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ABSTRACT

The high energy demands of the substantia
nigra pars compacta dopaminergic (DASNc)
neurons render these neurons vulnerable to
degeneration. These energy demands are a
function of their long and extensively arborized
axons and very large number of transmitter
release sites, and are further augmented by their
natural pacemaking activity. Pacemaking is
driven by the rhythmic entry of Ca®" into the
cell and, while the entry of Ca*" into the neu-
ron stimulates energy (ATP) production, the
extrusion of Ca®" conversely saps the energy
that is generated. DASNc neurons are said to be
operating at a delicate equilibrium where any
further stress or environmental demand may
lead to their decompensation and degeneration.
In experimental models of Parkinson’s disease,
reducing the energy requirements of these
neurons by trimming the size of the neuronal
arbor or by impeding the entry of Ca®" into the
cell has been shown to be protective. Increasing
the energy supply to these neurons with p-beta-
hydroxybutyrate has also been shown to be
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protective. The use of gammahydroxybutyrate
holds great promise as a neuroprotective in
Parkinson’s disease because it can act as an
energy source for the cell while simultaneously
arresting its pacemaking activity and the entry
of Ca*" into the cell. Short clinical trials of
gammahydroxybutyrate in Parkinson’s disease
have already demonstrated its immediate
capacity to significantly reduce daytime fatigue
and sleepiness and to improve sleep at night.

Keywords: Calcium channels; Dopaminergic
neurons; Ketone bodies; Parkinson’s disease;
Sodium oxybate

PLAIN LANGUAGE SUMMARY

The degeneration of the dopaminergic neurons
in the brain is thought to play a key role in the
development of Parkinson’s disease. These
neurons are vulnerable to degeneration because
of their extensive branching and the large
amounts of energy required to send nerve sig-
nals along this extensive network. Dopaminer-
gic neurons are also pacemaking neurons. This
means that they are constantly rhythmically
discharging and therefore require a great deal of
energy to recharge. Neurons degenerate when
they run out of energy. Studies are now under-
way to protect these neurons and prevent the
development of Parkinson'’s disease by reducing
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their energy requirements. It may be possible to
dramatically reduce the energy requirements of
these neurons and to prolong their longevity
with the nightly use of gammahydroxybutyrate.
This agent turns off pacemaking. A brief clinical
trial of gammahydroxybutyrate in patients with
Parkinson’s disease has already demonstrated
clinical benefits.

COMMENTARY

The high energy demands of the dopaminergic
neurons which project from the substantia
nigra pars compacta (DASNc) appear to render
these neurons vulnerable to degeneration [1, 2].
These demands are a function of their anatom-
ical structure and their spontaneous tonic
activity. DASNc neurons have long and pro-
fusely branched axons and are relatively
unmyelinated at least after they arborize and
each one gives rise to an enormous number of
synapses targeting and coordinating the activity
of spatially distributed networks in the striatum
[1, 2]. Each of the 382,000 DASNc neurons in a
single hemisphere of the human brain is esti-
mated to have an average total length of about
4.5m and to give rise to between 1 and 2.4
million synapses [1]. Action potential propaga-
tion along this vast and complex unmyelinated
arbor greatly raises the energy requirements of
these neurons. This energy cost is not directly
proportional to the surface area or to the length
of the axonal arbor but rather increases directly
with the number of levels of branches the axon
has and grows as a power law of the size and
complexity, i.e., the surface area and number of
branch points of the axon [1, 3] Cellular traf-
ficking along the microtubules of these long
axons places an additional demand on the
motor proteins, kinesin and dynein, powered by
ATP [4].

DASNCc neurons are autonomous pacemakers
with broad action potentials which spike at
2-10 Hz in the absence of any excitatory input.
Early in life, pacemaking relies on Na* channels
acting in partnership with hyperpolarization-
activated cyclic nucleotide gated cation (HCN)
channels. With age, pacemaking is increasingly
driven by voltage-dependent L-type, i.e., low

