
Integrative omics for health and disease

Konrad J. Karczewski1,2 and Michael P. Snyder3

1Massachusetts General Hospital, Boston, MA, USA

2The Broad Institute of Harvard and MIT, Cambridge, MA, USA

3Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA

Abstract

Advances in omics technologies — such as genomics, transcriptomics, proteomics and 

metabolomics — have begun to enable personalized medicine at an extraordinarily detailed 

molecular level. Individually, these technologies have contributed medical advances that have 

begun to enter clinical practice. However, each technology individually cannot capture the entire 

biological complexity of most human diseases. Integration of multiple technologies has emerged 

as an approach to provide a more comprehensive view of biology and disease. In this Review, we 

discuss the potential for combining diverse types of data and the utility of this approach in human 

health and disease. We provide examples of data integration to understand, diagnose and inform 

treatment of diseases, including rare and common diseases as well as cancer and transplant 

biology. Finally, we discuss technical and other challenges to clinical implementation of 

integrative omics.

The rapidly decreasing costs of high-throughput sequencing and other massively parallel 

technologies, such as mass spectrometry, are enabling their use in clinical research and 

clinical practice. Exome and genome sequencing are already being used to aid diagnoses, 

particularly of rare diseases1–3, to inform cancer treatment and progression and, in early 

efforts, to create predictive models of disease in healthy individuals4–6. Numerous research 

efforts and companies are focusing on genome-wide profiles of genetic, gene expression and 

other omics data, such as the microbiome (BOX 1), as biomarkers for disease (see TABLE 1 

for details). For instance, genome-wide association studies (GWAS) have been successful in 

identifying risk loci for disease. However, in many cases, the causal variant or gene is not 

identified7. Here, other omics technologies can provide a useful glimpse into the precise 

pathophysiology of the disease. Experiments generating data that are more proximal to an 

organismal phenotype, such as proteomics, can be expensive and are often not 

comprehensive, and a challenge remains to distinguish the causal origin of a disease. Thus, 
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except in rare cases, no single technology can capture the complexity of the molecular 

events that lead to human disease.

Box 1

Incorporating the microbiome into integrative omics

The microbiome has been associated with many common human diseases; however, an 

additional complication exists, as the direction of causality is not clear. Whereas causality 

is simple in genomic data, where (with the exception of cancer processes that cause 

mutations) DNA influences phenotypes, it is more difficult to disentangle whether 

microbiome composition is a cause or effect of disease, as these studies require expensive 

longitudinal or interventional experiments or mouse models that may not provide 

comprehensive insight into human biology. Nonetheless, it is very clear that patients with 

diseases, such as inflammatory bowel disease110,111, type 2 diabetes112 and 

obesity113,114, have different microbiome profiles from those of healthy controls. In 

addition, the microbiome has a strong influence on immune function, which in some 

cases has been putatively causally linked to disease in animal models (reviewed in REF. 

115).

As our understanding of the microbiome progresses, integrative analysis of this and other 

omics technologies is certain to advance our understanding of human disease. Recently, 

human genetic profiles have been shown to influence overall gut microbiota 

composition116,117, which could suggest putative causal explanations for some disease-

associated genetic loci118 (for recent reviews, see REFS 119,120). Additionally, 

interactions between human genetics and microbiomes have been shown to influence 

disease, highlighting the potential for simultaneous interrogation of the two profiles121. 

Likewise, metabolic signalling between hosts and their microbiomes has become an area 

of active research, and there is increasing evidence that metabolite influences from gut 

bacteria may play a role in human disease122. Thus, it is likely that integrated analysis 

across genome, metabolome, microbiome and other omics profiles will prove beneficial 

for managing health and disease.

Ideally, different technologies would be combined both to help diagnose disease and to 

create a holistic picture of human phenotypes and disease. However, implementation of 

multi-omics data introduces new informatics and interpretation challenges. Specifically, 

novel analytical and statistical methods are needed for combining disparate data sets, as well 

as standardized quality control metrics. Additionally, the field must address challenges in the 

interpretation of molecular events and, accordingly, their actionability and whether they can 

guide therapeutics and clinical care.

Below, we describe ways in which integrative omics can impact medicine by helping to 

manage health, as well as diagnose and treat disease. We discuss preclinical and clinical 

applications for rare Mendelian diseases, such as muscular dystrophy, and more common 

diseases, such as autism and Alzheimer disease. Furthermore, we investigate the use of 

multiple levels of omics technologies in cancer diagnosis and treatment. Throughout, we 

discuss the advantages of integrating multiple data sets, for instance, where one technology 
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may address shortcomings of another to help provide insight into a mechanism of disease. 

Additionally, we discuss current methods as well as challenges in optimally combining and 

interpreting data from multiple sources, with some promising examples of their successful 

applications to elucidating mechanisms of human disease.

Dissecting Mendelian disease

In North America, approximately 10% of paediatric hospital admissions and 20% of infant 

deaths are attributable to Mendelian diseases8–10. In many cases, clinicians and families 

affected by Mendelian diseases are turning to exome and genome sequencing to find the 

causative mutations of their disease, which, depending on the disease and study design, has 

proved successful in 25–50% of cases previously not solved by targeted gene panels3,11–13. 

