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Abstract

Degenerative disk disease of the spine is a major cause of back pain and disability. Optimization of
regenerative medical therapies for degenerative disk disease requires a deep mechanistic
understanding of the factors controlling the structural integrity of spinal tissues. In this
investigation, we sought to identify candidate regulatory genes controlling extracellular matrix
synthesis in spinal tissues. To achieve this goal we performed high throughput next generation
RNA sequencing on 39 annulus fibrosus and 21 nucleus pulposus human tissue samples.
Specimens were collected from patients undergoing surgical discectomy for the treatment of
degenerative disk disease. Our studies identified associations between extracellular matrix genes,
growth factors, and other important regulatory molecules. The fibrous matrix characteristic of
annulus fibrosus was associated with expression of the growth factors platelet derived growth
factor beta (PDGFB), vascular endothelial growth factor C (VEGFC), and fibroblast growth factor
9 (FGF9). Additionally we observed high expression of multiple signaling proteins involved in the
NOTCH and WNT signaling cascades. Nucleus pulposus extracellular matrix related genes were
associated with the expression of numerous diffusible growth factors largely associated with the
transforming growth signaling cascade, including transforming factor alpha (TGFA), inhibin alpha
(INHA), inhibin beta A (INHBA), bone morphogenetic proteins (BMP2, BMP6), and others.

Keywords
RNA sequencing; nucleus pulposus; annulus fibrosus; intervertebral disk; extracellular matrix

Introduction

Back pain is among the leading global causes of disabilityl: 2, with degenerative disk disease
and osteoarthritis being important causes of disease. Disk degeneration is caused by a
dysregulation of extracellular matrix homeostasis, characterized by dehydration of the
central nucleus, reduced proteoglycan content, decreased cellularity, diminished endplate
density, and disruption of the annulus3—2. Environmental exposures, as well as genetic and
epigenetic factors have been associated with disk degeneration and altered extracellular
matrix synthesis in disk tissues®’. Novel molecular approaches that can target molecular
factors regulating extracellular matrix synthesis in disk tissue have the potential to be used as
therapeutic agents to slow or reverse disk degeneration in patients.

The molecular phenotype of intervertebral spinal disk tissue, including the annulus fibrosus
(AF) and nucleus pulposus (NP), has been studied extensively in non-human animal models
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for degenerative disk disease®-14. Studies evaluating transcriptome data using microarrays
have provided us with an initial understanding of the molecular mechanisms underlying disk
biology and have played a major role in helping to identify important biologic markers
specific for AF and NP disk tissues'®>19. However knowledge regarding the regulatory role
of molecular factors and how they contribute to tissue homeostasis still requires further
study.

In this investigation we seek to identify molecular regulatory factors whose transcriptional
profiles correlate with the expression of extracellular matrix proteins important for the
structural phenotype of human AF and NP tissues. To achieve this objective we evaluated
transcriptome profiles of a cohort of human cervical disk tissue samples utilizing high
throughput next generation RNA sequencing. We obtained complete gene expression
profiles for 60 surgically harvested cervical disk specimens (AF and NP), and evaluated the
main molecular landscapes of these two principal disc tissues. The large cohort of samples
analyzed in this study allowed us to successfully perform weighted gene correlation analysis
to identify gene regulatory clusters in disk tissues and assess gene relationships.

The molecular regulators that show relationships with extracellular matrix gene expression
represent promising candidates for future study and therapeutic validation. The findings in
this investigation also serve to support regenerative medicine therapies currently under
development for the treatment of intervertebral disk disease, including stem cell therapies
and tissue engineering strategies to regrow disk tissue for surgical transplantation and disk
replacement procedures?0-21, Both of these strategies require a comprehensive definition of
the molecular phenotype of the human intervertebral disk to evaluate the efficacy of
strategies to differentiate stem cells or engineer tissue disk tissue in vivo. The transcriptional
signatures and gene relationships identified in this study have broad applicability in both the
stem cell and tissue engineering fields.