threshold, calcium channels inserted into the
plasma membrane [5]. These channels have a
distinctive pore-forming subunit (Cay1.3)
which allows them to open at relatively nega-
tive membrane potentials which are lower than
the threshold for firing action potentials [6].
The electrical current entering the cell through
these channels then depolarizes the membrane
to the threshold for action potentials. Ca,1.3
channels operate in tandem with Na* and HCN
channels. Pacemaking activity in DASNc neu-
rons can be maintained by ion flow through
these Na™ and HCN channels when Ca®" entry
is antagonized [5]. The calcium current under-
lying pacemaking is not large but it is almost
continuously maintained and occurs through-
out the network of branching dendrites that
constitute most of the neurons’ surface area [7].
This tonic activity and the coupled entry of
Ca®" into the neurons leads to high intracellu-
lar Ca®' concentrations, particularly in the
dendrites, but maintains the sustained release of
dopamine required for the optimal functioning
of the striatum [5, 8, 9]. Dopamine is also con-
currently released from somatodendritic sites in
the midbrain [10]. The activity of DASNc neu-
rons can be inhibited by dopamine itself acting
on D2 autoreceptors located presynaptically
and on somatodendritic structures. Activation
of D2 autoreceptors opens inwardly rectifying
K" channels that hyperpolarize the neuron and
inhibit its electrical activity [10].

For Na® and K", the concentration differ-
ences maintained across the plasma membrane
are similar and range between 10- and 30-fold.
This must be compared to the 20,000-fold dif-
ference in the concentration of Ca®" across the
plasma membrane of about 100nM in the
intracellular space and 2 mM in the extracellu-
lar space. Following an action potential, a single
molecule of ATP is required by Na*, K*-ATPase
to pump out 3 Na* ions in exchange for 2 K*
ions. In contrast, plasma membrane Ca*"
ATPase consumes a single molecule of ATP to
extrude a single ion of Ca®*". Ca®*" entry there-
fore raises the energy requirements of DASNc
neurons. Once in the cell, Ca?>* activates K*
channels to help repolarize the membrane and
prevent the generation of another spike [6].
However, the repolarization of L-type Ca®"
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channels occurs slowly, and this, in turn,
accounts for the broad form of the Ca*" spikes
in DASNCc neurons, the increased entry of Ca*"
into the cell and the relatively high intracellular
Ca’* levels [11].

DASNCc neurons are vulnerable to these high
intracellular Ca®" levels because of their poor
intrinsic Ca®" buffering capacity. These neurons
contain relatively low levels of the Ca*" binding
proteins, calbindin and calretinin, which pro-
tect other dopaminergic neurons in the brain
[12]. For example, dopaminergic neurons ema-
nating from the ventral tegmental area (VTA)
are much less vulnerable to degeneration in
Parkinson’s disease (PD) than DASNc neurons
even though they are also autonomous pace-
makers with broad spikes and even though they
appear to have a higher basal firing rate than
DASNc neurons [17]. Their reduced risk of
degenerating may in part be attributed to an
order of magnitude fewer synapses and a much
smaller axonal arbor and, as discussed earlier, a
corresponding reduced demand for energy [3].
However, in addition, VTA neurons have a
lower density of L-type Ca®*" channels and a
strong intrinsic calbindin Ca®*" buffering
capacity [13]. By binding Ca®*, these Ca®**
binding buffers keep the Ca®*" away from sig-
naling proteins and key organelles [6]. Intra-
cellular Ca®** can be toxic by directly or
indirectly activating proteases such as calpains
and calpases that degrade cytoskeletal proteins,
membrane receptors and metabolic enzymes
among other key cellular components [12]. The
actions of these proteases link the apoptotic and
necrotic cell death pathways [14]. Thus, this
threefold combination of broad spikes, Ca*"
oscillations and poor Ca** buffering capacity,
but none of these features alone, renders these
neurons particularly wvulnerable to multiple
stressors such as aging, genetic factors and
environmental toxins, and thus to degeneration
[2].

Calcium that is not rapidly extruded from
the cell is pumped into the endoplasmic retic-
ulum (ER) from where it can flow into the
mitochondria which communicate with the ER
through mitochondria-associated membranes
(MAM). Mitochondria densely populate DASNc
neurons and collaborate with the ER to control

