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The ability of a cell to undergo mitochondrial apoptosis is governed by pro- and

anti-apoptotic members of the BCL-2 protein family. The equilibrium of

pro- versus anti-apoptotic BCL-2 proteins ensures appropriate regulation

of programmed cell death during development and maintains organismal

health. When unbalanced, the BCL-2 family can act as a barrier to apoptosis

and facilitate tumour development and resistance to cancer therapy. Here

we discuss the BCL-2 family, their deregulation in cancer and recent

pharmaceutical developments to target specific members of this family as

cancer therapy.
1. Introduction
Apoptosis is a form of regulated cell death that is triggered in response to devel-

opmental cues or cellular stress. This selective cell suicide plays an essential role

in numerous physiological and pathological processes including development,

immunity and disease where the elimination of damaged or superfluous cells

helps to ensure organismal health [1].

There are two apoptotic pathways—the extrinsic pathway (activated by ligand

engagement of cell surface death receptors) and the intrinsic (mitochondrial) path-

way. This review focuses on the BCL-2 family of proteins that regulate activation of

the intrinsic apoptotic pathway in response to cellular stresses such as DNA

damage, g-irradiation, oncogene activation and growth factor withdrawal.

Recent pharmaceutical advances have allowed the specific targeting of

protein–protein interactions in the BCL-2 (B-cell lymphoma 2) family [2–4].

Early clinical results in haematological cancers show considerable promise.

This review will summarize apoptotic pathway regulation by the BCL-2

family, their perturbation in cancer and utility as therapeutic targets.
2. The BCL-2 family
The founder member, BCL-2, was first identified through chromosomal mapping

in follicular lymphoma where constitutive BCL-2 expression is driven from the

immunoglobulin locus by the t[12;18] translocation [5–7]. Unlike the cell

growth and proliferative functions of other known oncoproteins at that time,

BCL-2 was found to facilitate oncogenesis through cell death resistance [8,9]. In

the following years over 15 proteins have been added to this family, each contain-

ing one or more BCL-2 homology (BH) domain and functional studies have

allowed grouping into three classes (figure 1).

A clear division in the family exists between members that function to prevent

apoptosis (pro-survival or anti-apoptotic) and those that induce apoptosis (pro-

apoptotic). The pro-apoptotic BCL-2 family members can be further divided into

the multi-BH-domain effector proteins (containing BH1, BH2 and BH3 domains)

and BH3-only proteins (only region of homology to BCL-2 is BH3) (figure 1).

Physical interaction between pro-survival and pro-apoptotic family members

can buffer the cell against the onset of mitochondrial-mediated apoptosis.
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Figure 1. The BCL-2 family is composed of pro-survival and pro-apoptotic proteins. BCL-2 family members show sequence homology to BCL-2 in one or more BH
(BCL-2 homology) domain. These proteins can be divided into pro-survival and pro-apoptotic proteins. Within the pro-apoptotic members there is a further subdivision
between the multi-BH domain containing effector proteins and those proteins whose only region of homology to BCL-2 is BH3 (known as BH3-only proteins).
Membrane insertion is mediated by transmembrane domains (TMD) present in pro-survival, effector and some BH3-only proteins (*BIM, BIK and HRK).
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Structural studies have revealed that BH1, BH2 and BH3

regions together form a hydrophobic pocket that can be filled

by the amphipathic a-helical BH3 domain of pro-apoptotic

BCL-2 proteins [10,11]. The balance of this interaction ensures

appropriate apoptotic regulation in response to development

cues and cellular stresses. In a simple model, when pro-survi-

val proteins predominate, apoptosis is held in check: when

pro-apoptotic proteins predominate, apoptosis is triggered.

