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Abstract

Big longitudinal data provide more reliable information for decision making and are common in 

all kinds of fields. Trajectory pattern recognition is in an urgent need to discover important 

structures for such data. Developing better and more computationally-efficient visualization tool is 

crucial to guide this technique. This paper proposes an enhanced projection pursuit (EPP) method 

to better project and visualize the structures (e.g. clusters) of big high-dimensional (HD) 

longitudinal data on a lower-dimensional plane. Unlike classic PP methods potentially useful for 

longitudinal data, EPP is built upon nonlinear mapping algorithms to compute its stress (error) 

function by balancing the paired weights for between and within structure stress while preserving 

original structure membership in the high-dimensional space. Specifically, EPP solves an NP hard 

optimization problem by integrating gradual optimization and non-linear mapping algorithms, and 

automates the searching of an optimal number of iterations to display a stable structure for varying 

sample sizes and dimensions. Using publicized UCI and real longitudinal clinical trial datasets as 

well as simulation, EPP demonstrates its better performance in visualizing big HD longitudinal 

data.

Index Terms

Enhanced projection pursuit; Pattern recognition; Visualization; Longitudinal data

1 Introduction

Building up the infrastructure for big data visualization is a challenge but an urgent need [1], 

[2]. Big longitudinal data are generated every day from all kinds of fields in industry, 

business, government and research institutes [3]–[15]. Discovering useful information from 
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heterogeneous data requires trajectory pattern recognition techniques [16]–[22]. However, 

developing visualization tools is crucial to guide this technique, which can facilitate the 

discovery, presentation and interpretation of important structures buried in complex high-

dimensional data. Projection Pursuit (PP) is a classical technique to data visualization, first 

introduced by Friedman and Tukey in 1974 for exploratory analysis of multivariate data 

[23]. The basic idea of PP is to design and numerically optimize a projection index function 

to locate interesting projections from high- to low-dimensional space. From these interesting 

projections, revealed structures such as clusters could be analyzed [24]–[27]. PP is based on 

the assumption that redundancy exists in the data and the major characteristics are 

concentrated into clusters. For example, principle components analysis is one of the typical 

PP methods, widely used for dimension reduction by removing uninteresting directions of 

variations [23], [26], [28]–[39] and now often used as an initialization before high 

dimensional data mapping and clustering [26], [40]–[45].

In the present study, our newly developed PP method is compared to two typical PP 

methods: Andrews Curves and Grand Tour, as all three methods are potentially useful for big 

longitudinal data visualization where high dimensionality (HD) and repeated measures for 

each dimension are common. Section II introduces the involvement of Andrews Curves and 

Grand Tour; Section III discusses the EPP function and algorithms; Section IV includes the 

comparison of EPP with other methods using real datasets; Section V evaluates EPP with 

simulated and artificial data; Section VI concludes this study.

2 Andrews Curves and Grand Tour

Proposed in 1972, Andrews Curve has been widely utilized in many disciplines such as 

biology, neurology, sociology and semiconductor manufacturing. The algorithm of Andrews 

Curve was designed to project high dimensional data onto a predefined Fourier series [46], 

and if any structures exist, they may be visible via Andrews Curves. Briefly, for each case X 

= {x1, x2, …, xd}, which is a vector of measurements, we define a series ( 1
2 , sin(s), cos(s), 

sin(2s), cos(2s), …), then the Andrews Curve is calculated as

f x(s) =
x1
2 + x2 sin(s) + x3 cos(s) + x4 sin(2s) + …, (1)

for −π < s < π. Each case may be viewed as a curve between −π and π, and structures may 

be viewed as different clusters of curves. Since 1972, several variants of the Andrews Curve 

have been proposed. Andrews himself also proposed to use different integers to generalize 

fx(s),

f x(s) = x1 sin(n1s) + x2 cos(n1s) + x3 sin(n2s) + x4 cos(n2s) + … . (2)

By testing n1 = 2, n2 = 4, n3 = 8, …, the author concluded that Equation (2) is more space 

filling (ie., a curve whose range contains the entire 2-dimensional unit square, or the 

mapping is continuous) than Equation (1) but more difficult to interpret when used for visual 
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inspection [46]. A three-dimensional Andrews plot was suggested by Khattree and Naik 

[47],

2 f x(s) = x1 + x2[sin(s) + cos(s)] + x3[sin(s) − cos(s)] + x4[sin(2s) + cos(2s)] + … . (3)

As every projection point is exposed to a sine function and a cosine function, the advantage 

in Equation (3) is that the trigonometric terms do not simultaneously vanish at any given s, 

which establishes an interesting relation between the Andrews Curve and the eigenvectors of 

a symmetric positive definite circular covariance matrix.