For diseases that typically act via a recessive mechanism, these investigations are most 

effective when the causal variant is either already in a variant–disease database, such as 

Clinvar, or a protein-truncating (for example, stop-gain, frameshift or essential splice site) 

variant in a known disease gene. However, in some cases, the effect of the variant may be 

more subtle (for example, an intronic variant creating a cryptic splice site), the variant may 

be difficult to detect owing to somatic mosaicism or several candidates are equally likely to 

be deemed causal. Furthermore, such diagnoses are additionally complicated when the 

genetic aetiology is not well known or when the candidate variants fall in genes that are less 

well described. Integrating additional information, such as RNA sequencing (RNA-seq) or 

network analyses, can be useful for detecting molecular events that prioritize among likely 

causal variants or provide additional evidence that a candidate mutation is causative. For 

instance, in a multi-omics analysis of patients with uncharacterized Fanconi anaemia, DNA 

sequencing and array comparative genomic hybridization (aCGH) were effective in 

identifying the mutations that were eventually deemed causal, whereas RNA-seq provided 

evidence of pathogenicity for some unsuspecting variants, including intronic and 

synonymous variants that affect splicing patterns, as well as a deletion of a non-coding exon 

and upstream region that resulted in ablated expression of a transcript14.

More recently, two systematic studies of approximately 50 patients each have provided 

estimates of the additional gain in diagnosis rate using RNA-seq and other technologies 

(FIG. 1), ranging from 10% to 35%15,16. In one of these studies, a diagnostic investigation 

of patients with muscular dystrophy (MD), no causal variants were identified through whole-

exome sequencing (WES), but RNA-seq data identified splice anomalies that revealed 

variants with cryptic splicing effects. Notably, even if whole-genome sequencing (WGS) 

were performed on these patients, these variants would have been identified but likely not 

flagged as causal, as many of them were intronic or otherwise not predicted to affect 

splicing. Given its rapidly decreasing costs and substantial information gain, RNA-seq is 

likely to become a powerful tool in characterizing disease pathophysiology in clinical 

practice. Similarly, as proteomics technologies become cheaper and more accessible, they 

may be used to identify protein level changes brought about, for instance, by missense 

variants that affect protein stability or post-translational modifications.
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Genetic architecture of common disease

Most common diseases such as diabetes17, obesity18, schizophrenia19,20 and autism21 are 

complex and a result of a combination of multiple genetic and environmental factors. Thus 

far, thousands of genomic loci have been significantly associated with human diseases (for a 

recent review, see REF. 22); however, once established as bona fide associations, the difficult 

task remains of characterizing the genes in the context of the molecular pathophysiology of 

the disease and its interacting genes and pathways. To this end, a number of methods have 

arisen to analyse multiple omics data sets, including network and enrichment analysis.

Network analyses

Integration of multiple orthogonal data types can be used to narrow the search space for 

disease genes and identify causal mechanisms of disease. Specifically, network models, 

including protein–protein interaction, regulatory and co-expression networks, have proved to 

be a valuable resource for prioritizing and identifying disease genes and pathways (for 

recent reviews, see REFS 23–26). These networks can be used with any genome-scale data 

set, including single-nucleotide polymorphism (SNP) or gene expression data, to investigate 

the topological properties of the most significantly disease-associated genes in a study, 

particularly when no or few hits reach genome-wide significance. In the case of genetic 

variation data, a challenge exists in mapping SNPs to the affected gene: in some cases, the 

effect of the variant is clear — such as a frameshift variant in an immune-response-related 

gene, NOD2, in Crohn’s disease27 — but more often, the affected gene for a variant may be 

ambiguous28. Additionally, SNPs may be grouped into genes to increase power, but patterns 

of linkage disequilibrium must be addressed29.

Despite these challenges, network methods have yielded successful insights into human 

disease. For instance, in patients with autism spectrum disorder (ASD), genes harbouring de 

novo missense or nonsense mutations are enriched for genes with high degrees of 

connectivity in protein–protein interaction networks to all other genes and particularly 

previously ASD-implicated genes30. In this way, such approaches provide a mechanism to 

prioritize among putative disease genes, either by suggesting a greater functional impact due 

to their presence as a hub gene in a network or through guilt-by-association with previously 

associated genes.

Additionally, two recent studies from our laboratory integrating genomic, RNA-seq and 

proteomic data have identified new genes and complexes involved in autism and 

characterized their function31,32. Specifically, analysis of protein–protein interaction 

networks revealed a module (or coherent community of interacting genes) that was enriched 

for known genes involved in autism, as well as genes harbouring copy number mutations and 

rare mutations in autism cases. This module was enriched for genes involved in synaptic 

transmission, and RNA-seq revealed that many of the genes in a submodule were 

differentially expressed in the corpus callosum in patients with ASD, providing a putative 

molecular explanation for the observation that many individuals with ASD have a smaller 

corpus callosum than controls32. Similarly, mapping of rare variants in patients with autism 

onto protein complexes revealed both novel proteins and novel molecular machinery 

involved in autism, including the histone deacetylase (HDAC) chromatin remodelling 
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complexes and other protein complexes31. Thus, integrating protein interaction data with 

WGS and WES data can provide new insights into important diseases, including autism, 

type 2 diabetes33 and heart disease34 (additionally reviewed in REF. 35).