However, localization and conformation of BCL-2 proteins is

also important in regulation of activity.
mitochondrial outer 
membrane 

permeabilization

apoptosis

substrate cleavage

caspases

BAX/BAK 
oligomerization

apoptosome formation

Figure 2. BCL-2 family interactions regulate mitochondrial outer membrane
permeabilization (MOMP). Interaction between pro-survival and pro-apoptotic
BCL-2 proteins sets a threshold for activation of apoptosis. BCL-2-like pro-
survival proteins inhibit BAX/BAK activation whereas BH3-only proteins
promote BAX/BAK oligomerization. Drugs mimicking the action of BH3-only
proteins indirectly lead to BAX/BAK activation. This allows MOMP,
apoptosome formation and subsequent caspase activation and apoptosis.
3. Pro-survival BCL-2 proteins
Pro-survival proteins such as BCL-XL, MCL-1, BFL1 (A1 in

mouse) and BCL-W contain multiple regions of homology to

BCL-2 (figure 2). Each of these proteins is found in many cell

types/tissues and co-expression of multiple pro-survival pro-

teins often occurs. The relative expression levels can vary in a

cell type and developmental manner and are perhaps best

characterized in the haematopoietic system. For example,

dynamic patterns of pro-survival BCL-2 gene expression

occurs during B lymphocyte development with Bclx being

expressed early in B-cell development, Mcl1 and Bcl2 expres-

sion generally increasing with B-cell maturity and A1 levels

peaking in the intermediate stages [12]. In this way, different

pro-survivals play key roles at distinct stages of development.

Levels of pro-survival BCL-2 proteins can also be regu-

lated by protein turnover. BCL-2 and BCL-XL are relatively

stable proteins (e.g. the half-life of BCL-2 approx. 20 h) [13].

By contrast, MCL-1 and A1 protein turnover is constitutive

through polyubiquitination and proteosomal degradation

(reflected in their short half-lives approx. 30 and approx.

15 min, respectively) [14–17]. In this way, levels of MCL-1

and A1 help facilitate dynamic responses to cell death stimuli.

Gene deletion studies have revealed essential and non-

redundant roles of pro-survival BCL-2 proteins in mice. While

embryogenesis proceeds normally in the absence of Bcl2,

deficient mice show postnatal growth retardation, premature

greying, apoptotic involution of spleen/thymus and succumb

to early mortality through polycystic kidney disease with

altered renal cell differentiation and elevated apoptosis [18].
Young Bcl2 2/2 mice have normal haematopoietic populations,

but this is not sustained, with notable loss in peripheral

B and T lymphocyte populations [18,19]. These phenotypes

can be reversed by loss of one or two Bim alleles (encoding

a BH3-only pro-apoptotic member of the BCL-2 family),

indicating that sequestration of BIM is the major function of

BCL-2 [20].
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Deletion of Bclx is lethal around embryonic day 13 with

extensive neuronal and haematopoietic apoptosis [21], loss of

Bim can rescue the haematopoetic but not neuronal phenotype

in bclx null embryos [22]. In adult mice, acute deletion of Bclx is

tolerated (animals were followed for 1 month) but still resulted

in severe anaemia, consistent with Bclx being required for reti-

culocyte survival [23]. In contrast to embryogenesis, loss of bim
could not restore erythropoiesis in adults [23].

Deletion studies of A1 had been incomplete until recently

when knockout of all three functional isoforms of A1 in mice

was achieved. Surprisingly, A1 function seems largely redun-

dant, with only minor impact on subsets of cells in the

haematopoietic system [24]. The function of BCL-W also

appears mostly dispensable for normal development and

health, but Bclw-deficient males are infertile due to a defect

in spermatogenesis [25,26].

Across the BCL-2 family the phenotype of the Mcl1
knockout mouse is most severe. Mcl1 deficiency results in

early lethality at pre-implantation stage, but these blastocysts

showed no evidence of increased apoptosis [27], providing a

suggestion of a non-apoptotic role for MCL-1. Conditional

deletion studies in the adult mouse have also revealed an

essential role for MCL-1 in numerous cell types, including

T and B lymphocytes [28], haematopoietic stem cells [29], car-

diomyocytes [30,31], hepatocytes [32], neuronal progenitors

[33] and neutrophils, but not macrophages [34,35], mammary

epithelium or megakaryocytes [36,37].