Surgical tissue collection

A total of 60 tissue specimens were collected for research use from 48 adult patients
undergoing cervical discectomy. Patients ranged in age from 32 to 77 years of age and
included a balanced distribution of male and female patients (Supplemental Table 1).
Patients in this study underwent surgery for the treatment of symptomtic degenerative disk
disease presenting with or without myelopathy. Subjects were enrolled in the study in the
period between January 2011 and April 2015. Cases in which discectomy was performed in
the setting of acute trauma or infection were excluded from this study. At the time of tissue
collection, the AF and NP were carefully dissected from one another in the operating room
by the staff surgeon. In cases where disc degeneration was severe, NP tissue could not
always be readily identified and distinguished from the AF tissue and therefore could not be
collected for some patients. At the time of surgical harvest, tissues were snap frozen in
liquid nitrogen and stored at —80°C until ready for RNA extraction. All samples were frozen
within 40 minutes of removal from the patient. Grade of disk degeneration was evaluated on
preoperative lateral radiographs and was characterized using the classification described by
Lane et al.2223, Clinical data available for each disk sample is provided in Supplemental
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Table 1. The specimens used in this investigation were collected under institutional review
board approved protocols (IRB#10-005713). Written informed consent was obtained for all
biospecimens that were analyzed.

RNA extraction from intervertebral disk tissue

Frozen tissue biopsies were ground into a powder using a mortar and pestle and
homogenized in Qiazol reagent (Qiagen, Hilden, Germany) and homogenized. Total RNA
was extracted from research biopsies based on previous methods24 2° using the miRNeasy
minikit (Qiagen, Hilden, Germany) and quantified using the NanoDrop 2000
spectrophotometer (Thermo Fischer Scientific, Wilmington, Delaware). For samples selected
for next generation sequencing, RNA integrity was assessed using the Agilent Bioanalyzer
DNA 1000 chip (Invitrogen, Carlsbad, CA).

Next generation mRNA sequencing, statistics and bioinformatics

Results

RNA sequencing and bioinformatics analyses were performed as previously described?6-29,
In brief, library preparation was performed using the TruSeq RNA library preparation kit
(Illumina, San Diego, CA). Polyadenylated mRNAs were selected using oligo dT magnetic
beads. TruSeq Kits (12-Set A and 12-Set B) were used for indexing to permit multiplex
sample loading on the flow cells. Paired-end sequencing reads were generated on the
Illumina HiSeq 2000 sequencer. Quality control for concentration and library size
distribution was performed using an Agilent Bioanalyzer DNA 1000 chip and Qubit
fluorometry (Invitrogen, Carlsbad, CA). Sequence alignment of reads and determination of
normalized gene counts were performed using the MAP-RSeq (v.1.2.1) workflow30,
utilizing TopHat 2.0.631 32, and HTSeq33.

RNA sequencing data were analyzed to assess relevant genes that differ between AF and NP
specimens. Genes with a minimal expression value (RPKM > 0.01) were included in
subsequent computational analysis. Fold-change differences in gene expression were
evaluated using the Mann-Whitney U test with a 1% false discovery rate (FDR), and
statistical significance was set at p < 0.05. Unsupervised hierarchical clustering was
performed using the Pearson correlation method. Weighted gene correlation analysis was
performed using the R package WGCNA (Weighted Gene Correlation Analysis)3*. Genes
with an average RPKM expression > 0.01 across all specimens were included in the
computational analysis. Functional gene annotation classification of WGCNA clusters was
performed using DAVID Bioinformatics Resources 6.7 database (DAVID 6.7)35.

RNA sequencing was performed using 60 unique cervical spine disk tissue samples (39 AF
and 21 NP specimens). High quality sequencing reads were obtained for 57 of the 60
samples. The 3 samples with abnormally low read counts were excluded from further
analysis. To detect sample outliers, an unbiased assessment of transcriptome data using
unsupervised hierarchical clustering was performed. This analysis revealed 10 disk samples
that clustered independently from the majority of the disk specimens (Supplemental Figure
1). A comparison of these samples with specimens in the primary cluster show that outlier
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samples express higher levels of blood related genes including genes linked to the erythroid,
lymphoid, and myeloid lineages. A selective evaluation of the blood specific hemoglobin
genes, hemoglobin subunit beta (HBB), hemoglobin subunit alpha 1 (HBA1), and
hemoglobin subunit alpha 2 (HBA2), confirmed that these 10 samples express the highest
levels of blood related genes (Supplemental Table 2). To ensure the comparability of
samples in our study these outliers were removed from subsequent analysis. Repeated
unsupervised hierarchical clustering after removal of outliers showed an expected trend
toward independent clustering of AF and nucleus puplosus tissue samples (Figure 1a).
Genes that are not strictly linked to a tissue phenotype such as hematopoietic and
inflammation related genes, as well as tissue heterogeneity, played a role in defining the
clustering dendrogram. This observation explains why the clustering dendrogram showed a
trending, but not completely independent clustering of the AF and NP specimens, despite the
distinct biological phenotypes of AF and NP tissues.