Different from Andrews Curve, Grand Tour proposed by Asimov [48] and Buja [49] in 1985 

is an interactive visualization technique. The basic idea is to rotate the projected plane from 

all angles and search the interesting structures [50]–[56]. However, these methods were not 

ideal in terms of intensive computation, computer storage, and projection recovery turns out 

to be difficult. Motivated by Andrews Curve, Wegman and Shen [57] suggested an algorithm 

for computing an approximate two-dimensional grand tour, called pseudo grand tour which 

means that the tour does not visit all possible orientations of a projection plane. The method 

has recognized advantages, such as easy calculation, time efficiency in visiting any regions 

with different plane orientations, and easy recovery of projection. Briefly, assuming d is an 

even number without loss of generality [57], let a1(s) be

2
d (sin(λ1s), cos(λ1s), …, sin(λd /2s), cos(λd /2s)), (4)

and a2(s) be

2
d (cos(λ1s), − sin(λ1s), …, cos(λd /2s), − sin(λd /2s)), (5)

where λi has irrational values. a1(s) and a2(s) have the following properties,

‖a1(s)‖2
2 = 2

d ∑
j = 1

d /2
(sin2(λ js) + cos2(λ js)) = 1, (6)

‖a2(s)‖2
2 = 2

d ∑
j = 1

d /2
cos2(λ js) + ( − sin)2(λ js) = 1,

and
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〈a1(s), a2(s)〉 = 2
d ∑

j = 1

d /2
(sin(λ js)cos(λ js) − cos(λ js)sin(λ js)) = 0, (7)

where 〈·〉 is the inner product of two vectors a1(s) and a2(s). Then, the projections of data 

points on the plane formed by the two basic vectors are

f xi
(s) = Xi1

′ , Xi2
′ , i = 1, 2, …, N, (8)

in which

Xi1
′ = ∑

k = 1

d
xka1k, (9)

Xi2
′ = ∑

k = 1

d
xka2k .

According to (6), a1(s) and a2(s) form an orthonormal basis for a two dimensional plane. 

Because of the dependence between sin(·) and cos(·), this two-dimensional plane is not quite 

space filling. However, the algorithm based on (8) is much computationally convenient. By 

taking the inner product as in (7), a [a1(s), a2(s)] plane is constructed on which the high 

dimensional data are projected.

Different from Andrews Curve and Pseudo Grand Tour, our new enhanced projection pursuit 

(EPP) method was built upon Sammon Mapping, assuming not all big longitudinal data fit 

trigonometric functions or transformation. Sammon mapping has been one of the most 

successful nonlinear multidimensional scaling methods [58], [59] proposed by Sammon in 

1969 [60]. It is highly effective and robust to hyper-spherical and hyper-ellipsoidal clusters 

[60]. The idea is to minimize the error (called “stress”) between the distances of projected 

points and the distances of the original data points by moving around projected data points 

on lower dimensional space (mostly 2-dimenstional place) to best represent those in high-

dimensional space. Since its advent, much effort concentrated on improving the optimization 

algorithm [61]–[65] but rarely on modifying Sammon’s Stress function [64].

Our proposed EPP modified Sammon Stress Function by balancing two weights for between 

and within cluster errors, respectively, in order to better segment and visualize structures 

(e.g., clusters) on a projected two-dimensional plane while preserving their cluster 

membership in high-dimensional space. To this end, we developed a nonlinear algorithm to 

compute EPP stress. Besides, our EPP was developed to automate the searching and finding 

of the optimal number of iterations to display a stable structure, for varying sample sizes and 

dimensions. Our goal is to aid the trajectory pattern recognition of longitudinal data. To 

Fang and Zhang Page 4

IEEE Trans Big Data. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evaluate the performance of EPP, one big publicized data set and two real longitudinal 

random controlled trials (RCT) datasets including a large web-delivered trial data were used 

to compare EPP with Andrews Curve and Pseudo Grand Tour. Simulated big longitudinal 

data sets based on RCT data parameters were used to evaluate EPP performance at varying 

conditions.