Interestingly, while MCL-1 deficiency alone in megakar-

yocytes had no impact, when combined with loss of Bclx
this caused embryonic or pre-weaning lethality, which is

also far more dramatic than the impaired platelet shedding

phenotype that is found with loss of just Bclx [36,37]. This

could be rescued by co-deletion of Bax/Bak [37], but clearly

illustrates the co-dependence of certain cell types on multiple

pro-survival proteins. This co-dependence has been shown in

elegant detail in a recent study of immune populations where

multiple pro-survival proteins were targeted by genetic and

pharmacologic methods [38]. Therefore, while gene knockout

studies have given much insight into cell types in which indi-

vidual pro-survival proteins have a dominant role, there has

probably been an underestimation of the extent of their con-

tribution to cell survival in many other cell types. Indeed, the

sum effect of all pro-survival proteins present may be more

important for survival than expression levels of an individual

protein. This is an important consideration for therapeutic

targeting of pro-survival BCL-2 proteins and minimization

of damage to normal tissues.
4. Pro-apoptotic BCL-2 members
Pro-apoptotic BCL-2 proteins fall into two sub-classes

(figure 2). BH3-only proteins such as BIM, BAD, BID,

NOXA, PUMA, BMF, HRK and BIK only show homology to

the BH3 domain of BCL-2. The effector proteins BAX, BAK

and BOK contain multiple BH domains and structural studies

of BAX revealed that effector protein three-dimensional confor-

mation is similar to that of pro-survival BCL-2 proteins [39].

Like the pro-survival BCL-2 proteins, multiple pro-apoptotic

proteins are found expressed in cells at the same time.

Upregulation of BH3-only proteins can occur at transcrip-

tional/post-translational levels in response to stress to trigger

cell death. For example, Puma and Noxa are transcriptional
targets of the p53 tumour suppressor and their expression

is increased in response to cytotoxic stimuli that activate

p53, although PUMA is also important in response to

p53-independent apoptotic stimuli [40]. BH3-only proteins

can also be regulated by post-translational modification.

Phosphorylation of BAD leads to sequestration by 14-3-3

proteins in the cytosol where it cannot exert pro-apoptotic

functions [41]. Other mechanisms of activation exist such as

altered cellular localization. Full-length BID is located in the

cytosol but upon cleavage by caspase 8 (downstream of

death-receptor signalling in the extrinsic apoptotic pathway)

a truncated product is formed (tBID) which is capable of

locating to the mitochondria and activating apoptosis [42].

BAX and BAK contain membrane anchoring C-terminal

tails and while BAK is constitutively bound to the outer mito-

chondrial membrane, in healthy cells BAX appears cytosolic

[43]. However, BAX and (to a lesser degree) BAK are actually

in a dynamic equilibrium between cytosol and membranes,

and are constitutively retrotranslocated to the cytosol by

pro-survival BCL-2 proteins [44–46]. In the absence of any

other BCL-2 proteins BAX becomes membrane localized,

like BAK [45].

The mechanism of activation of BAX/BAK by BH3-only

proteins has been the subject of intense debate. Evidence

exists to suggest that some BH3-only proteins are ‘activators’:

in this model BIM, tBID and PUMA, can directly interact

with BAX/BAK to trigger their conformational change

[47,48]. The function of the other BH3-only proteins in this

model is as ‘sensitizers’, whose binding to BCL2-like pro-survi-

val proteins frees up ‘activator’ BH3-only proteins [47,48]. An

alternative, ‘indirect’ model has also been proposed whereby

pro-survival BCL-2 proteins exert their function through

direct interaction with BAX/BAK and BH3-only proteins act

to sequester pro-survival proteins away from BAX/BAK.

Such interactions do not always depend on BH3 domains as

transmembrane domain (TMD) dimerization also occurs in

the outer mitochondrial membrane. This has been observed

in non-apoptotic cells and could indicate competition between

the TMDs of pro-survival proteins such as BCL-2 and BCL-XL

to prevent BAX/BAK homo-oligomerization [49].

Recently, genome editing was used to disrupt all known

BH3-only proteins (eight in total) in HCT116 cells rendering

these cells resistant to stress-induced apoptosis [50]. Interest-

ingly, treatments that downregulate/target MCL-1- and

BCL-XL-induced apoptosis with equivalent kinetics to those

seen in cells proficient for BH3-only proteins revealing that

known BH3-only proteins are not required for BAX/BAK acti-

vation [50]. Instead, association with the mitochondrial outer

membrane is sufficient to drive homo-oligomerization of

BAX/BAK in the absence of pro-survival BCL-2 proteins [50].

