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The capability of zinc oxide (ZnO) as a hydrogen sensing
element has been pushed to its limits. Different methods have
been explored to extend its sensing capability. In this paper,
we report a novel approach which significantly improves the
hydrogen sensing capability of zinc oxide by applying a bias
voltage to ZnO nanorods as the sensing elements. Zinc oxide in
the form of aligned nanorods was first synthesized on an Au-
coated Si(111) substrate using a facile method via the galvanic-
assisted chemical process. The sensing performance of the zinc
oxide nanorods was investigated in response to the applied
biasing voltage. It was found that the sensitivity, response
time and detection limit of the ZnO sensing elements were
dramatically improved with increasing bias voltage. A 100%
increment in sensing response was achieved for the detection
of 2000 ppm hydrogen gas when the bias voltage was increased
from —2 to —6V with 70% reduction in response and recovery
times. This remarkable sensing performance is attributed to
the reaction of hydrogen with chemisorbed oxygen ions on
the surface of the ZnO nanorods that served as the electron
donors to increase the sensor conductance. Higher reverse bias
voltages sweep the electrons faster across the electrodes. This
shortened the response time and, at the same time, depleted
the electrons in the sensor elements and weakens oxygen
adsorption. The oxygen ions could then be readily removed by
hydrogen, leading to a higher sensitivity of the sensors. This,
therefore, envisages a way for high-speed hydrogen gas sensing
with high detection sensitivities.

1. Introduction

As one of the II-VI compounds, zinc oxide (ZnO) has a
wide energy band gap of 3.37eV, and a large exciton binding
energy of 60meV. It has a hexagonal wurtzite-type structure
and possesses a high degree of flexibility in growth geometries.

© 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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ZnO in the form of one-dimensional (1D) nanostructure, in particular, exhibits electrical and optical
anisotropy as well as high electron mobility. These unique characteristics have made ZnO suitable for
many device applications including gas sensor, solar cell and photodetector. Nanostructured ZnO can be
fabricated by various methods such as chemical vapour deposition [1], electrochemical deposition [2],
chemical [3,4], electrospinning [5] and hydrothermal [6], with the microstructures and properties of the
materials affected by the growth mechanisms involved in the corresponding methods.

Applications of zinc oxide in hydrogen gas sensing have widely been studied over the past two
decades, starting with the use of ZnO thin films with heating elements [7-10] incorporated to 1D
nanostructures based on ZnO nanorods/nanowires as the sensing elements [11-21]. It has been reported
that gas sensors based on 1D nanostructures are more superior in gas detection than thin film-based
gas sensors because of their large surface-to-volume ratios of the former and also their dimensions are
comparable to those of the gas analytes being analysed. Consequently, the binding of an analyte to
the surface of a 1D nanostructure would result in the depletion or accumulation of carriers across the
thickness of the nanostructure instead of only a particular surface region of a bulk or a thin film being
affected. This gives rise to larger change in the resistance/conductance and higher sensitivity in gas
detection when 1D nanostructures are used as the sensing materials.

Research efforts on gas sensing have been focusing on the improvement of sensing performance
by improving their sensing characteristics such as the sensitivities, response and recovery times as
well as detection limits of the sensors. For example, methods such as surface modification [11,16],
catalyst doping [18], Schottky junction incorporation [19,20] and piezotronic integration [22,23] have
been employed to achieve good sensing performance. However, the effects of operating bias voltages
of sensors on the hydrogen sensing behaviours of the materials have rarely been investigated. For
example, multimeters were commonly used in determining the changes in resistance during sensing
events [12,13,16,24-27]. However, the multimeter is unable to perform both sourcing and measuring
tasks simultaneously. Thus, the scope of evaluation of the sensors’ performance was constrained by
the instrumental limitations. A source measure unit (SMU) is a more suitable instrument for sensing
performance characteristics when compared with a multimeter. Although SMUs have been used in
some of the works, only constant bias voltages were applied throughout the whole duration of sensing
measurements [11,21,28,29], and many did not clearly state the sensors” operating bias voltages in their
reports [15,17-20].

The main aim of this work is to investigate the effect of bias voltage on the hydrogen gas sensing
performance of ZnO nanorods. One-dimensional nanostructures based on vertically aligned ZnO
nanorods were fabricated on Au-coated Si substrates by a facile one-pot galvanic-assisted technique
as proposed by Zheng et al. [24]. Field emission scanning electron microscope (FESEM) and X-ray
diffractometry (XRD) were used to characterize the microstructure, orientation and phase formation of
ZnO. Hydrogen sensing behaviour of the material was characterized by exposing the material to various
concentrations of hydrogen gas with applied sensor’s bias voltages ranging from —2 to —6 V.