An examination of the most highly expressed genes (expression > 100 RPKM) commonly
expressed in AF and NP expectedly showed common enrichment of genes associated with
housekeeping functions (i.e. translation, protein ubiquitination) (Figure 1b). The AF and NP
samples share many ECM related genes in common among their highest expressed genes,
however the abundance of each gene and their ratios are quite different between AF and NP
samples. Of the genes that are commonly enriched in AF and NP that are not associated with
house-keeping functions, the AF samples showed higher expression of mMRNAs encoding
ECM proteins associated with a fibrous matrix including type I collagen (COL1A2), and
type VI collagen (COL6A1, COL6A2, COL6A3) (Table 1). In contrast, the NP samples
showed increased mMRNA levels of genes encoding extracellular matrix proteins associated
with a proteoglycan rich chondrogenic matrix, including cartilage oligomeric protein
(COMP), lumican (LUM), type Il collagen (COL2A1), cartilage intermediate layer protein
(CILP), biglycan (BGN), aggrecan (ACAN), type Il collagen (COL3AL), chondroadherin
(CHAD), and others (Table 2)

To determine genes that are differentially expressed between AF and NP tissues irrespective
of their overall abundance, a fold-change comparison of gene expression data in AF and NP
was performed. We observed statistically significant enrichment of 1399 genes in AF tissue
and 373 genes with enrichment in NP tissue (Supplemental Table 3). Analysis revealed
differential gene expression consistent with the biological properties and function of each
tissue type. The AF showed enrichment in genes linked to adhesion and regulation of cell
contact, consistent with its fibrous structural properties (Figure 1c). In contrast, the NP
samples showed enrichment in mMRNAS associated with proteoglycan extracellular matrix
synthesis, including genes associated with the endoplasmic reticulum and Golgi apparatus
(Figure 1d). These findings are consistent with the functional role of the NP, which acts as a
hydrostatic cushion to reduce contact pressure between the bony vertebral bodies of the
spine. We also observed preferential expression of the notochord specific transcription factor
brachyury (T) in NP tissues at low, but detectable levels in about half of the samples. This
indicates that residual notochord cell populations, detectable when highly sensitive
molecular techniques are applied, may be present in degenerative adult disc tissue.

J Orthop Res. Author manuscript; available in PMC 2019 May 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Riester et al.

Page 6

The AF and NP specimens both showed statistically significant enrichment in known, as
well as novel, extracellular matrix proteins and signaling molecules. The AF specimens
showed expression of phenotypically important genes such as type IV collagen (COL4A1),
multiple laminins important for cell adhesion (LAMA3, LAMA4, LAMAS), and genes
linked to NOTCH signaling (DLL1, JAG1, JAG2, NOTCH3, NOTCH4). In NP specimens
we observed expression of genes promoting a proteoglycan rich ECM including aggrecan
(ACAN), type XI collagen (COL11 Al), glypican 6 (GPC6), lumican (LUM), among others
in NP specimens (Table 3).

Given the heterogeneous nature of spinal tissues, statistical methods used to assess simple
fold-change analyses may not always be able to identify all important biological gene
relationships. To overcome this challenge and identify novel gene regulatory networks with a
functional role in regulating extracellular matrix production, we performed weighted gene
correlation network analysis for spine tissues using the R package WGCNA34, Gene
correlation analysis identified 46 regulatory gene clusters present in our intervertebral disk
samples (Figure 2). We observed gene regulatory clusters associated with housekeeping
functions (i.e. translation, transcription, mitochondrion, nuclear homeostasis), cellular
infiltration including blood and inflammatory cells. We also observed gene regulatory
clusters associated with non-disk tissue including processes related to muscle, bone, and
adipogenesis, which likely represent small quantities of tissue mixed in with disk tissue at
the time of surgical harvesting.