3 Enhanced Projection Pursuit (EPP)

In longitudinal data analyses, repeated measures for each dimension result in inevitable 

high-dimensionality. Built upon Sammon Mapping [60], we proposed an Enhanced 

Projection Pursuit method (EPP) where the Sammon stress becomes a special case of EPP 

stress when there is only one cluster and the weights of within and between cluster stresses 

are equal. EPP is used to aid trajectory pattern recognition for such longitudinal data. The 

key idea of EPP is to balance the weights of between and within cluster variations in order to 

achieve better visualization, thus aid pattern recognition for high dimensional (HD) 

longitudinal data. Table 1 summarizes the notations used hereafter. First, we define our data 

size and high dimensional space.

Definition 1

let N be the number of cases (e.g., subjects, data points, etc.), Xi, 1 ≤ i ≤ N be a vector of d 

variables {x1, x2, …, xd}, each Xi be repeatedly measured with t times, then the data has dt 
dimensional space and the entire data size is ℓ = N dt. e.g, with N cases, Xi is a dt 
dimensional vector {x11, x12, …, x1t, x21, x22, …, x2t, …, xd1, xd2, …, xdt}.

Then, the projection of the big longitudinal data from high-dimensional space onto a two-

dimensional plane is defined as follows:

Definition 2

To project big HD longitudinal data onto a two dimensional plane and similar to [60], let the 

distance between any two vectors of Xi and Xj in the dt high dimensional space be defined 

by Dij
∗, Dij

∗ = ‖Xi − X j‖2, where ‖·‖2 is the Euclidean norm.

Based on Definition 1 and 2, randomly choose an initial two-dimensional space for the N 
vectors of X′ and compute all the two dimensional distances Dij, 1 ≤ i, j ≤ N, i ≠ j. The 

Sammon Stress [60] is calculated as:

Ssam = 1
∑i < j Dij

∗ ∑
i < j

Dij
∗ − Dij

2

Dij
∗ . (10)

Different from Equation (10), the Stress of EPP stress function SEPP is expressed as the 

weighted sum of the within-cluster stress SEPP_w and between-cluster stress SEPP_b,
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SEPP = αSEPP_w + βSEPP_b (11)

Algorithm 1(a)

Main EPP Algorithm

Input: longitudinal data Xi, i = 1, 2, …, N, cluster labels ci, 0 ≤ i ≤ N, and a range of stress error bound ε, maximum 
iteration number, lmax, weight change step δ

Output: α, β, fx and SEPP

1: Initialize X′ by PCA

2: Set initial values for SEPP0→ ∞, l = 0, m = 0, α0 and β0 (α0, β0 > 0, α0 + β0 = 1)

3: for l = 0 to lmax do

4:
   f xl

= arg min 
f x

SEPP(αl, βl, f x)

5:   SEPPl= SEPP (αl+1, βl+1, fxl)

6:   while αl, βl > 0, αl + βl = 1 do

7:     if SEPP (αl + δ, βl−δ, fxl) < SEPP (αl, βl, fxl) then

8:       αl+1 = αl+1 + δ, βl+1 = βl+1 − δ

9:     else

10:       if SEPP (αl − δ, βl + δ, fxl) < SEPP (αl, βl, fxl) then

11:         αl+1 = αl+1 − δ, βl+1 = βl+1 + δ

12:       else

13:         break

14:       end if

15:     end if

16:   end while

17:   if |SEPPl − SEPPl−1| ≤ ε then

18:     break

19:   end if

20: end for

in which

SEPP_w = 1
∑i < j Dij

∗ ∑
i < j, ci = c j

Dij
∗ − Dwij

2

Dij
∗

SEPP_b = 1
∑i < j Dij

∗ ∑
i < j, ci ≠ c j

Dij
∗ − Dbij

2

Dij
∗

(12)
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where 1
∑i < j Dij

∗  is a constant for a given big HD longitudinal data, ∑i < j, ci = c j

Dij
∗ − Dwij

2

Dij
∗

and ∑i < j, ci ≠ c j

Dij
∗ − Dbij

2

Dij
∗  are the within-cluster and between-cluster stress, respectively, 

Dwij is the within cluster Euclidean distance between case i and j if they are in the same 

cluster, and Dbij is the between cluster Euclidean distance between case i and j if they belong 

to different clusters; α and β are the weights of the within-cluster stress and between-cluster 

stress, respectively, a, β > 0 and α + β = 1. Note again that the Sammon stress is a special 

case of EPP stress when there is only one cluster, ci = 1, i = 1, 2, …, N and the weights of 

within cluster and between cluster stresses are equal, α = β.