2. Materials and methodology

Au-coated silicon substrate was cleaned using standard procedures by first sonicating in acetone for
15min followed by isopropyl alcohol for 15min before rinsing with deionized water (DI) and blown
dry with air. The edges of the substrate were then wrapped with Al foils so that the difference in the
reduction potentials between the two materials provided the driving force for the formation of the ZnO
nanostructures by galvanic displacement reaction. An aqueous solution, containing 25 mM zinc nitrate
hexahydrate (Zn(NO3z)2-6HyO, 98%) and 25 mM hexamethylenetetramine (C¢H12Ny4), was used as the
electrolyte. The solution was maintained at 75°C in a water bath on a hotplate. The substrate was placed
with growth surface facing downward in the electrolyte and the growth time for ZnO was 4 h. The ZnO-
coated silicon substrate was then rinsed with DI water and blown dry with air. The ZnO nanorod coating
was characterized using an X-ray diffractometer (PANalytical X'Pert Pro MPD) with Cu Ko radiation.
The morphology of the nanorods was examined using a FESEM (Carl Zeiss GeminiSEM 500).

For gas sensing measurements, the substrate with ZnO nanostructures was mounted on a pre-
fabricated printed circuit board (PCB) with the Au-coated Si substrate as the mechanical contact
electrode (figure 1a). Figure 1b shows the schematic diagram of the fabricated sensor chip. Gas sensing
measurements were performed with constant gas flow across the sensor chip in a sealed custom-
made acrylic glass chamber of volume 12cm? (figure 1). The hydrogen gas was diluted with different
proportions of dry air (purity: 99.998%) and regulated by a mass flow controller at a flow rate 200 SCCM
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Figure 1. (a) A sensor chip with mechanical contact electrode mounted on a PCB inside the custom-made gas chamber. (b) Schematics
of the experimental set-up for hydrogen sensing measurements.

(standard cubic centimetres per minute). Gas sensing data were acquired via a customized Labview
program interfaced with a Keithley Source Measure Unit 2602A. A range of bias voltages from —2 to
—6V was applied to the sensors. All the experiments were carried out with the sensor chip first exposed
to air to obtain the baseline resistance, followed by exposures to the desired concentrations of hydrogen
gas before the air was flushed back to complete a cycle. Time interval for each H; flow and air purging
event was set to 300 s. The sensitivity (R) of the ZnO sensor towards H, gas was defined as the percentage
of relative resistance change ([(Rg — Ro)/Ro]), using the following equation:

sgs s o (Rg — Ro)
sensitivity, R(%) = —R x 100, (2.1)
0

where Rg and Rg are the sensor resistances in the absence and presence of H; gas, respectively.

The response time is defined as the time required for reaching 90% of the total change in the electric
resistance at a given Hy concentration, while the recovery time is defined as the time required for
reaching 10% of the original baseline value after the removal of Hj.

3. Results and discussion

3.1. Characterization of the ZnO nanorods

X-ray diffractions performed on the sample show that ZnO nanorods were grown as pure crystalline
phase of wurtzite structure with a preferred growth along (002) (figure 2). Figure 3 shows the FESEM
micrographs of ZnO nanorods grown on Au-coated Si substrate. Top view FESEM image of the sample in
figure 3a reveals that the Au-coated Si substrate was not fully covered by ZnO nanorods. The nanorods
formed numerous clusters of different sizes. On close examination, the nanorods in figure 3b exhibit
irregular shapes, diameters ranging from 30 to 240 nm with an average of 103 nm. The cross-sectional
view micrograph in figure 3c reveals that the ZnO nanorods are perpendicularly oriented to the substrate
with an average length of 1.8 um. The thickness of the Au coating is approximately 240 nm. As shown in
figure 3d, the majority of the smaller ZnO nanorods tend to be cylindrical with sharper tips compared to
the larger ones.