To identify novel extracellular matrix proteins and regulatory molecules that control tissue
specific phenotypes, we examined clusters containing genes associated extracellular matrix
synthesis. The related clusters “paleturquoise”, “darkorange2”, and “darkslateblue” each
show enrichment in extracellular matrix proteins and adhesive proteins associated with a
fibrous matrix, which is typically characteristic of AF tissue. These clusters contain genes
that promote a strong fibrous matrix, including collagens, fibulins, integrins, lamamins,
elastin, and others (Table 4). These gene clusters were notably associated with a three
diffusible growth factors, fibroblast growth factor 9 (FGF9), platelet-derived growth factor
beta polypeptide (PDGFB), and vascular endothelial growth factor C (VEGFC). These
findings suggest that these growth factors may play a regulatory roles in maintenance of the
AF phenotype and warrant further investigation. Additionally, these clusters also exhibited
strong enrichment in genes linked to cell-cell signaling interactions, including the Wnt
signaling and NOTCH signaling pathways. Both of these pathways are known to be involved
in mediating cell-cell interactions and cellular adhesion in various tissues outside of
intervertebral disk3®: 37, Given the paucity of diffusible growth factors and the fact that AF
cells are in close contact with one another, these data suggest that AF ECM production may
be regulated or strongly influenced by direct cell-cell signaling mechanisms, possibly
mediated through the Wnt and NOTCH signaling pathways.

The clusters “black”, “grey60”, and “lightyellow” show enrichment in genes associated with
a proteoglycan rich extracellular matrix. Genes included in these clusters include the known
NP markers type Il collagen (COL2AL1), type IX collagens (COL9A2, COL9A3), type XI
collagen (COL11A2), aggrecan (ACAN), as well as other genes associated with a
proteoglycan rich ECM that have not previously been associated with NP phenotype (Table
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5). In contrast to the gene clusters previously discussed that were associated with synthesis
of a fibrous matrix, these gene clusters express a diverse array of diffusible growth factors,
with many being associated with the TGFp signaling cascade. Associated growth factors
include transforming growth factor alpha (TGFA), inhibin beta A (INHBA), inhibin alpha
(INHA), growth differentiation factors (GDF5, GDF6), and bone morphogenetic proteins
(BMP2, BMP6) and others (Table 5). The reliance on diffusible growth factors to mediate
ECM homeostasis in a proteoglycan rich matrix such as that observed in the NP is logical
since cells are usually separated by a thick matrix and have limited direct cell to cell contact.
A comprehensive list of the genes associated with each regulatory cluster showing
enrichment in either AF (fibrous) or NP (proteoglycan) markers are shown in Supplemental
Table 4.

Discussion

The molecular phenotype of intervertebral spinal disk tissue, including the AF and NP, has
been studied extensively over the past several years, primarily in animal models. The disk
periphery is comprised of the fibrous annulus, derived from the scleroderm, while NP is
derived from the notochord. However, notochordal cells in humans decrease in abundance
with age, and are largely absent after adolescence38: 39, although visible notochord tissue is
present at maturity in other species. NP cells make predominantly type Il collagen, whereas
AF cells make both type | and type II collagen“©. The findings in our investigation utilizing
high throughput RNA sequencing approaches are consistent with these findings in previous
investigations, and also identify associations with other novel extracellular matrix proteins
and associated regulatory factors.

Our initial clustering analysis performed using AF and NP specimens (Figure 1)
demonstrates that blood content is an important consideration in the evaluation of surgically
collected spinal disk tissues. Disk tissues have a very low density of cells, and the few cells
that are present are usually encased in a thick extracellular matrix that makes RNA
extraction technically challenging. Even the presence of small quantities of blood, from
which RNA is much more easily extracted, can profoundly impact RNA content and
resulting transcriptome data analyses if not carefully considered.