EPP algorithm aims to obtain an interesting two-dimensional projection of the original high 

dimensional data that minimizes its stress function. The optimization problem is expressed 

as

minimize αSEPP_w + βSEPP_b

subject to α, β > 0, α + β = 1 .
(13)

Definition 3

To minimize SEPP (α, β, fx) where fx stands for the projections of Dwij and Dbij, the gradual 

approximation algorithm works as: Given a fixed pair of α and β, update the values of fx 

where SEPP has the minimum value, that is, keep updating α and β until there are no 

changes according to (12).

α = α + δ, β = β − δ, if SEPP(α + δ, β − δ, f x) < SEPP

α = α − δ, β = β + δ, if SEPP(α − δ, β + δ, f x) < SEPP

α = α, β = β, otherwise
(14)

The main EPP algorithm is shown in Algorithm 1(a). The embedded gradual approximation 

algorithm is displayed in Algorithm 1(b) to minimize SEPP given α and β; the values of fx 

were retained when SEPP has the minimum value. Specifically, the EPP algorithm initialize 

X′ based on the results from PCA; update fx according to Algorithm 1(b) based on Equation 

(15), calculate the EPP stress and update α and β, with a weight change step δ based on 

Equation (14). If the difference between two consecutive stress values is less than the 

threshold ε, the algorithm stops. Repeat this process until reaching the maximum iteration 

number, lmax.

f xl
= arg min 

f x
SEPP(αl, βl, f x) . (15)
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Algorithm 1(b)

Algorithm for Updating fx

Input: Projections X′, α and β, error bound ε, maximum iteration number mmax, SEPP
(0) → ∞

Output: SEPP
(m+1) and fx

(m+1)

1: for m = 0 to mmax do

2:   fx
(m+1) = fx

(m) − τ · Δ(m)

3:   SEPP
(m+1) = SEPP (α, β, fx

(m+1))

4:   if |SEPP
(m+1) − SEPP

(m)| ≤ ε then

5:     break

6:   end if

7: end for

Note that in Algorithm 1(b) when updating fx, fx
(m) are the projections of the data on the 

two-dimensional space at the m-th iteration, τ is the iteration step size which is set at 0.3 or 

0.4 according to [60], Δ(m) =
∂SEPP

(m)

∂ f x
(m) /

∂2SEPP
(m)

∂( f x
(m))2

 and w = −2
∑i < j Dij

∗  is a constant. Then the 

first-order derivative with respect to fx is shown in Equation (16) and the second-order 

derivative is expressed in Equation (17).

Unlike nonlinear mapping algorithm [60], the EPP algorithm further automates the 

searching and finds the optimal number of iterations to display a stable structure by learning 

the change of SEPP in two consecutive iterations at a range of varying error bounds, sample 

size and the number of dimensions.

4 EPP Performance in Case Studies

Our EPP method was tested on 3 real datasets, including one publicized [66] and two 

random controlled trial (RCT) datasets [43], [67]–[69]. These data features are summarized 

in Table 2.

The Waveform data were generated by a clustering data generator described in [70] and 

published by [66], [70]. It consists of 5000 cases, each with 21 attributes (ℓ = 105, 000). 

There are 3 clusters of waves identified for testing algorithms. Figure 1 shows the 

performance of the three PP methods for waveform datasets. Clearly, Andrews Curve and 

grand tour were unable to visualize the three classes while the EPP demonstrated its 

projection power in visualizing the 3-cluster structure.

TDTA data were collected from a longitudinal culturally-tailored smoking cessation 

intervention for 109 Asian American smokers (ℓ = 2, 180). It contains three identified 

culturally-adaptive response patterns [43]. This intervention used three components: 

Cognitive behavioral therapy, cultural tailoring, and nicotine replacement therapy. The first 

two were measured by scores on Perceived Risks and Benefits, Family and Peer Norms, and 

Self-efficacy scales. Each scale has four repeated measures, total 20 attributes, of which only 
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Perceived Benefits and Family Norms were used using our multiple imputation based fuzzy 

clustering method discussed elsewhere [71]–[73]. As shown in Figure 2, two of the three 

clusters projected by Andrews Curve was completely overlapped, while Grand Tour seems 

to perform as good as EPP for this longitudinal dataset. The parameters of TDTA data are 

shown in Table 3 and Table 4.