Regardless of which model is active in a particular cell type/

situation, the outcome of a relative increase in the levels of

pro- versus anti-apoptotic BCL-2 proteins is the same and the

C-termini of BAX/BAK undergo conformational change that

allows dimerization [51,52]. Reciprocal interaction between

the BH3 domain of one molecule and the hydrophobic groove

on another results in symmetrical homodimers (although het-

erodimers of BAX/BAK can also form in this manner) and

linkage of these leads to higher-order oligomerization [53,54].

These oligomers delineate arcs, lines or ring-like structures in

the outer mitochondrial membrane [55,56]. This mitochondrial

outer membrane permeabilization (MOMP) allows release of

soluble proteins from the mitochondrial inner membrane
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space such as cytochrome c which binds to APAF-1 (apoptotic

protease activating factor 1), promoting its oligomerization and

binding to pro-caspase 9—forming a complex termed the

apoptosome. At the apoptosome, pro-caspase-9 is activated via

dimerization, which in turn cleaves and activates the executioner

caspases-3 and -7 to drive mass proteolysis that leads to DNA

fragmentation, chromatin condensation and the dismantling of

the cell. It is important to note that the mitochondrial pathway

also contributes to death-receptor-mediated apoptosis through

caspase 8 cleavage of BID, indeed BAX/BAK are required in

many circumstances for receptor-mediated apoptosis [57,58].

In vivo analysis suggests the function of BAX and BAK is

largely redundant in physiological settings; only a minority of

double knockout mice survive to adulthood [59], but one copy

of either is enough to allow normal development. In the absence

of BAX/BAK apoptosis is impaired in response to almost all

stimuli showing their requirement for the initiation of MOMP

[60]. Less well studied, BOK is an additional multi-domain

pro-apoptotic BCL-2 protein that was identified through its

interaction with MCL-1 [61], although subsequent studies

have suggested that BOK does not interact with pro-survival

BCL-2 proteins [62,63]. BOK transcripts are present in many

tissues in mice [64] but the protein is short-lived due to turnover

by ubiquitylation and endoplasmic reticulum-associated

degradation mediated by the proteasome [63].

BOK shows strong homology to BAX and BAK, and its role

in apoptotic regulation has recently been extensively investi-

gated. BOK deficient mice appear normal [64], but enforced

BOK expression can drive apoptosis in a range of cell types

and there is debate over whether this requires BAX/BAK

[62–67]. Endogenous BOK is found predominantly in the mem-

branes of the Golgi apparatus and endoplasmic reticulum (ER)

and a function in ER stress response has been suggested [62,65].

More recently, the ability of proteasome inhibitors to induce

apoptosis in BAX/BAK-deficient MEF or HCT116 cells was

shown to require BOK expression but this was independent of

pro-survival BCL-2 family proteins [63]. For now, the role of

BOK certainly seems unique and requires further investigation.
5. Favoured interactions
As discussed above, a level of specificity is granted by differen-

tial expression pattern, cellular localization, post-translational

activation and turnover of BCL-2 family proteins. A further

level of complexity was revealed by biochemical and cell biology

studies that showed differential binding affinities of particular

BH3-only proteins for pro-survivals [68,69]. While BH3-only

proteins such as BIM, PUMA and tBID bind with high affinity

to all pro-survival proteins, others are more selective in their

interaction. For example, BAD preferentially interacts with

BCL2, BCL-XL and BCL-W while NOXA showing a reciprocal

interaction preference for only MCL-1 and A1 (figure 3). Further

complexity is added by preference of BH3-only proteins for acti-

vation of BAX or BAK. While BIM and BID bind the same

repertoire of pro-survival proteins (figure 3), preference of BID

to mediate apoptosis through BAK has been shown [70,71],

whereas BIM preference for BAX [70], or no preference [71],

has been observed. Domain swap experiments have revealed

that these effects are determined by the BH3 sequence of the

BH3-only proteins and are dependent on cell type [71].

An additional layer of complexity is added with specificity

in pro-survival proteins for BAK versus BAX activation. MCL-1
and BCL-XL constrain BAK, but BCL-2 does not [72], and it is

the BH3 domain of BAK that determines these associations [71].
5.1. Increased pro-survival BCL-2 proteins in cancer
Evasion of apoptosis can aid oncogenic transformation at mul-

tiple stages through facilitating sustained tumour growth,

survival during metastatic process and resistance to therapy.

