA itself (and possibly its off-target effects) than it is on the specific gene the 

shRNA is targeting. cDNAs least frequently give a common signature. This was somewhat 

unexpected, given that they have a similar transcriptional impact as compounds, and may be 

due to their relative lack of off-target effects. Having fewer off-target effects may result in a 

signature that predominantly contains the effect of over-expressing a single gene, which may 

be quite different depending on the gene and cell context.

Amongst those perturbagens that were identified as having a single signature, we observed 

many that target core biological processes such as heat shock response, cell cycle, and 

HDAC and topoisomerase inhibition, among others. These results suggest that the 

transcriptional response to perturbing each of these fundamental pathways is conserved 

across cell contexts.

We also observed a number of classes of perturbagens whose members tended to give 

multiple unique signatures. For example, 23 of 32 EGFR inhibitors were identified as having 

multiple signatures and 31 of 34 serotonin receptor antagonists gave multiple signatures, one 

extreme example being pindolol, whose signature in HCC515 was strongly dissimilar to its 

signature in other cell lines. These results suggest that the transcriptional response to 

perturbing these and other pathways may be context- and/or reagent-dependent.
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Neuronal cell line comparison

To extend this analysis to include specialized primary cell types, we considered 768 

compounds that had been profiled in both neural progenitor cells (NPC) and differentiated 

neurons (NEU) as well as the 9 core cancer cell lines. For each compound, we computed the 

similarity, using WTCS, between all pairwise combinations of cell lines and converted to τ 
using the pairwise similarities between all 768 compounds in all 11 cell lines as reference 

(Qref). We observed that 189 of the 768 compounds (25%) connected with τ ≥ 90 when 

comparing NPC to NEU. For each pairwise combination of the 11 cell lines (NPC, NEU + 9 

core) we computed the fraction of the 189 compounds that self-connected above 90. We then 

computed the average fraction that self-connected when considering NPC to cancer (34%), 

NEU to cancer (25%) and cancer to cancer (50%). This suggests that the neuronal lines are 

more different from the cancer lines than the cancer lines are from each other, at least in the 

space of these 189 compounds. Therefore, expanding the cell line set into neuronal cell types 

may be beneficial.

Replicate Correlation (CC)

Each L1000 experiment consists of multiple biological replicates. To derive an aggregate 

measure of replicate reproducibility, we compute the 75th quantile of the Spearman 

correlations between all pairwise combinations of replicate level 4 profiles for a given 

experiment.

Signature Strength (SS)

We compute signature strength (SS) as the number of differentially expressed genes within a 

signature; that is, the number of landmark genes with absolute z-score greater than or equal 

to 2. The z-scores are adjusted to offset shrinkage of z-scores that occurs with increasing 

number of replicates. This allows SS values derived from signatures of different numbers of 

replicates to be compared with each other

SS= ∑
i = 1

978
zai > = 2

za = z ⋅ nrep

Where z, nrep are a vector of moderated z-scores and the number of replicates respectively

Transcriptional Activity Score (TAS)

The transcriptional activity score (TAS) is computed as the geometric mean of SS and CC 
for a signature. TAS is scaled by the square root of the number of landmark genes (978) so 

the final score ranges between 0 and 1.

TAS = SS ⋅ max CC, 0 /978

Subramanian et al. Page 32

Cell. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Where SS and CC are the signature strength and replicate correlation for the given signature, 

respectively.

Analysis of unannotated small-molecule screening libraries

We began with a collection of 16,527 unannotated small molecules for which we had 

generated L1000 profiles. These compounds were derived from a variety of sources, 

including the Broad Institute's diversity oriented synthesis (DOS) library and the NIH's 

Molecular Libraries Probe Production Centers Network (MLPCN). We focused on the 2,418 

compounds whose 75th quantile of TAS was as least 0.2 and whose signatures had a median 

pairwise WTCS of at least 0.3 across cell lines, indicating a robust transcriptional response 

in at least a subset of cell lines. We termed these compounds Discovery, and attempted to 

assign functional annotations via comparison with annotated drugs and genes in the L1000 

Touchstone (reference) part of the data.