QuitPrimo dataset includes 1320 cases (ℓ = 23, 760) with missing values about 8.4%. This 

study aims to evaluate an integrated informatics solution to increase access to web-delivered 

smoking cessation support. The data is collected via an online referral portal about three 

components: 1) My Mail, 2) Online Community, 3) Our Advice. Each of the first three 

component has 6 monthly values measured during 6 months. Figure 3 again showcases the 

strength of EPP over the other two methods for this big longitudinal dataset. Projected four 

patterns were overlapped using Andrews Curve while and the blue and green patterns were 

overlapped to a noticeable degree using the Grand Tour. Table 5 and 6 show the mean values 

and standard deviations of QuitPrimo dataset, respectively.

∂SEPP
(m)

∂ f x
(m) =

w ∑
j = 1, j ≠ p

N D j
∗ − Dw j

D j
∗Dw j

f x
(m) − X j

′(m) if cp = c j,

w ∑
j = 1, j ≠ p

N D j
∗ − Db j

D j
∗Db j

f x
(m) − X j

′(m) if cp ≠ c j .

(16)

∂2SEPP
(m)

∂ f x
(m) 2 =

w ∑
j = 1, j ≠ p

N 1
D j

∗Dw j

(D j
∗ − Dw j

) −
( f x

(m) − X j
′(m))2

Dw j

1 +
D j

∗ − Dw j
Dw j

if cp = c j,

w ∑
j = 1, j ≠ p

N 1
D j

∗Db j

(D j
∗ − Db j

) −
( f x

(m) − X j
′(m))2

Db j

1 +
D j

∗ − Db j
Db j

if cp ≠ c j .

(17)

The optimal pairs, α and β, for included real longitudinal datasets TDTA and QuitPrimo 

given fx can be detected by the following steps. Initialize a pair of values, e.g., (0.5,0.5), and 

calculate the stress of the proposed EPP method by Equation (10) and (11). Increase α and 

decrease β, or vice versa, by a boundary parameter δ, e.g., δ = 0.1, to obtain a new stress 

value. Updating α and β until the stress values no longer decease, we can obtain the optimal 

weights α and β for the within and between cluster stresses. As shown in Figure 4(a) and 
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Figure 4(b), the optimal weights of (0.8, 0.2) were founded for TDTA and QuitPrimo data, 

respectively.

5 EPP Performance Using Simulated Longitudinal Data

The proposed EPP was also evaluated using simulated data. First, simulated longitudinal 

data were generated using parameters from the two real datasets, TDTA and QuitPrimo. The 

data generation procedure is described as follows:

1. Fit the multivariate normal distribution to TDTA and the zero-inflated Poisson 

mixture distribution to the QuitPrimo web trial data [71], respectively, and learn 

the parameters such as cluster mean vectors and standard deviations, the results 

are shown in Table 3, 4, 5 and 6;

2. Set the number of cases of each cluster according to the proportion of each 

cluster (Table 7);

3. Generate data for each cluster based on the model parameters from (1) and 

cluster size (2).

4. Randomize data from (3) to generate a complete dataset;

5. Repeat (1–4) and generate datasets with varying sample sizes, N is in {100, 200, 

300, 500, 1000, 5000}, dTDTA = 20, dQuitPrimo = 18, and ℓTDTA = {2000, 4000, 

6000, 10000, 20000, 100000}, ℓQuitPrimo = {1800, 3600, 4800, 9000, 18000, 

36000}.

Figure 5 displays the EPP projection based on the TDTA parameters using different sample 

sizes. From N = 100 to N = 5000, the clusters are clearly projected. With smaller sample 

sizes, the data points are more spread within the cluster. The red and green clusters are 

closer to each other compared to the blue cluster.

Based on the QuitPrimo parameters, EPP again clearly projected the four clusters across a 

range of data size ℓ. The blue cluster is always far apart from the red cluster; the other three 

clusters always touch each other as shown in Figure 6.

Using the same simulated data sets, the optimal number of iterations were tested for the 

proposed EPP method using a different number of sample sizes or dimensions. In Figure 7 

(a), the number of dimensions was fixed at 20, and the data sizes ℓ were varied from 2,000 to 

100,000. In Figure 7 (b), the data sizes ℓ was fixed at 100,000, and the number of dimensions 

d were varied from 2 to 100. For all conditions, the change between iterations (ε) was varied 

from 10−3 to 10−6.