Enrichment analysis

Recently, numerous large-scale enrichment analyses have been performed in order to 

understand the global mechanisms of information flow from DNA to physiology. Protein-

coding variation is fundamental to many traits and, as such, associated loci from GWAS for 

many traits are enriched for protein- sequence-disrupting (non-synonymous) variation36. 

However, only a small fraction of associations fall into this category and, therefore, 

integration of non-coding regulatory annotations with disease association data can be 

valuable for identifying disease genes and disease aetiology (reviewed in REF. 37). In 

particular, assays for measuring gene expression (RNA-seq) as well as regulatory activity in 

regions that control gene expression (such as chromatin immunoprecipitation followed by 

sequencing (ChIP–seq) for transcription factor binding sites or DNase-seq for detecting 

regions of open chromatin) have been valuable in identifying tissue-specific signatures of 

genomic regulation. Accordingly, disease-associated variants are enriched among expression 

quantitative trait loci (eQTLs) as well as in transcription factor binding sites38–41 and, thus, 

it is likely that many disease aetiologies may act through regulatory mechanisms. Indeed, a 

recent study of 108 loci associated with schizophrenia provided evidence for 20 of these loci 

having changes in gene expression that could at least partially explain their associations20.

Recently, partitioning heritability methods using GWAS summary statistics and functional 

annotation data elucidated the relative contribution of coding and regulatory variants, 

suggesting that the bulk of heritability of many common traits stems from variants in 

regulatory regions (regions of open chromatin as measured by DNase hypersensitivity)42, as 

well as many cell type-specific enhancers43. Additionally, such enrichment information can 

be used to discern causal variation as well as to identify novel genes for diseases and traits 

by increasing the weight of annotations that are specific to each trait36. As of this writing, 

such methods are not yet in clinical practice but have been invaluable in revealing the 

aetiology of many common diseases.

Narrowing causal mechanisms in common disease

As previously mentioned, GWAS have been successful in identifying loci that are 

statistically associated with disease, but they rarely identify causal variation. Integration of 

multiple data types, such as functional annotation data, can also provide insight into the 

potential function of specific disease-associated variants.

Indirect integration across individuals

Currently, a cost-effective method to ascertain the causality of variants associated with a trait 

is using multiple independent data sets to pinpoint causal mechanisms from a set of 

candidate loci with biological evidence44. Such a process may begin with a GWAS, after 

which, a set of genomewide significant loci are assayed for functional follow-up; the specific 

experiment may depend on the types of loci identified or the genetic architecture of the 
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disease. For coding variants, follow-up experiments that ascertain the effect of the variant on 

protein structure or function are ideally performed to demonstrate causality45. For non-

coding variants, the effects are often more difficult to interpret, but recent large-scale 

epigenetic studies, such as the Encyclopedia of DNA elements (ENCODE)46 and the 

Roadmap Epigenomics47 projects, can suggest possible mechanisms for regulatory control, 

as well as transcription factors to target for follow-up experiments. For instance, a detailed 

study on a variant associated with systemic lupus erythematosus (SLE) showed that the 

variant also affects nuclear factor-κB (NF-κB) binding and is associated with expression of 

tumour necrosis factor-α induced protein 3 (TNFAIP3) at both the mRNA and protein 

level48.

Recently, two investigations from Manolis Kellis and colleagues integrating multiple data 

types have yielded fruitful insights into the molecular pathology of Alzheimer disease and 

obesity. First, combining gene expression and epigenomic data, the group showed that genes 

that are upregulated in an Alzheimer disease mouse model show immune cell enhancer 

signatures49. Crucially, whereas a link between immune system genes and Alzheimer 

disease had long been previously established, multiple omics data types proved useful in this 

scenario to establish a direction of effect, showing that there is a concerted increase in 

expression and regulatory activity at immune system genes in Alzheimer disease. Similarly, 

integrating epigenome and chromosomal conformation data, as well as expression 

information from patients with an FTO obesity allele and a number of other data types, 

provided a mechanistic explanation for the risk allele50 (FIG. 2). Genome editing of the risk 

allele using CRISPR–Cas9 restored aberrant expression and thermogenesis, suggesting a 

potential therapeutic avenue for obesity phenotypes.