Therefore, it is not surprising that increased expression of pro-

survival BCL-2 proteins is found in many cancer types. This

upregulation can occur through a variety of mechanisms includ-

ing chromosomal translocation, gene amplification, increased

gene expression/translation or protein stability with various

mechanisms and alternative pro-survival BCL-2 protein

increases seeming more prominent in particular cancers.

Besides the Bcl2 t(12;18) translocation, first found in

follicular lymphoma (and subsequently in diffuse large-cell

lymphomas [73]), translocation of BCL-2 family genes is not

common across different cancer types nor does it seem to

occur to other pro-survival members. Interestingly, t(14;18)

translocation of Bcl2 has also been found in peripheral blood

lymphocytes from healthy individuals [74] and modelling of

this translocation in B cells of mice is only weakly tumorigenic

[75]. Together, these data suggest that this translocation is not

overtly oncogenic.

Gene copy number increases in pro-survival BCL-2

members in cancer are more widespread than translocation.

Transgenic modelling of increases in pro-survival proteins has

mostly been limited to the haematopoietic systems where

elevation of Bcl2, Mcl1 or Bclx predisposes to lymphoma devel-

opment, albeit with long latency and incomplete penetrance.

Amplification of MCL1 and BCL2L1 (encodes BCL-XL) were

found to be among the most frequent chromosomal gains in a

study of over 3000 samples representing 26 tumour types

[76]. It is interesting that these amplifications were prominent

outside of haematopoietic cancers, which have been the tra-

ditional niche for studies on tumorigenic roles of the BCL-2

members. Indeed, analysis of The Cancer Genome Atlas

(TCGA) data through cBioportal [77] confirms the prevalence

of MCL1, and to a lesser extent BCL2L1, amplification in

many solid cancers (figure 4). Again, there seems specificity

between family members as BCL2, BCL2A1 (BFL) and BCL2L2
(BCL-W) amplification are much rarer events. Consistent with

a pro-tumour role, mutation or deletion of pro-survival BCL2

proteins was also infrequent (figure 4). While pro-survival

BCL-2 expression on its own is mildly oncogenic, acquisition

of additional genetic hits is clearly required for tumour for-

mation. Co-amplification of MYC with MCL-1 or BCLX is
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sional), 1100 cases. GBM, glioblastoma [79], 166 cases. HNSCC, head and
neck squamous cell carcinoma (TCGA provisional), 522 cases. ccRCC, kidney
renal clear cell carcinoma [80], 534 cases. Lung adenocarcinoma (TCGA
provisional), 517 cases. Thyroid, papillary thyroid carcinoma [81], 509
cases. Stomach adenocarcinoma (TCGA provisional), 415 cases. Uterine,
corpus endometrial carcinoma [82], 177 cases.
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common in cancer [76] and in cell culture and mouse models

increased BCL-2-like proteins, and MYC is a potent oncogenic

combination [83–87].

Increased transcription of pro-survival proteins can also

elevate their expression in cancer and increased transcrip-

tion/translation seems important for regulation of MCL-1

levels. For example, in chronic lymphocytic leukaemia

(CLL) c-ABL has been shown to drive high MCL-1 mRNA

and protein expression through STAT3/NF-kB [88]. Simila-

rly, in a mouse model of B-cell acute lymphoblastic

leukaemia (B-ALL) the BCR-ABL oncoprotein was shown to

drive high levels of MCL-1 expression that was essential for

leukemogenesis [89].

Increased protein translation impacts on MCL-1 and BCL-

XL levels and MCL-1 has been identified as a downstream

mediator of the oncogenic effect of the translation initiation

factor eIF4e [90]. Disruption of pathways regulating MCL-1

protein stability also occurs in cancer (e.g. loss or mutation

of FBW7 inhibits MCL-1 degradation and is associated

with tumorigenesis and resistance to chemotherapy [91,92]).

Therefore, in addition to genetic alterations in BCL-2 family

members, activation of oncogenic signalling pathways can

also increase pro-survival protein levels.

It is important to consider that the observation of high

levels of pro-survival BCL-2 proteins in cancer need not necess-

arily indicate strong apoptotic resistance. Elevation of BCL-2
actually sensitizes to apoptosis induced by the BCL-2/BCL-

XL/BCL-W targeting drug ABT-737 through release of high

levels of BIM that have been harboured in BIM/BCL-2 com-

plexes [93]. In this way, a cell can be thought of as primed for

death, close to the threshold required for apoptosis induction

and measurement of the level of mitochondrial priming in

cells can be used to predict response to chemotherapy [94,95].