Our analysis reveals increased expression of known AF and NP markers within
corresponding tissue types including enrichment of type I collagen in AF and a proteoglycan
associated extracellular matrix enriched in genes such as ACAN, COMP, LUM, and others
in the NP. We note that there is some overlap in mRNA expression between annulus and
nucleus specimens. This overlap may reflect similarities in the developmental origin of these
tissues or could be due to technical issues, for example, because there is some intermixing of
annulus and nucleus cells during tissue harvest (e.g., in degenerative disk tissues with altered
structural morphology).

These studies also implicate the WNT and NOTCH signaling pathway as a potentially
important regulators of cell adhesion and matrix synthesis in AF tissue. These pathways are
mediated by direct cell to cell interactions and have been shown to impact cellular adhesion
and tissue integrity in various tissue types*L. Golgi and ER related genes enriched in NP
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tissue may contribute to the production of the proteogylcan rich matrix associated with the
NP environment. Therapeutic strategies that can increase protein output and upregulate the
expression of NP specific genes have the potential to help disk tissue retain fluid and
appropriate hydrostatic pressure, thus preventing disk space degeneration and associated
disk space narrowing and osteoarthritis.

Recent studies have identified several novel AF and NP markers, our study shows support
for many of these markers*2. In our analyses, the proposed NP markers desmocollin 2
(DSC2)18, [ubricin (PRG4)*3, and paired box 1 (PAX1)20, showed co-regulation with
networks enriched in NP related genes supporting their classification as NP markers. The
novel AF markers brain abundant membrane attached signal protein 1 (BASP1), sclerostin
domain containing 1 (SOSTDC1)18, glypican 3 (GPC3), and pleiotrophin (PTN)*4 also
showed co-regulation with AF related ECM gene networks. Our study did not show a clear
link to either AF or NP phenotypes for several published markers including CD24 antigen
(CD24), keratin 8 (KRT8), keratin 18 (KRT18), keratin 19 (KRT19), cadherin 2 (CDH2)17,
carbonic anhydrase 12 (CA12)*®, and hypoxia inducible factor 1 alpha subunit
(HIF1A)13.14.46 a]] of which showed co-regulation with gene networks unrelated to disk
phenotype. Protein levels do not always correlate with mRNA expression, which could
explain some of the differences between our study and previous investigations.
Discrepancies could also be related to interspecies differences, as many of these published
studies were carried out using non-human tissues. In addition, our study focused on
evaluation of degenerative disc tissue, and it is possible that many of these markers may be
present during early disk development and are gradually lost over time with aging and
degeneration.

It is important to note that the gene relationships defined by network analyses in this study
may exclude important functional/regulatory genes when a gene has a stronger relationship
to another network. This was observed for the known AF related gene type I collagen
(COL1 A1, COL1A2), which showed stronger co-regulation with bone related genes (gene
cluster “royalblue”) rather than AF related genes. Despite this limitation, we were still able
to identify large gene regulatory networks associated with ECM production in AF and NP
tissues. Our analysis also does not take in account the numerous regulatory mechanisms that
act in coordination with transcriptional mechanisms including protein phosphorylation and
acetylation, histone modifications, microRNAs, and others. Future studies that integrate
intervertebral disk transcriptomic profiles with various types of molecular data including
microRNA profiles, and mass spectroscopy data may further help to elucidate novel
molecular pathways involved intervertebral disk homeostasis.

This investigation provides a comprehensive overview of mMRNA expression in annulus
fibrosus and nucleus pulposus intervertebral disk tissue, including extracellular matrix
components. By applying computational analyses to our large dataset of human clinical
specimens, we have been able to identify candidate gene regulatory networks that act in AF
and NP tissues to regulate extracellular matrix synthesis, an important determinant of
intervertebral disk integrity. The transcriptome data generated in this study also serves as an
important reference data set and has the potential to help solve many biological questions
related to disk tissues. For example, our data can be used to evaluate the efficacy of tissue
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engineering strategies for intervertebral disk development. The data can also be applied to
optimize stem cell differentiation strategies for therapeutic disk regeneration, as a variety of
stem cell therapies are just beginning to be investigated in new clinical trials. Information
generated in this study can also potentially be applied to identify novel therapeutic targets to
enhance extracellular matrix synthesis and restore the normal mechanical properties of
intervertebral disk tissue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Significance

This investigation provides important data on extracellular matrix gene regulatory
networks in disk tissues. This information can be used to optimize pharmacologic, stem
cell, and tissue engineering strategies for regeneration of the intervertebral disk and the
treatment of back pain.
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Figure 1.