To obtain a high-level view of these Discovery compounds relative to known drugs, we ran t-

SNE analysis on the Discovery signatures and those of every compound belonging to a PCL. 

t-SNE is a non-linear dimensionality reduction and visualization technique that attempts to 

preserve local-structure from high-dimensional datasets ensuring that samples that are 

similar in the high dimensional space are plotted close together in the embedding (Maaten 

and Hinton, 2008). t-SNE was run on consensus signatures across cell types for each 

perturbagen in landmark space, with initial dimensions set to 50 and a perplexity of 30.

In addition, we performed query analysis on these compounds' signatures to derive their 

connectivities to Touchstone perturbagens and PCLs. We found that 111 Discovery 
compounds had strong and selective connections to PCLs (τ >= 98; PCL specificity >= 0.9).

Data and Software Availability

The data generated in this study are publicly available, at multiple levels of pre-processing, 

via GEO (accession GSE92742 and pre-processing code via GitHub https://github.com/

cmap/cmapM), and for easier use via the CLUE analysis environment at https://clue.io. In 

particular, a web app that allows users to input gene sets from their study of interest so as to 

find matching conditions in the CMap database is available at https://clue.io/l1000-query

Additional Resources

Detailed protocols for the L1000 assay are provided at https://clue.io/sop-L1000.pdf. In 

addition, several documents in the connectopedia knowledgebase https://clue.io/

connectopedia provide details to users on how to access utilize the dataset and tools. The 

website http://lincsproject.org provides information about the umbrella LINCS consortium, 

including the various metadata standards.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A new gene expression profiling method, L1000, dramatically lowers cost

• The Connectivity Map now includes 1.3 million publicly accessible L1000 

profiles

• Facilitates discovery of small-molecule mechanism and annotation of genetic 

variants

• The work establishes feasibility and utility of a truly comprehensive 

Connectivity Map
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Figure 1. L1000 gene expression platform implementation and validation
A. Overview of ligation-mediated amplification. Cells are treated in 384-well plates, lysed 

and mRNA captured on oligo-dT plates. mRNA is reverse-transcribed and oligonucleotide 

probes designed with transcript-specific, 24-mer unique barcode and universal primer 

sequences annealed to the cDNA, ligated and PCR-amplified using biotinylated primers. 

PCR product is hybridized to optically addressed polystyrene microspheres, where each 

bead is coupled to an oligonucleotide complementary to a landmark gene's barcode. 

Transcript abundance is quantified by fluorescence using a Luminex FlexMap 3D scanner.

B. Deconvoluting 1,000 landmark genes using 500 bead colors. Each bead is analyzed for 

its bead color (denoting landmark gene identity) and phycoerythrin intensity (denoting 

transcript abundance). Aliquots of the same bead color, separately coupled to two different 

gene barcodes, are combined in a ratio of 2:1. A distribution of fluorescent intensities 

reveals two peaks (partitioned by k-means clustering), the larger peak designating the 

landmark for which double number of beads were used.

C. Validation of L1000 probes using shRNA knockdown. MCF7 and PC3 cells 

transduced with shRNAs targeting 955 landmark genes. Differential expression values (z-

scores) were computed for each landmark and the percentile rank of expression z-scores in 

the experiment in which it was targeted relative to all other experiments was computed. 

841/955 genes (88%) rank in the top 1% of all experiments and 907/955 (95%)rank in the 

top 5%. Top panel: z-score of BAX gene in every experiment. Middle panel: Z-score 

distribution from all targeted (orange) and non-targeted (white) genes. Distribution from the 

targeted set is significantly lower than non-targeted (p value <10-16). Bottom panel: Scatter 

of percentile rank versus expression z-score for 955 targeted genes.
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D. Comparison of L1000 with other platforms. Samples of RNA from 6 human cancer 

cell lines were profiled on L1000, Affymetrix GeneChip HG-U133 Plus 2.0 Array, Illumina 

Human HT-12 v4 Expression BeadChip Array, and mRNA-seq (Illumina Hi-Seq).