Alterations in pro-survival BCL2 proteins might have

importance beyond cancer genesis as high levels of MCL-1

expression at diagnosis correlate with poor prognosis in breast

cancer [96], and MCL-1 amplification is prominent in treatment-

resistant breast cancers [97], suggesting that this may be a

source of innate and acquired resistance to cancer therapy.

Such associations do not hold true for pro-survival BCL-2-like

proteins in general and high levels of BCL-2 are actually

associated with good prognosis in breast cancer [98–101].

5.2. Decreased pro-apoptotic BCL-2 proteins in cancer
Decreased expression of pro-apoptotic BCL-2 proteins has the

same functional outcome as increased pro-survival expression

in cancer. Gene deletion studies in mice do not reveal a strong

oncogenic impact of decreased BH3-only protein expression.

With the exception of BAD knockout mice, which succumb to

late onset lymphoma [102], deficiency in individual BH3-only

proteins does not predispose mice to tumour development

[103]. Functional redundancy between BH3-only proteins

could account for this, however, compound deletion of multiple

BH3-only proteins is still only weakly tumour promoting with

autoimmunity contributing to morbidity [104].

Similar to over-expression of pro-survival BCL2-like pro-

teins, loss of BH3-only proteins is not overtly oncogenic but

can dramatically accelerate lymphoma development in the con-

text of elevated MYC. BIM seems most potent in this context,

with deletion of even a single allele of BIM having dramatic

effects [105].

Cancer therapeutics engaging the p53 response would be

predicted to upregulate PUMA and NOXA and resistance

to apoptosis could be mediated by their downregulation.

Indeed, deletion of the gene encoding PUMA (Bbc3) occurs in

a range of cancer types [76] and other mechanisms can decrease

PUMA expression such as promoter methylation [106].

5.3. Altered expression of effector proteins
Elimination or downregulation of apoptotic effector proteins

such as BAX/BAK is a potent way to disable mitochondrial-

mediated apoptosis in cell culture systems. As the function of

BAX and BAK are largely redundant, with one copy of either

allowing normal development, abrogation of their activity

would require loss of all four alleles. There is limited evidence

that this occurs in cancer and BAX/BAK levels naturally

decline with age in mice and humans [107]. It is important to

note that localization and conformation may be even more

important than absolute levels of BAX/BAK. For example, in

acute myeloid leukaemia (AML) mitochondrial localized

BAX is associated with both increased apoptotic sensitivity

and improved patient prognosis [108]. Gene deletion studies

in mice do not suggest a tumour suppressive role for BAX or

BAK when knocked out individually (presumably due to

their redundant roles) and double knockout results in perinatal

lethality [59,109]. Using chimeric mice Bax/Bak deletion in

the haematopoietic compartment drives fatal autoimmune
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disease [110]. The prominence of autoimmune disease in chi-

meric mice with Bax/Bak [111] deficient haematopoietic

systems may mask tumour development. Targeted deletion

mouse studies can avoid these autoimmune complications

and in this setting loss of BAX/BAK in the brain and testicles

results in tumours [112].

It seems pertinent loss of Bok is a relatively frequent event in

a range of cancers [76] and gene silencing may result in loss of

BOK protein in additional cases [111]. BOK is downregulated

in non-small cell lung cancer (NSCLC) and high BOK is associ-

ated with good prognosis in lymph-node positive patients

[111]. Interestingly, the tumour suppressive effect of BOK in

NSCLC does not seem to be through apoptotic regulation

and is instead through antagonism of TGF-b2 mediated epi-

thelial to mesenchymal transition (EMT) and cell migration

[111]. Unlike so many other BCL-2 proteins, Bok loss failed to

reveal a tumour suppressive role the Eu-Myc mouse model

[64], a system that is a sensitive read-out for altered apoptosis,

although factors such as cooperating second hits, timing of

Bok loss and cell type specificity could all be involved in a

BOK effect. Compound knockout of Bax/Bak/Bok in the

haematopoietic system also results in autoimmune disease

rather than tumourigenesis [113]. More recently, in a chemical

(DEN)-induced model of liver carcinogenesis, loss of BOK

has been shown to protect against cancer. In this model,

cancer can be promoted by death of hepatocytes, supporting

compensatory proliferation with associated mutagenesis, in

surrounding tissue that ultimately leads to live cancer [114].