intracellular Ca** homeostasis. Ca*" influx into
the mitochondria accelerates the citric acid
cycle and increases the respiratory capacity of
the cell [15]. Low micromolar concentrations of
Ca”* stimulate the activities of pyruvate dehy-
drogenase, isocitrate dehydrogenase-3 and
2-oxoglutarate p-hydrogenase to increase the
production of the reducing equivalents required
for oxidative phosphorylation. In doing so, the
influx of Ca®" increases the production of ATP
[16]. The very high density of mitochondria in
DASNCc neurons is likely needed to meet the
energy demands of neurotransmission along
the uniquely vast and complex axonal arbor of
DASNc neurons [17]. These mitochondria are
thought to be operating at maximal capacity
and to have little energy reserve [17]. However,
while Ca®" may fire up the engines of energy
production, the high rate of electron flux along
the respiratory chain is accompanied by a high
rate of free radical (ROS) formation. DASNC
neurons have chronically high levels of ROS
production which react with key elements of
the cell and specifically with mitochondria to
impair their function. This stressed metabolic
environment makes it difficult for these neu-
rons to cope with any additional stressors, be
they genetic, environmental or aging. In cell
culture studies, reducing the size of the neu-
ronal arbor reduces basal levels of oxidative
phosphorylation and oxidative stress and
improves the survival of these neurons in
response to environmental toxins [17].

Toxins such as 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), the insecticide
rotenone and 6-hydroxydopamine have all
been employed to damage DASNc neurons and
to create experimental models of PD in rodents
and primates [5, 18-20]. MPTP and rotenone
both act, at least in part, by interfering with the
flow of electrons through complex I (NADH-
ubiquinone oxidoreductase) of the respiratory
chain and by generating ROS. The action
mechanism of 6-hydroxydopamine is less clear,
but it also appears to damage dopaminergic
neurons by generating ROS either through auto-
oxidation or by interfering with the operations
of the respiratory chain [21]. Interfering with
the flow of electrons through complex I of the
respiratory chain is thought to model the
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depression in complex I activity found naturally
in the DASNc neurons and other tissues in PD
[22]. In all three cases, the damaging effect of
low doses of these toxins on DASNc neurons
can be attenuated by preventing the entry of
Ca’" into the cell through L-type Cayl.3
channels with the use of dihydropyridine (DHP)
calcium channel blockers such as nifedipine or
isradipine. DHPs do not block the Ca*" channel
pores but act rather by impeding their activa-
tion [13]. Preliminary work reveals that genetic
deletion of L-type Cavl.3 channels can also
provide DASNc neurons with much the same
protection against MPTP as isradipine [S]. The
significance of these tissue protective effects is
underscored by the conclusions of a recent ret-
rospective epidemiological study which found
that the risk of clinical PD was reduced by 27%
among users of dihydropyridine calcium chan-
nel blockers, although it should be noted that
the risk of PD was also reduced by 30% among
users of non-dihydropyridine calcium channel
blockers [23]. And, indeed, another retrospec-
tive epidemiological study found no specific
beneficial effect on the progress of PD when the
use of brain-penetrating DHPs was compared
with non-brain-penetrating DHPs [24]. Thus,
while in vitro models suggest that DHPs are
neuroprotective, their place in the management
of PD remains uncertain and will hopefully be
clarified in a large prospective S-year controlled
clinical trial now underway on the prevention
of PD with isradipine, the DHP with the highest
affinity for L-type Ca®' channels [18,
clinicaltrials.gov].

While trimming the extensive arbor of
DASNc neurons or antagonizing the entry of
calcium into these cells may protect them by
reducing the rate of energy production and
concomitantly reducing the rate of ROS pro-
duction, it may be possible to avert the energy
crisis these cells face by augmenting their rate of
energy production [1, 3]. Infusion of the ketone
body, p-B-hydroxybutyrate (D-fHB), has been
shown to mitigate the degenerative effects and
motor deficits induced by MPTP in mice, while
at the same time improve mitochondrial respi-
ration and ATP formation [22]. In isolated
mitochondria, D-BHB improves oxygen con-
sumption in the presence of complex I

inhibitors, MPTP and rotenone. D-BHB is
metabolized to acetoacetate and to acetyl-CoA.
A rise in the levels of acetyl-CoA increases the
turnover of tricyclic acid intermediates and
raises mitochondrial succinate levels. Succinate
can bypass the block at complex I and support
mitochondrial respiration by entering the res-
piratory chain at complex II  (succi-
nate—ubiquinone oxidoreductase). The increase
in mitochondrial respiration with D-BHB and its
protective effect on DASNc neurons are lost
when complex II is inhibited [22].