The findings indicate that across different sample sizes or dimensions or the change of 

stresses between iterations (ε), the optimal number of iteration seem to be always below 

350.

Furthermore, using the same data generation procedure, an artificial longitudinal dataset was 

generated with standardized mean and variance-covariance matrices to evaluate the EPP 

performance. The mean vector was set as 0.2, 0.5, and 0.8 for three clusters [74], [75], the 
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correlation matrix (standardized variance-covariance matrix) was set with 1 at the diagonal 

and other matrix elements were randomly selected from {0.1, 0.3, 0.5} [74], [75]. The data 

size was varied from 1,000 to 500,000 and dimensions were changed from 10 to 100. The 

different colored planes stand for the four settings for the change of stresses between 

iterations (ε), 10−3, 10−4, 10−5, and 10−6. As shown in Figure 8, the optimal number of 

iterations seem to be always below 500 across different sample sizes, dimensions and error 

bounds (ε) for the change between iterations. Using 500 iterations could be an empirical rule 

for setting the iterations for EPP. Overall, in terms of computational time, EPP cost 11 and 

22 seconds for projecting real TDTA and QuitPrimo data while up to 9 minutes assuming 

the worst scenario of N = 20,000 and dt = 100.

6 Conclusion

Pattern visualization is a challenging field. A robust projection pursuit method could 

enormously ease pattern recognition. Our enhanced projection pursuit (EPP), a variant of 

classic Sammon Mapping, balances the weights of between and within cluster variations and 

better project big high dimensional longitudinal data onto two-dimensional plane using 

nonlinear mapping algorithms. Compared to classical Andrews Curve and Grand Tour, our 

EPP method seems to perform consistently well and was more robust to such data. Different 

from the two methods, EPP was not built upon trigonometric functions as not all 

longitudinal datasets follow this assumption, especially those longitudinal random controlled 

trial (RCT) or observational data [40]–[45], [67], [74], [76]. Using the publicized UCI 

dataset, real longitudinal RCT datasets and a number of simulated big longitudinal data, EPP 

showcases its clear and better projection power with respect to high-dimensionality, sample 

sizes and error bounds for the change between iterations with satisfactory computational 

costs. Embedding EPP into different trajectory pattern recognition systems and further 

reducing computational time for bigger data would be future tasks. Testing EPP on more big 

longitudinal data could further warrant its robustness.
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Fig. 1. 
Projection Pursuit of Waveform data using Andrews Curve, grand tour and proposed EPP
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Fig. 2. 
Projection Pursuit of TDTA data using Andrews Curve, grand tour and proposed EPP
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Fig. 3. 
Projection Pursuit of QuitPrimo data using Andrews Curve, grand tour and proposed EPP
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Fig. 4. 
Finding an optimal pair of weights that balance the between and within stresses for TDTA 

and QuitPrimo using EPP (blue line is reference line from Sammon’s Stress)

Fang and Zhang Page 19

IEEE Trans Big Data. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
EPP for simulated longitudinal data using TDTA parameters and ℓ is from 2000 to 100000
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Fig. 6. 
EPP for simulated longitudinal data using QuitPrimo parameters and from 1800 to 36000
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Fig. 7. 
The optimal number of iterations for EPP at different number of sample sizes or dimensions 

for simulated data
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Fig. 8. 
The optimal number of iterations for EPP algorithm for the artificial longitudinal data with 

varied sample sizes, dimensions and error bounds (ε) for the change between iterations
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TABLE 1

Notations

Symbols Definitions

X a vector of measurements

Xi,Xj The i-th and j-th cases

Xi′,Xj′ The projections in a 2D space

s angle, 0 < s < π

λ Linearly independent over the rational

a1 (s), a2 (s) Orthonormal basis for a 2D plane

N Number of cases

T Sample times

  d Number of dimensional

p Number of components

Dij Distance between Xi′ and Xj′

Dij
∗ Distance between Xi and Xj

S Stress

ci Cluster label of case i

k The optimal number of clusters

D̅ Average distance

ℓ Total data size

α Weight of the within-cluster stress

β Weight of the between-cluster stress

SEPP Total EPP stress

fx Low-dimensional projections of data

ℓ Size of the simulated data
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TABLE 2

Real Data Description

Name Waveform TDTA QuitPrimo

Cases(N) 5000 109 1320

Components(p) 21 5 3

Time points(t) 1 4 6

Total data size(ℓ) 105,000 2,180 23,760

Clusters(c) 3 3 4
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