Interestingly, deletion of BOK inhibited the ER-stress response

and induction of pro-apoptotic BH3-only proteins BIM and

PUMA, placing BOK’s tumour promoting role upstream of

MOMP [114]. Secondly, BOK was also shown to have an

additional growth-promoting effect, though the mechanisms

underlying this remain unclear it would also be expected to

be pro-tumourigenic [114].

5.4. Pharmaceutical intervention to reset the balance
As the balance of BCL-2 proteins can act as a trigger for apop-

tosis, mechanisms to alter their expression or interaction would

be expected to have clinical use. Indeed conventional anti-

cancer therapies can act through disruption of the BCL-2

family. For example, DNA damaging agents such as etoposide

or daunorubicin activate the p53 tumour suppressor transcrip-

tion factor whose targets include PUMA and NOXA. However,

the presence of elevated pro-survival BCL-2 proteins can act as

a barrier to apoptosis even upon upregulation of BH3-only

proteins. Neutralization of pro-survival proteins would re-

sensitize to BH3-only upregulation and could even have the

potential to trigger apoptosis alone.

Interest in the development of inhibitors of pro-survival

BCL-2 proteins has come to fruition over the past decade

following the identification of small molecule inhibitors

capable of occupying the hydrophobic pocket on pro-survival

proteins. The first of these BH3 mimetic drugs, ABT-737, was

developed through NMR-based fragment screening. ABT-737

mimics the BH3-domain of pro-apoptotic BAD and interacts

with BCL-2, BCL-XL and BCL-W (figure 5), displacing BH3-

only proteins to trigger apoptosis in cell lines and restrict

tumour growth in xenograft models [2]. Derivation of an

orally available analogue (ABT 263/Navitoclax) allowed

clinical testing [115]. On-target toxicity of Navitoclax was

observed with dose-limiting thrombocytopenia occurring
due to platelet dependence on BCL-XL [116,117]. This can be

managed in the clinic and preclinical models have supported

the use of Navitoclax in clinical trials as a combination therapy

in a range of (predominantly solid) tumour types [118,119]

(clinicaltrials.gov).

Further development has led to additional BH3 mimetics

with increased specificity for individual BCL-2 proteins. The

success of this approach has been shown with the BCL-2

specific BH3 mimetic ABT-199 (Venetoclax), which obtained

breakthrough FDA status for use in relapsed/refractory CLL.

In this disease single-agent efficacy was seen with partial

response in 79% and complete response in 20% of patients

[120]. Even more impressive results were seen when Venetoclax

was used in combination with rituximab-complete response

occurred in 51% of patients with disease-free status occurring

for up to 2 years after completion of therapy [121]. Encouraging

(but more modest) effects are seen in non-Hodgkin lympho-

mas, acute myeloid leukaemia and multiple myeloma as a

single agent [122–124] or combination therapy [125]. While

much is understood of the role of the BCL-2 family in cancers

of the blood, the case for targeting these proteins in solid

tumours, most probably in conjunction with conventional

therapies, is compelling. Translocation or amplification of

BCL2 itself is rarely seen in solid tumours but dependence on

BCL2 has been shown in small cell lung cancer (SCLC) [126].

Efficacy of Venetoclax when used as a combination therapy

has been shown in preclinical models of breast cancer [127]

and Venetoclax is now in clinical trials in combination with

tamoxifen in breast cancer (ISRCTN98335443).

Resistance to BCL-2 and BCL-2/BCL-XL targeting BH3

mimetics has been observed, and in vitro studies indicate that

ABT-737 treatment can increase MCL-1 levels and MCL-1

expression promotes resistance to ABT737 in vitro and in vivo
[128–130]. MCL-1 has been associated with resistance to

cancer therapy for some time [131,132], and interest has intensi-

fied in the development of drugs that specifically target MCL-1.