However, it may be possible to go one step
further and to protect DASNc neurons both by
reducing the influx of Ca*" and by increasing
the supply of energy. Gammahydroxybutyrate
(GHB), a GABA metabolite found in all cells,
plant and animal, can completely suppress
pacemaking activity in DASNc neurons in rats
even in low subanaesthetic doses. Cessation of
impulse flow is accompanied by a marked
increase in neuronal dopamine levels and tyr-
osine hydroxylase activity. A corresponding
increase in dopamine levels and tyrosine
hydroxylase activity is found in striatal slices
when Ca?' is removed from the medium
[25-27]. A study on the effects of GHB on the
dopamine neurons in slices of the rat ventral
tegmental area found that perfusates containing
GHB caused a concentration K'-dependent
membrane hyperpolarization and eliminated
Ca®" spikes. Spontaneous firing of action
potentials was completely blocked with 3 mM
GHB but the effects vanished within about
10 min after washout [28]. These actions of GHB
are mediated by the actions of GHB on the
GABAB receptor and are abolished by GABAB
receptor antagonists [28, 29].

GHB can also serve as a source of energy for
the brain and as an effective antioxidant. GHB
enters the TCA in the form of succinate fol-
lowing its conversion to succinic semi-aldehyde
and its oxidation to succinate. These steps also
generate NADH and NADPH, two co-factors
that play key roles in the neutralization of ROS
[30, 31]. GHB has been shown to have wide-
spread tissue protective effects and to specifi-
cally protect the brain against ischemic or
excitotoxic damage. It can maintain brain ATP
levels in the face of hypoxia. Clinical studies
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demonstrate that it increases blood flow to the
brain [32].

Pathological studies of the Parkinsonian
brain have made it evident that degenerative
changes are not limited to DASNc neurons but
can also be identified in neurons in the dorsal
motor nucleus of the vagus, in the locus coer-
uleus, in the raphe nuclei, in the tubero-
mamillary nucleus of the hypothalamus and in
the basal forebrain, among others [1, 6]. These
neurons may be vulnerable because of the
phenotypic features they have in common with
DASNCc neurons. For example, locus coeruleus
neurons are autonomous pacemakers that uti-
lize L-type Ca®" channels [33]. GHB may be able
to protect these neurons. Noradrenergic locus
coeruleus neurons in rats are exquisitely sensi-
tive to the depressant effects of GHB. Very low
doses reduce the spontaneous firing rate and the
evoked burst firing of these neurons by about
50% [34]. Cholinergic neurons, much like
dopaminergic neurons, accumulate acetyl-
choline in response to a cessation of impulse
flow [35]. GHB, administered to rats in the lac-
tone form, increases acetylcholine levels in the
striatum and hippocampus. This effect has been
attributed to the inhibition of cholinergic neu-
rotransmission by GHB. GHB produces a dose-
dependent reduction in extracellular acetyl-
choline levels in the hippocampus which can be
monitored by microdialysis. GABAB receptor
antagonists block this effect of GHB, again
much like these antagonists block the accumu-
lation of dopamine produced by GHB in
dopaminergic neurons [36]. The actions of GHB
on these diverse neuronal types require further
study.

Short open label clinical trials of GHB in
patients with PD have demonstrated that the
drug is well tolerated and that it significantly
reduced excessive daytime drowsiness and fati-
gue and improved the quality of sleep [37, 38].
Whether these immediate beneficial clinical
effects are due to improved functioning of the
dopaminergic neuron remains to be deter-
mined, but the clinical trials conducted to date
suggest that GHB can be safely given to patients
with PD to their advantage. Thus, the use of
GHB has immediate and important clinical
benefits that are not duplicated by Ca®*"

channel blockers. There is also indirect evidence
that the long-term use of GHB alone or in
combination with D-BHB would have a neuro-
protective effect, and that it may delay the
onset of PD or slow its progress. According to
the Xyrem® website, as of 2015, GHB has been
prescribed to more than 60,000 patients. It has
been used nightly for many decades by patients
with narcolepsy without major untoward
effects. Embase and Medline databases have no
case reports about the development of PD in
these patients leading to the discontinuation of
drug use. The Jazz Pharmaceutical Drug Safety
and Pharmacovigilance Program does not
identify PD as a safety signal for sodium oxybate
(Xyrem®) (Jazz Pharmaceuticals-Medical Infor-
mation Department). Formal epidemiological
studies are required to determine the incidence
and prevalence of PD in long-term users of
GHB. The development of ketone esters of
D-BHB and slow-release GHB may greatly facil-
itate the clinical use of these agents [39, Flamel
Technologies-website].
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