E. Comparison of L1000 with RNA-seq and Affymetrix using patient-derived samples. 
RNA samples from 3,176 tissue specimens profiled on L1000 and RNA-seq, and a subset on 

Affymetrix microarrays. Top panels: Scatter plots of L1000 expression versus RNA-seq in 

landmark (left, Spearman correlation of 0.86) and landmark plus inferred (middle, Spearman 

correlation of 0.91) expression for a single sample. Bottom left:Spearman correlation 

distribution for L1000 vs RNA-seq of landmark genes for the same sample (orange) and 

different samples (gray), across all 3,176 patient samples. Bottom right: All L1000 inferred 

genes were subject to recall analysis by comparison with their RNA-seq measured 

equivalents. Scatter plot shows R versus cross-platform correlation for all inferred genes. 

9,196 of 11,350 (81%) have an R in the 95th percentile (dotted line).
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Figure 2. L1000 dataset coverage, signature generation, and data access
A. Classification of data in CMap-L1000v1. The 25,200 unique perturbagens correspond to 

19,811 compounds, shRNA and/or cDNA targeting 5,075 genes, and 314 biologics. 

Annotated perturbagens profiled systematically across 9 core cell lines comprise the 

reference or Touchstone portion of the dataset, while the unannotated reagents make up the 

Discover portion.

B. Modes of access to analysis tools and data. The clue.io software platform enables 

computational biologists, bench scientists, and software engineers to leverage CMap by 

offering web applications for analysis, and APIs and docker containers for code and data 

access.

C. Signature generation and data levels. I) Raw bead count and fluorescence intensity 

measured by Luminex scanners II) Deconvoluted data to assign expression levels to two 

transcripts measured on the same bead IIIa) Normalization to adjust for non-biological 

variation IIIb) Inferred expression of 12,328 genes from measurement of 978 landmarks IV) 

Differential expression values V) Signatures representing collapse of replicate profiles.

D. Schematic of query analysis. Query is specified by sets of up- and down-regulated 

genes. Similarities between the query and all signatures in CMap are computed. Normalized 

similarities are converted to a p-value and FDR, by comparison with a compendium of 

random queries, and to τ via comparison with reference signature queries. Perturbagens are 

then sorted by τ to generate most similar and opposing perturbagens.
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Figure 3. Analysis of genetic loss of function perturbations
A. Off-target effects of shRNAs. Distributions of Spearman correlations between 

signatures of 12,961 shRNAs in A549 cells targeting the same gene but different seed 

sequences (blue), targeting different genes but the same seed (red) and all pairs of shRNAs 

(gray). Distribution was randomly down-sampled to 10 million points. All pairwise 

comparisons of distributions were significantly different (adjusted p < 10e-7 by Kruskal-

Wallis test followed by Dunn test with Benjamini-Hochberg correction).

B. Consensus Gene Signature (CGS) improves on-target signal. A consensus gene 

signature (CGS) is computed from a weighted average of signatures of independent shRNAs 

targeting the same gene. Connectivity to annotated small molecules targeting each gene 

(horizontal axis) is markedly improved by CGS over individual shRNAs (with τ closer to 

100), suggesting that the CGS procedure mitigates the seed effect inherent to individual 

shRNAs and enhances on-target signal. Connections are shown summarized across cell lines 

unless otherwise indicated.

C. CRISPR knockout augments compound-target analysis. Top: Consistency between 

Loss of Function (LoF) signatures from CRISPR and CGS enhances confidence in 

connectivity to small molecules (CP). Middle: CRISPR-based LoF recovers some 

connections to small molecules missed by CGS. Bottom: Lack of compound-target 

connectivity, despite consistency between LoF reagents and validated compound signature 

suggests non-equivalency of genetic and pharmacological agent-derived signatures.
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Figure 4. Reference perturbagen classes for CMap discovery
A. Process for defining Perturbagen Classes (PCLs). Left: Annotations gathered from 

literature sources to construct pairwise association matrix between perturbagens based on 

shared descriptors such as MoA, target gene and pathway membership. Middle: Each 

perturbagen is subject to ROC analysis to determine whether it recovers expected 

connections. Right: Remaining members are grouped based on shared annotations and 

assessed for intra-group connectivity of CMap signatures. Groups sufficiently 

interconnected are retained as PCLs.

B. PCL validation. 137 compounds with known activities corresponding to one or more of 

54 PCLs, but not used in PCL construction, were profiled across multiple cell types. 

Histogram shows rank of each expected PCL connection for the compounds (purple) versus 

the rank of all unexpected PCL connections (grey). The expected PCL distribution is 

significantly right-shifted (one-sided p < 2.2e-16 via two-sample KS test).