Direct integration within an individual

Whereas synthesizing data from multiple disparate technologies can create a link between 

layers of biological mechanism, characterizing multiple omics profiles in a single individual 

will be a powerful tool for creating a holistic view of the molecular effects that lead to 

physiological phenotypes. However, these approaches can be expensive, as they require 

multiple interventions and technologies on the same individual and, as such, thus far have 

had limited sample sizes. The first such study was performed in our laboratory and followed 

a single individual for over 7 years6 (and M.P.S., unpublished observations), whereas a 

similar study followed another individual for 1 year51. In Chen et al.6, genomic analyses 

predicted an elevated risk of type 2 diabetes, which was subsequently revealed through 

detailed omics analyses, including transcriptomics, proteomics, metabolomics and other 

measurements. In particular, genes involved in insulin signalling and response were found to 

be downregulated by RNA-seq and by liquid chromatography–tandem mass spectrometry 

(LC–MS/MS) proteomics during a respiratory syncytial virus infection, which coincided 

with increased blood glucose concentration to diabetic levels. These approaches are 

advantageous in their ability to track a mechanistic link across a shared genetic and 

individual background, as one can follow a progression of molecular events, such as the 

differential expression of a GWAS-identified disease-associated gene leading to differences 

in RNA and protein levels and their corresponding metabolites.
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However, as omics profiling experiments have a high multiple hypothesis testing burden (for 

example, across all genes in the genome or thousands of metabolites), larger sample sizes 

will be useful to determine the generality of such correlations. A recent study monitoring 

various omics profiles across 23 individuals identified inflammatory signatures during 

weight gain, and found that certain metabolic pathways did not return to baseline after 

subsequent weight loss52. This analysis highlights the extent of similarities in longitudinal 

omics profiles across individuals, as well as individual-specific signatures at steady state and 

under experimental perturbations. To further qunatify these differences, projects have been 

initiated to extend such analyses to thousands of individuals, characterizing preterm births, 

inflammatory bowel disease and type 2 diabetes53. In a similar vein, two separate groups 

recently profiled genetic and metabolomics data: one of these calculated polygenic risk 

scores for over 100 individuals and correlated these with measurements of metabolites54, 

whereas the other identified rare deleterious variants in healthy volunteers that correlated 

with outliers of individual metabolites and metabolic pathways55. Additionally, as reference 

databases of omics data for healthy individuals become available (as are already available 

for exome56, genome (for example, the Genome Aggregation Database (gnomAD)) and 

RNA-seq57 data), it will become easier to interpret individual-level data in the context of 

these control cohorts.

Other efforts include the Framingham Heart Study and genome characterization studies, 

such as the Genotype–Tissue Expression (GTEx)57 project, with its proposed extension to 

analyses beyond gene expression in the enhanced GTEx (eGTEx) project58. These projects 

have adopted a breadth-first strategy for omics profiling, in which a high number of 

individuals are characterized with a limited panel of technologies that assay a single set of 

molecular markers (for example, whole-genome DNA methylation assays).

Cancer

One area where multiple omics analyses have had and will continue to have enormous 

impact is in cancer profiling, diagnosis and treatment. Indeed, many of the previously 

discussed strategies (for example, network methods) will be effective in identifying genetic 

mechanisms of cancers. However, there are conceptual differences in cancers that 

complicate their analyses and require special handling. In addition to the technical 

challenges of calling somatic variants (see the ‘Accuracy and validation’ subsection in the 

‘Challenges’ section below), the majority of genetic changes evident in cancer cases are 

benign and do not drive cancerous cell growth; therefore, determining which mutations are 

drivers or which pathways are involved remains a considerable challenge. Additionally, 

although some cancers share genetic signatures across individuals, there is still a high level 

of diversity among driver mutations, which can lead to differences in prognosis and 

therapeutics.

Identifying driver mutations

A typical process to identify driver mutations involves WGS of multiple tumours to identify 

recurrently mutated genes59. Overlaying functional data can help to prioritize this 

information, as driver mutations are more likely to be in genes that are expressed in a given 
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cancer. For instance, in an analysis of driver mutations identified using WES coupled with 

copy number variation (CNV) microarray data, RNA-seq data were used to identify an 

expressed gene fusion of EGFR–SEPT14, which was functionally validated to affect glioma 

growth60. In a different analysis using similar technologies, the driver mutations and 

processes underlying multiple metastases within an individual were shown to be largely 

similar across metastases, suggesting that a single metastasis is sufficient for downstream 

analysis61. In this way, using additional omics data complements genetic data, providing a 

mechanism to filter the deluge of genetic variation to functionally relevant causal variants.

Molecular signatures of cancer

In addition to identifying driver mutations, multiple types of omics data can reveal general 

biochemical pathways that are active in individual cancers and classify them into subtypes. 

As such, this can be a valuable tool for ascertaining which pathways to target within a 

patient, even if strong candidate mutations are not detected in those pathways — for 

example, owing to difficult to characterize non-coding mutations or indirect effects. For 

instance, clusters of transcriptomics and DNA methylation patterns have been used to 

identify subtypes of cancers, which have varying survival prognoses59,62. More recently, 

three studies of the Clinical Proteomic Tumour Analysis Consortium (CPTAC) have used 

proteomic approaches to identify cancer subtypes for colorectal, ovarian and breast cancer 

based on protein expression signatures63–65. Importantly, the proteomics data revealed 

overlapping but not identical correlation with the transcriptome and genetic data, indicating 

that the different data types expose different types of information. These studies 

demonstrated the distinct genetic and transcriptional processes that translate into proteomic 

alterations. Finally, integration of imaging information with omics information is expected 

to be valuable in cancer diagnosis and prognosis66,67.

Recent developments in characterizing the non-coding regions that regulate gene expression 

have become increasingly valuable for understanding the regulatory landscape of cancer. 