A number of MCL-1 inhibitors have been mooted but until very

recently compounds with clear specificity and on-target effect

were lacking [133]. The tide has turned and a number of

robust BH3 mimetic drugs targeting MCL-1 are now available;

Abbvie’s A1210477 potently inhibits MCL-1 in vitro to restrict

growth of diverse cancer cell lines [134,135], UMI-77 inhibits

pancreatic and breast cancer cell line growth in vitro and

in vivo [96,136], and the Servier compound S63845 seems

particularly potent, with on-target single agent killing of



rsob.royalsocietypublishing.org
Open

Biol.8:180002

7
leukaemia and lymphoma models in vitro and in vivo [4] and in

combination with conventional cancer therapy in xenograft

models of breast cancer [137]. The potential for MCL-1 specific

BH3-mimetics in the clinic is now being tested with the Novar-

tis/Servier drug S64315/MIK665 and Amgen AMG176 in

phase I clinical trials for haematopoietic cancers/myelodysplas-

tic syndrome (NCT02992483, NCT02979366, NCT02675452).

Taking advantage of the short half-life of MCL-1 protein, a

number of other approaches can be taken to decrease MCL-1

levels. This includes inhibition of transcription through CDK

inhibition [138] or targeting translation through mTOR

inhibition [139]. Beyond targeting anti-apoptotic BCL-2 pro-

teins, increasing interest has centred on developing drugs that

directly activate BAX and BAK in order to kill tumour cells

[140,141]. Along these lines, a recent study has shown that a

BAX-activating molecule, BTSA1, shows potent anti-tumour

effects on human acute myeloid leukaemia (AML) xenografts

in the absence of toxicity [142].
6. Inhibiting BCL-2 proteins in cancer
prophylaxis

It is conceivable that targeting the pro-survival BCL-2 proteins

could help eliminate pre-cancerous lesions or early-stage

tumours. Indeed, ABT737 can act as an anti-cancer prophylac-

tic in the Em-MYC mouse model of B-cell lymphoma, which

has been shown to be dependent on BCL-XL [143]. Evidence

for applicability beyond MYC-driven lymphoma is limited

and in p53 null mice (which predominantly succumb to

thymic lymphoma) prophylactic treatment with ABT737

had no impact on tumorigenesis [144]. When low-dose g-

irradiation was added to this experimental protocol to mimic

environmental factors that could induce additional mutations

prophylactic ABT737 treatment was shown to delay lym-

phoma onset in p53 null mice, but this reduction in thymic

lymphoma was accompanied by increased incidence of sar-

coma, and while significant, the difference in survival

outcome afforded by prophylactic ABT 737 treatment was

minimal [144].

Confounding factors include the altered activity of cells

that have failed to be eliminated by targeting pro-survival
BCL2 proteins. For example, the spontaneous apoptosis

induced by targeted deletion of mcl1 in hepatocytes results in

severe liver damage and increased proliferation that actually

results in hepatocellular carcinoma (HCC) [145]. Such effects

have also been shown in models of g-irradiation induced

thymic lymphoma where deletion of puma or over-expression

of Bcl2 (normally considered as pro-cancer events) actually

protects against tumour development [146]. In this scenario,

g-irradiation no longer causes depletion of bone marrow leuco-

cytes meaning that there is no niche for the proliferation of

stem/progenitor cells carrying damaged DNA that normally

give rise to the thymic lymphomas in this model [146,147].

There are further indications that inhibiting the pro-survivals

may not always have anti-cancer impact, in settings where

ABT737 fails to induce apoptosis detrimental side effects can

occur through activation of CAD and genome instability

[148]. It remains to be seen whether these concerns hold true

in the clinic.

In the decades following the discovery of BCL-2 (and

related family members) a vast quantity of research has unra-

velled their role in regulating apoptosis. The functional

division of this family into pro- and anti-apoptotic members

and the elucidation of their structures and mechanism of inter-

action has allowed the pharmaceutical development of

molecules to specifically inhibit these protein–protein inter-

actions and reinstate apoptosis. Available data from clinical

trials suggests good efficacy of BH3-mimetics targeting

BCL-2 in some types of blood cancer. Deregulation of BCL-2

proteins is now recognized as a frequent event in many types

of cancer and it seems likely that targeting pro-survival

BCL-2 proteins will form a valuable adjunct to current cancer

therapies. Restoration of apoptosis offers the potential to elim-

inate cancer cells at all stages of pathology and as BH3-mimetic

drugs make their way into the clinic they could make dramatic

improvements in survival outcome in cancer.
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