(a) Unsupervised hierarchical clustering of RNA sequencing data after removal of sample
outliers. In this clustering scheme there is a trend for AF and NP samples to preferentially
cluster separately. These findings suggest that there are tissue specific differences contained
within the transcriptome data, representing the known biological differences that exist
between these two tissue types. Our unbiased approach also incorporates various factors that
are not directly related to the disc phenotype such as tissue heterogeneity, blood content, and
inflammation, which can drive some of the biological variation between specimens, thus
precluding a perfect clustering dendogram in which AF and NP specimens cluster as
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completely independent groups. (b) Genes expressed > 100 RPKM in surgically isolated AF
and NP tissue with equal expression levels (Fold change <1.5 between AF and NP). This
analysis shows that AF and NP both share common expression of a large number of
housekeeping genes as well as a small number of extracellular matrix proteins and growth
factor binding associated proteins. (c) Gene ontology analysis reveals enrichment in
pathways that promote cellular adhesion including genes linked to notch signaling
(vasculature development, GTPase regulator activity) in AF tissue. (d) The NP shows
enrichment in genes linked to extracellular matrix protein synthesis, including in genes
controlling the extracellular matrix protein synthesis machinery (golgi complex and
endoplasmic reticulum).
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Figure 2.

Gene correlation networks predicted using weighted genes correlation analysis (WGCNA).
Gene networks are associated with a variety of cellular activities including cellular
housekeeping, mitosis, tissue heterogeneity, extracellular matrix synthesis as well as
numerous others. Gene clusters “paleturquoise”, “darkorange2”, and “darkslateblue” are
enriched in known extracellular matrix protein markers in AF, while the clusters “black”,
“grey60”, and “lightyellow” are associated with extracellular matrix protein markers
characteristic of NP.
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Table 1

Extracellular matrix related genes highly expressed in annulus fibrosus

GenelD | A o | GeneD | A e
COMP 3990.88 SERPINAL 247.96
FN1 3374.09 TIMP2 246.71
CLU 2562.49 CALR 242.68
TPT1 2502.16 CRTAC1 242.53
DCN 243452 DPT 204.77
MGP 2270.18 SERPINF1 198.73
LUM 2039.40 SERPING1 186.09
COL1A1 1393.37 CILP2 185.94
SPARC 1386.58 APOE 179.84
FMOD 1325.29 MMP14 175.88
COL1A2 1255.57 TGFBI 174.91
COL2A1 1161.98 POSTN 173.01
CILP 1126.00 IBSP 168.53
COL3Al 1042.38 IGFBP4 165.21
CST3 972.51 COL9A3 154.93
HTRA1 871.24 SOD3 152.31
BGN 865.06 IGFBP6 145.98
FGFBP2 860.36 SPARCL1 142.91
LGALS1 71177 SOD1 137.06
SPP1 681.08 BGLAP 135.65
PRELP 640.12 PLA2G2A 134.42
SCRG1 629.02 APOD 131.80
CHAD 614.98 CHI3L2 130.44
COL6A2 567.11 ANGPTL2 127.09
ACAN 564.31 TIMP3 126.93
CTSK 534.82 FSTL1 126.74
TIMP1 469.09 SERPINE2 125.99
GPX3 450.88 ALDOA 125.16
CTGF 433.32 PRDX4 123.56
MMP9 416.09 CCDCB80 121.68
IGFBP7 352.81 COL11A2 117.92
PSAP 349.13 COL5A2 112.32
COL6A1 313.96 NUCB1 111.91
ASPN 308.16 A2M 111.41
MFGES8 292.56 COLGA3 106.22
CYTL1 277.74 LGALS3 105.95
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Aver age expression (RPKM) in Aver age expression (RPKM) in
GenelD annulus fibrosus GenelD annulus fibrosus
GSN 271.71 FXYD6 104.61
OGN 259.14 ANXA2 100.74
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1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Extracellular matrix related genes highly expressed in nucleus pulposus