Studies integrating reference data sets of regulatory information46,47 with WGS data from 

The Cancer Genome Atlas (TCGA) revealed a number of regulatory regions that are 

enriched for mutations in patients with cancer68–71. In these cases, causal genetic variation 

in these non-coding regions is still difficult to pinpoint, highlighting the continuing need for 

research into prioritizing such variation; nevertheless, shared network topology across 

individuals with the same cancer can inform cancer subtypes that may have different 

prognoses and therapeutic strategies. Finally, given the strong dependence of cancerous 

growth on metabolic changes, it is likely that metabolomics will also play an important role 

in cancer diagnostics or prognosis in the future.

Challenges

Until now, most integrative models have been reported and published in research settings. 

However, the adoption of clinical genomics has expanded rapidly over the past few years 

from the first successful diagnosis1 to multi-institutional and international adoption72. In the 

same vein, longitudinal multi-omics profiling, with its first recent research examples6,54, 

may similarly emerge as a clinical tool.
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However, for clinical adoption of any technology to occur, high specificity and sensitivity 

are required, both in detection and interpretation. At present, aside from the use of WES or 

WGS in exceptional cases, such technologies are not regularly used across clinical practices 

because for many diseases, they have not been proved superior to current tests. Going 

forward, clinical guidelines must be established to ensure accuracy and efficacy, and tests to 

show non-inferiority and cost-effectiveness must be performed.

Nonetheless, omics profiling can be an effective way of detecting large-scale or pathway-

level alterations — cheaper and often more comprehensive than performing thousands of 

individual tests — and longitudinal profiling can show patient-specific trends and add 

statistical support through repeated measurements6. Although challenges remain in 

establishing clinical guidelines, many of the concepts surrounding the interpretation of 

genetic variants (particularly rare or novel variants) may apply to a general molecular event 

(such as a differentially expressed gene, novel protein phosphorylation or unique 

metabolome signature) as our understanding of the biology and reference databases mature.

Analytical challenges

There are various analytical challenges that must be addressed to enable the widespread 

adoption of integrative omics in clinical practice, particularly those of statistical methods for 

data aggregation, scalability and integration into electronic health records (EHRs). Most 

importantly, a robust and reproducible statistical framework is needed to properly analyse 

multiple disparate data sets, each with their own variances and biases. Multi-omics data can 

be analysed in a multistage or meta-dimensional fashion (reviewed in REF. 73). Briefly, one 

option for drawing inferences from these data involves pairwise analyses of data sets, 

mounting evidence to support a signal. However, analysing three or more data sets 

simultaneously requires more sophisticated multi-dimensional methods, such as Bayesian 

models74, neural networks75 or dimensionality reduction76. This is further complicated by 

the fact that various omics data types are fundamentally different: for instance, genetic 

variation data are discrete and static, whereas RNA-seq measurements are continuous and 

can provide longitudinal information.

Although the data analysis methods described above are effective for learning about biology 

and disease, they are not specifically designed to apply this information to individual-level 

data for clinical purposes. In the genomics space, with an individual’s genotype and a 

database of results from GWAS, one can compute a polygenic risk score to assess an 

individual’s risk of disease4,77 (for recent reviews on methodology, see REFS 22,78). A 

major obstacle remains in building such frameworks for multiple omics profiles, which is 

likely to face some of the same challenges, such as the difficulty in applying results 

discovered in one population to individuals in another79,80.

In addition to challenges with analytical approaches, these analyses and the storage of all 

associated data will require tremendous computational resources: although the amount of 

data for multiple omics technologies on a single individual may be manageable (for 

example, terabyte-scale (1012 bytes)), these data must be put into a larger context to 

understand deviations from the background distribution, which requires data from thousands 

of samples (exabyte-scale (1018 bytes)). Fortunately, cloud-computing-based options have 
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begun to alleviate these concerns81, providing elastic computation and storage facilities 

based on specific requirements from each hospital or healthcare provider system while 

simultaneously promoting reproducibility in computational processes82.

At present, such integrative data sets often do not have a standard format for research use, let 

alone for use in a structured clinical system; therefore, the infrastructure to house and 

manage these data will be required, which introduces financial and administrative burdens. 

In particular, health informaticians will be tasked with building a robust infrastructure for 

storing genetic and transcriptomic data in the EHR. Moreover, determining which 

information will be reported back to a patient and incorporated into an EHR will require 

concerted efforts from clinicians and researchers.

Accuracy and validation

Individually, genome-wide data sets carry inherent error rates83, and structural variants are 

still difficult to detect and, as such, are rarely called. The accuracy of more continuous and 

longitudinal data, such as mRNA expression and proteomic data, may be more difficult to 

assess depending on the specific tissue assayed, but these technologies are highly 

reproducible for technical and biological replicates84,85. In some situations, these 

technologies independently identify different aspects of the same biological process and thus 

can validate each other: for instance, RNA-seq can internally replicate exonic variants 

identified through WES or WGS, whereas proteomic expression can validate expression 

from RNA-seq. However, in a clinical setting, where high confidence is required, these tests 

are currently validated by independent technologies, potentially including established 

clinical tests, such as enzymatic or single-assay tests.