C. Using PCLs for discovery. 3,333 known drugs and 2,418 unannotated but 

transcriptionally active compounds were subject to PCL analysis. Count of strong and 

selective connections to validated PCLs byknown drugs (teal) and unannotated compounds 

(blue). Abbreviations: inh. inhibitor, ag. agonist, rec.receptor, antag. antagonist, and chan. 

channel.

D. Detecting multiple drug activities using PCLs. The PKC inhibitor enzastaurin was 

profiled in CMap across multiple doses. Connectivity to each established kinase inhibitor 

PCL is shown in the heatmap. Strong dose-responsive connections were observed to PKC 

and GSK3 inhibitor PCLs.

Subramanian et al. Page 43

Cell. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Characterizing known and unexpected activities of small molecules
A. HDAC inhibitor PCL substructure. Hierarchical clustering of pairwise connectivities 

of the HDAC inhibitor PCL members reveals substructure within the class. Pan-HDAC 

inhibitors cluster together, distinct from more isoform-selective compounds.

B. Antibacterials exhibit lower transcriptional activity than other drugs. Distributions 

of the maximum TASper compound for 147 antibacterials and 2,372 known drugs in CMap-

TS. The antibacterials' TAS distribution is significantly lower (p < 3e-11) than that of other 

drugs.

C. Comparison of unannotated compounds with known drugs. t-SNE projection of the 

signatures of 2,418unannotated but transcriptionally active compounds (blue) with PCL 

members (teal). Some unannotated compounds occupy regions not covered by drugs, 

presenting opportunities for novel chemical development.
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Figure 6. Kinase inhibitor discovery using reference transcriptional signatures
A. Discovery of ROCK1/ROCK2 inhibitor. Top left panel: chemical structure of BRD-2751, 

predicted to be aROCK inhibitor. Right: TREEspot selectivity profile of Kinomescan 

binding assay confirmed compound binding to ROCK1/ROCK2. Bottom left: Dose response 

testing by Kinomescan showed ROCK1 KD of 56 nM.

B. Discovery of novel CSNK1A1 inhibitor. Top left panel: The chemical structure of 

BRD-1868. Top right:TREEspot image of Kinomescan binding assay performed with 

BRD-1868 at 10 uM demonstrated inhibition of6/456 kinases tested including CSNK1A1. 

Bottom left: CSNK1A1 binding by BRD-1868 confirmed by Kinomescan, with Kd 2.2 uM. 

Bottom right: BRD-1868 inhibits phosphorylation of peptide substrate byCSNK1A1, with 

IC50 12.9 uM. Error bars indicate standard deviation between technical replicates.
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Figure 7. Assessing impact of allelic variants and drug response in clinical trials
A. Predicting LoF alleles. Clinically-observed FBXW7 alleles were overexpressed and 

L1000 profiles obtained. Protein structure shows residues in question. Wild-type FBXW7 

connects strongly to MYC shRNA, which is a known target (heat map). Mutations at 

residues adjacent to the substrate recognition site lose the MYC connection. τ values are 

summarized across multiple cell types. Bar plot above heat map indicates incidence of each 

mutation in COSMIC database.

B. Interpreting drug resistance. Transcriptional profiles of pre-treatment, early on-

treatment, and relapse tumor biopsies obtained from clinical trials of BRAF and MEK 

inhibitors. Queries from on-treatment versus pre-treatment biopsies exhibited connectivity to 

pharmacologic inhibition of BRAF or MEK as well as BRAF shRNA in A375 cells, 

reflecting target engagement in vivo (left 3 columns in heat map). MAP kinase signaling was 

re-activated, as indicated by a strong negative connection to the same CMap signature in the 

subset of relapse biopsies with known MAP kinase pathway-related resistance mutations 

(right 3 columns of heat map).

C. Predicting therapeutic efficacy. Transcriptional profiles of pre-treatment and on-

treatment biopsies from clinical trial of PHA-793887. Differential expression between the 

two time points yielded variable connectivity to negative regulators of cell cycle. Patients 

with strong positive connectivity to cell cycle inhibition signatures remained on trial for a 

median of 21 weeks; patients with negative connections remained on study for only 8 weeks.
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