Average expression (RPKM) in

Average expression (RPKM) in

GenelD nucleus pulposus GenelD nucleus pulposus
FN1 6385.17 TIMP2 262.80
COMP 6014.23 CILP2 261.34
CLU 4378.49 CALR 261.25
DCN 3295.38 PLA2G2A 25491
LUM 3093.90 COL9A3 245.78
MGP 2855.43 TGFBI 242.75
TPT1 2341.70 GSN 242.39
FMOD 2199.02 SERPING1 23351
COL2A1 1840.27 SERPINE2 226.51
CILP 1626.80 SOD3 201.91
HTRA1 1482.74 IBSP 184.82
FGFBP2 1220.04 CHI3L1 184.64
BGN 1155.23 COL11A2 181.05
SPARC 1065.99 TIMP3 180.53
ACAN 1030.66 CCDCB80 175.94
SCRG1 1028.47 COL9A2 168.77
PRELP 989.54 IGFBP6 160.61
COL3A1 940.80 POSTN 158.17
CHAD 835.31 SOD1 155.23
GPX3 643.54 FSTL1 153.32
CTGF 567.45 SPP1 152.31
CHI3L2 541.51 PRDX4 150.92
COL1A2 534.43 FXYD6 147.34
TIMP1 529.60 ANGPTL2 145.53
LGALS1 516.12 IGFBP4 138.17
CRTAC1 475.35 RBP4 137.83
CYTL1 452.88 NUCB1 124.30
CST3 437.51 ALDOA 122.41
COL6A2 430.48 APOE 121.20
SERPINA1L 411.25 COL11A1 118.90
OGN 411.25 LGALS3 118.41
PSAP 402.65 APOD 116.58
MFGES8 337.14 COL5A2 116.18
COL1A1 322.44 COL6A3 111.84
ASPN 314.72 CTSK 111.52
DPT 306.39 CRLF1 110.49
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Aver age expression (RPKM) in Aver age expression (RPKM) in
GenelD nucleus pulposus GenelD nucleus pulposus
COL6A1 285.52 ANXA2 103.52
IGFBP7 278.01 MIA 103.03
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Significant extracellular matrix related genes enriched in annulus fibrosus and nucleus pulposus

Genesenriched in nucleus pulposus

Genesenriched in nucleus pulposus

CCBE1 collagen and calcium binding EGF domains 1 ACAN aggrecan
CNTN1 contactin 1 CHI3L1 chitinase 3 like 1
CNTNAP3B contactin associated protein-like 3B CHRD chordin
COL14A1 collagen type X1V alpha 1 chain COL10A1 collagen type X alpha 1 chain
COL17A1 collagen type XVII alpha 1 chain COL11A1 collagen type Xl alpha 1 chain
COL18A1 collagen type XVIII alpha 1 chain COL8A2 collagen type VIl alpha 2 chain
COL21A1 collagen type XXl alpha 1 chain COL9A2 collagen type 1X alpha 2 chain
COL24A1 collagen type XXI1V alpha 1 chain CRTAC1 cartilage acidic protein 1
COL4Al collagen type IV alpha 1 chain FMOD fibromodulin
DLL1 delta like canonical Notch ligand 1 FN1 fibronectin 1
DTX1 deltex E3 ubiquitin ligase 1 GPC6 glypican 6
DTX4 deltex E3 ubiquitin ligase 4 HHIPL1 HHIP like 1
EGFLAM EGF like, fibronectin type 111 and laminin G domains HHIPL2 HHIP like 2
JAG1 jagged 1 LAMC3 laminin subunit gamma 3
JAG2 jagged 2 LTBP2 latent transforming growth factor beta binding protein 2
LAMA3 laminin subunit alpha 3 LUM lumican
LAMA4 laminin subunit alpha 4 OGN osteoglycin
LAMA5 laminin subunit alpha 5 PRG4 proteoglycan 4
NOTCH3 notch 3 SDC4 syndecan 4
NOTCH4 notch 4 SRPX2 sushi repeat containing protein, X-linked 2
PDGFB platelet derived growth factor subunit B WISP3 WNT1 inducible signaling pathway protein 3
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