For cancer genomics, disentangling heterogeneous data is a substantial challenge. As each 

tumour is a mosaic of cells with varying degrees of somatic mutation, variant detection is 

difficult, even before attempting to discern driver mutations from passenger mutations. In 

particular, cancers display signatures of somatic mutations that are clonal or found in only a 

subset of cells in a tissue, complicating their discovery, and high-coverage and high-quality 

data are necessary to distinguish these from sequencing errors (for a recent review on the 

computational methods to do so, see REF. 86). Ultra-deep sequencing of cell-free DNA to 

follow the presence of cancer mutations and single-cell sequencing to detect cancer 

heterogeneity are emerging as powerful methods. However, cell-free DNA for early cancer 

detection requires robust methods to distinguish genuine low-frequency events from 

sequencing errors, and single-cell sequencing is still expensive. Nonetheless, such methods 

have already been used to disentangle tumour heterogeneity87 and identify a secondary 

finding of cancer in a prenatal test88. As additional omics data sets are integrated with ultra-

deep sequencing, we expect the advantages of each of these methods to complement each 

other and provide a uniquely powerful method for molecular interrogation in the clinic.

Interpretation

Even with highly accurate data, another difficulty lies in the interpretation of genome-scale 

results, particularly rare and novel molecular events, which often vastly outnumber the 

number of events that can be reasonably functionally validated. Many variants in an 
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individual genome, especially if they have not been seen before, do not have a clear 

functional effect and are known as ‘variants of uncertain significance’ (VUS)89. This 

problem is compounded for other data types, such as transcriptomic or proteomic data, and 

decisions for what constitutes a clinically significant molecular event, for example, an RNA 

expression threshold, are difficult to determine across disparate data types. Fortunately, large 

reference population data sets, which are already available for exome56 and genome 

sequencing (gnomAD) and gene expression57,90, will aid in the interpretation of rare events 

by providing a quantitative context as to their actual frequency in a population. In particular, 

a causal variant would be expected to have a significantly higher frequency in affected 

individuals than in a wider asymptomatic population, which can lend support to or negate 

previous suggestions of pathogenicity91,92. Additionally, physicians may discover additional 

pathogenic molecular events for unrelated conditions, which are known as secondary or 

incidental findings93, over which there is still considerable debate as to the extent to which 

results should be returned to patients (for a recent review, see REF. 94).

When integrating multiple omics technologies, these problems are occasionally ameliorated, 

particularly for rare and novel molecular events for which statistical analysis is not feasible. 

In particular, direct integration of omics technologies that expose orthogonal information 

may provide additional evidence for a molecular event: for instance, if a VUS is shown by 

RNA-seq to affect splicing of a key disease gene, this can corroborate a potential pathogenic 

mechanism16. This way, multiple technologies can establish a chain of causality that a single 

technology cannot.

Finding the relevant tissue

In order to maintain consistency across samples, many large-scale research studies have 

been performed on readily available samples, such as blood or cell lines, including 

transformed lymphoblastoid cell lines90,95. However, for clinical applications, it is ideal to 

study tissues that are relevant for a particular disease as gene expression varies considerably 

across tissues96,97 (FIG. 3). The GTEx, Roadmap Epigenomics and Functional Annotation 

of Mammalian Genome 5 (FANTOM5) projects provide reference data sets for multi-tissue 

gene expression and epigenomics data47,57,98. In many cases, the disease-relevant tissue may 

be well described, such as muscle tissue for MD; however, if the disease is less well defined 

or the tissue is not available, a tissue may be identified from a network analysis of the 

disease99. Indeed, using the disease-relevant tissue has proved beneficial in diagnosis of 

patients with MD, where transcriptome analysis of the muscle tissue resulted in diagnoses 

that would not have been made via easily accessible proxy tissue, such as blood or 

fibroblasts, owing to the relatively low expression of disease-relevant genes16. In using such 

data for clinical utility, care should be taken to ensure that data from patient samples are 

comparable to reference data sets, which will be crucial going forward for additional omics 

data, such as metabolomics and proteomics. Of course, such analyses are further 

complicated where there is substantial cellular heterogeneity in the tissue, such as the brain: 

in these cases, technologies with single-cell resolution will provide valuable insights into 

resolving each individual cell type. In cases where primary tissue is difficult to obtain or 

maintain in culture, introduction of a mutation into induced pluripotent stem (iPS) cells 

using CRISPR systems can provide a powerful framework for molecular validation100.
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Actionability and therapeutics

Perhaps most important to the discussion of the use of any technology in the clinic is that of 

actionability. Indeed, a piece of information does not need to inform a course of action to be 

useful: having the knowledge of a diagnosis and ending a diagnostic odyssey can be 

invaluable to patients and families101 (for a thorough perspective on the purpose of genetic 

testing for diagnoses, see REF. 102). However, data that can inform an intervention are 

additionally beneficial, in a framework that has been termed ‘precision medicine’ or 

‘personalized medicine’. In particular, classifying a patient’s subtype of a disease to 

recommend a specific drug, determining whether a potential transplant is a good match on 

the basis of omics profiling (BOX 2) or identifying a causal mechanism for a novel disease 

(and developing a therapeutic that can target the direct molecular outcome) can improve 

outcomes and prolong the lives of patients. However, even non-causal molecular events that 

are statistically associated with an outcome can be actionable, particularly in the form of 

lifestyle change recommendations, including diet, monitoring and preventive treatments; 

indeed, individuals with high genetic risk of coronary heart disease experience greater 

benefits from statin treatment103,104.

Box 2

Multiple omics profiling of transplant donors and recipients

Every year, thousands of patients are given organ and haematopoietic stem cell 

transplants. However, mortality among transplant patients remains very high. A standard 

practice for matching donors with recipients involves human leukocyte antigen (HLA) 

typing, for which methods have been recently developed using high-throughput 

sequencing technologies123,124. However, it is becoming increasingly clear that non-HLA 

factors can considerably affect prognosis and development of graft-versus-host disease 

(GVHD), as HLA-matched sibling donor transplants convey a lower risk of GVHD than 

HLA-matched but unrelated donor transplants125, and common non-HLA polymorphisms 

have been associated with GVHD126.

Accordingly, many omics applications may be used to determine optimal donor–recipient 

matches, as well as to monitor markers of rejection127. For instance, sequencing cell-free 

DNA can detect circulating donor DNA128, the levels of which are correlated with the 

severity of organ rejection129. Additionally, sequencing this cell-free DNA can 

simultaneously detect viral DNA to indicate a marker of infection130. Additional omics 

data, such as RNA or protein expression, may also be used to assess compatibility of 

donor–recipient pairs, as well as monitor for markers of rejection (for a recent review, see 

REF. 131). Integration across multiple omics technologies may well emerge as a useful 

tool for transplant biology.

Conclusions and future perspectives

At present, only in very few cases have omics technologies (particularly genome sequencing 

and, to a lesser extent, RNA-seq) been shown to outperform traditional clinical tests and, 

therefore, substantial technical and regulatory hurdles exist to incorporating these 
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technologies into clinical practice. However, as the use of multiple technologies enables a 

clearer picture of health and disease, it is likely that integration of these technologies will 

become commonplace in future clinical practice. Additionally, as recent large biobank 

initiatives, such as the UK Biobank, Million Veterans Project and All of Us, collect 

biological data and perform multiple layers of omics assays on millions of individuals, they 

will yield profound insights into human disease and serve as valuable reference databases 

for additional studies and clinical applications.

Predictive models of disease risk for healthy individuals and early detection of disease

As with traditional clinical tests, molecular measurements from large-scale omics data can 

be integrated into models of disease risk. In particular, recently, a set of methods has been 

developed for calculating the genetic risk of a particular disease, known as a polygenic risk 

score (recently reviewed in REF. 105). These methods have been successful in stratifying 

patients into high-risk and low-risk categories for diseases such as cardiovascular disease77, 

as well as for predicting traits such as educational attainment106. Single-assay tests are often 

performed to follow up the results of predictions of disease risk, whether derived from 

genetics or family history. For example, if a patient is predicted to be at risk of type 2 

diabetes, then assays for glucose and glycosylated haemoglobin (HbA1c) levels and other 

tests, such as a glucose tolerance test, are performed. However, in the future, if a 

metabolomics panel could be performed simultaneously at high quality and low cost, this 

would obviate the need for the single follow-up assay. In addition, data from wearable 

devices that continuously collect data are likely to be very powerful in combination with 

omics data for early detection of disease before symptom onset107.

Disease management

In addition to prediction and early diagnosis, integrative omics is expected to become 

increasingly powerful for disease treatment and prognosis. Information from the 

transcriptome, epigenome, microbiome, proteome and metabolome as well as imaging and 

wearable data will all be used to help decipher disease to facilitate prognosis and thereby 

guide treatment. In cancer, DNA and RNA sequencing of tumour–normal pairs has identified 

translocation and gene expression signatures, which has suggested targeted therapies that 

resulted in disease regression108,109. In the future, as multiple omics measurements are 

associated with prognosis in other diseases, it is likely that such data-driven paradigms will 

be powerful tools for medical research and also facilitate clinical diagnosis and treatment.
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Abbreviations

Actionability
The property of a molecular finding that would result in a specific medical recommendation 

that is expected to improve a disease outcome.

Karczewski and Snyder Page 13

Nat Rev Genet. Author manuscript; available in PMC 2018 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mendelian diseases
Diseases caused by a single locus or gene and that follow Mendelian patterns of inheritance 

(for example, dominant or recessive).

Genetic aetiology
The genetic factors that cause a particular disease.

Expression quantitative trait loci
(eQTLs). Genetic variants that are statistically associated with gene expression.

Heritability
The fraction of phenotypic variability of a trait that can be attributed to additive genetic 

variation.

DNase hypersensitivity
A measure of openness of chromatin, as measured by its sensitivity to cleavage by DNase I.

Structural variants
A class of genetic variation that is typically 1 kb or larger, which includes copy number 

duplications, insertions or deletions, as well as translocations and inversions.
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Figure 1. Identifying a causal variant to diagnose a patient with a rare disease
In Kremer et al.15 and Cummings et al.16, multi-omics approaches were used to aid in the 

diagnosis of patients with undiagnosed disease. Although exome and genome sequencing 

can be effective in identifying causal genetic variation between 20% and 50% of the time, 

depending on the mode of inheritance and phenotype, the majority of cases cannot be solved 

by these technologies alone. a,b | Using RNA sequencing (RNA-seq) data from patient 

tissue, these approaches were able to make a molecular diagnosis for many patients, 

identifying genes with aberrant expression, splicing or allele-specific expression, which 

would suggest a molecular mechanism for the disease progression. c | In some cases, 

functional validation, such as proteomics, can lend additional support to these diagnoses. 

Figure is adapted from REF. 15, Macmillan Publishers Limited.
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Figure 2. From genome-wide association studies to mechanism
In a recent study, Claussnitzer and colleagues present a comprehensive approach50 to 

identifying a causal mechanism for an obesity-associated variant in the FTO gene. Part a 
shows an overview of the deciphered biological mechanisms and the numbered steps of the 

strategy referred to below. From the initial genome-wide association study (GWAS), the 

significant association of the FTO region with obesity is shown in the Manhattan plot (part 

b). First, the researchers established the relevant tissue or cell type (step 1) as well as the 

downstream target genes using regulatory genomics, including chromatin state information 

and chromosomal conformation (Hi-C) data. Here, they established the variant as an 

expression quantitative trait locus (eQTL) for the developmental genes iroquois homeobox 3 

(IRX3) and IRX5 (step 2), where the risk allele shows increased expression of these genes 

but not others in the vicinity (part c). They demonstrate that expression of IRX3 and IRX5 is 

anti-correlated and correlated with genes involved in mitochondrial function and adipocyte 

size, respectively (part d). Next, they established the causal nucleotide variant (step 3) in an 

AT-rich interactive domain-containing protein 5B (ARID5B) motif (step 4) using CRISPR–

Cas9 to show its molecular effects, including altered signatures of expression and 

phenotypic effects on the regulation of energy balance (step 5). Finally, they establish 

causality of the variant on an organismal level using mouse models (step 6). AKTIP, AKT 
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interacting protein; CEU, Utah residents (CEPH) with northern and western European 

ancestry; CHD9, chromodomain helicase DNA binding protein 9; CRNDE, colorectal 

neoplasia differentially expressed; FXR, farnesoid X-activated receptor; LD, linkage 

disequilibrium; PGC1α, peroxisome proliferator-activated receptor-γ co-activator 1-α; 

PRDM16, PR domain zinc-finger protein 16; RBL2, RB transcriptional co-repressor like 2; 

RXR, retinoid X receptor; SNPs, single-nucleotide polymorphisms; TF, transcription factor; 

TSS, transcription start site; UCP1, mitochondrial brown fat uncoupling protein 1. Figure is 

adapted from The New England Journal of Medicine, Claussnitzer, M. et al., FTO obesity 

variant circuitry and adipocyte browning in humans, 373, 895–907, Copyright© (2015) 

Massachusetts Medical Society, REF. 50. Reprinted with permission from Massachusetts 

Medical Society.
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Figure 3. Finding the relevant tissue
Although blood (part a) is often the most convenient tissue to assay owing to its availability 

and ease of procurement, it is often not the ideal tissue for observing a molecular phenotype 

for a given disease, which may primarily affect other tissues such as brain (part b) or lung 

(part c). In particular, its transcriptional landscape, including expression levels, splicing 

patterns and enhancer usage, may not be amenable to detecting differential uses of these 

patterns compared with a tissue that is more proximally affected by a disease, such as 

muscle tissue in muscular dystrophy.
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Table 1

Data types for integrative omics

Data type Large-scale research efforts Utility and advantages Major caveats

Genetic variation Many GWAS consortia, 1000 
Genomes, gnomAD and UK 
Biobank

Unbiased source of genetic basis of 
disease and direct inference of causality

At least one step removed 
from the phenotype

Epigenetics ENCODE and Roadmap 
Epigenomics Project

Functional impact and typically easy to 
infer causality

Not applicable for all 
phenotypes

Gene expression GTEx and GEUVADIS Inexpensive assay for an intermediate 
step towards the phenotype

Not applicable for all 
phenotypes

Proteomics and metabolomics CPTAC, EDRN and Common Fund Likely to be very close to the phenotype Expensive and difficult to 
scale (proteomics)

Microbiome Human Microbiome Project Likely to be very close to the phenotype 
and measures a combination of genetic 
and environmental influences

Combination of genetic 
and environmental 
influences makes it 
difficult to infer the 
direction of causality

In this table, ‘phenotype’ refers to an organismal phenotype. CPTAC, Clinical Proteomic Tumour Analysis Consortium; EDRN, Early Detection 
Research Network; ENCODE, Encyclopedia of DNA Elements; GEUVADIS, Genetic European Variation in Health and Disease; gnomAD, 
Genome Aggregation Database; GTEx, Genotype–Tissue Expression; GWAS, genome-wide association study.
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