In a chemical process, the formation of ZnO starts with the reduction reaction of dissolved oxygen
(equation (3.1)) followed by the formation of Zn(OH); (equation (3.2)) which subsequently converts to
ZnO via dehydration (equation (3.3)). In this work, the difference in electronegativity between Al and
the Au-coated Si, provided the driving force for the electrons from Al to move to the substrate so that
the reduction reaction of dissolved oxygen occurred more efficiently. When the concentration of Zn>*
and OH™ exceeded supersaturation, ZnO nuclei formed at the interface between the substrate and the
electrolyte solution. The substrate orientation in the electrolyte, on the other hand, played an important
role in activating the anisotropy growth of ZnO nuclei along the [001] direction to form orthogonally
grown ZnO nanorods. The formation of ZnO nanorods can be described by the following reactions:

05 +2H,O + 4e~ — 40H ™, 3.1)
Zn?* + 20H~ — Zn(OH), (3.2)
and Zn(OH), — ZnO + H,O0. (3.3)
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Figure 2. X-ray diffractogram of Zn0 grown on Al-wrapped Au-coated Si substrate. The positions of the Zn0 diffraction peaks as obtained
from the standard reference pattern (ICSD card no. 980009346) are indicated by the stick pattern.
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Figure 3. (a) Top-view FESEM image of the ZnO sample, (b) high-magnification image of (a), (c) cross-sectional view of the sample
and (d) high-magpnification cross-sectional view of Zn0 nanorods.

Figure 4 shows the typical [-V characteristics of the ZnO nanorod arrays on Au-coated silicon
substrate grown at room temperature. The I-V plot shows the rectifying Schottky behaviour due to the
presence of ZnO/Au heterojunction. Reverse bias voltages of —2, —4 and —6 V were used to characterize
the hydrogen sensing behaviour of ZnO as forward bias gave lower sensing characteristics when exposed
to Hy gas. Yu et al. [25,30] also reported that faster sensing response was obtained in reverse bias
compared to forward bias operation.

3.2. Hydrogen gas sensing

Figure 5 compares the sensitivity of ZnO nanorods towards different concentrations of Hy at room
temperature at bias voltages of —2, —4 and —6 V. The sensitivity to hydrogen increases significantly with
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Figure 4. Typical -V characteristic curve of the Zn0 nanorod arrays.
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Figure5. Sensitivity plotted against time when the Zn0 sensor was exposed to hydrogen at different concentrations at room temperature
at different reverse bias voltages.

increasing reverse bias voltage, while the response and recovery times decrease significantly. Resistance
change is still prominently visible at hydrogen concentration as low as 200 ppm. However, the sensitivity
observed at the concentrations of 1800 and 1600 ppm appeared to be almost similar. The sensitivity
observed at 1000 and 800 ppm as well as sensitivity observed between 600 and 200 ppm (figure 6) are
also not significantly differentiated. This could be attributed to the incomplete gas mixing deficiency
during the measurement.

Figure 7 illustrates the differences in hydrogen sensing behaviours of ZnO at different bias voltages.
A 100% increment in the sensor’s sensitivity was recorded at 2000 ppm of hydrogen gas when the bias
voltage increased from —2 to —6 V. Reduction in the response and recovery times of more than 70% was
also recorded (figures 8 and 9). Dependency of the sensing characteristics on bias voltage provides a
promising route to achieving high-speed and optimum sensing performance. This could be attributed to
the effects of the interactions between hydrogen, chemisorbed oxygen ions and electro-migration in the
sensor materials. ZnO is a well-known n-type semiconductor with its electrons contributed by oxygen
vacancies and Zn interstitials [31]. When exposed to the atmospheric environment, the electrons from the
ZnO conduction band ionized the atmospheric oxygen to produce negative oxygen ions at the surface of
the ZnO nanorods:

O; (gas) + e~ — O™ (ads). (3.4)
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Figure 6. Comparison of the sensitivity (%) as a function of H, concentration at room temperature at different reverse bias voltages.
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Figure 7. Hydrogen sensing behaviours at different bias voltages. Higher sensitivity and shorter response time and recovery time were
obtained for Zn0 sensor operated at larger bias voltage.
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Figure 8. Comparison of the response time (s) as a function of H, concentration at room temperature at different reverse bias voltages.
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Figure 9. Comparison of the recovery time (s) as a function of H, concentration at room temperature at different reverse bias voltages.
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Figure 10. Schematics of the sensing mechanisms of the nanorods at low and high reverse bias voltages.

This led to a decrease in electron concentration resulting in an increase in the surface resistance.
A depletion layer was then formed between the immobile oxygen ions and the zinc ions. Upon
exposure to hydrogen gas, Hy reacted with the negatively charged oxygen ions to produce Hp,O
molecules by consuming chemisorbed oxygen from the nanorods’ surface. This interaction increased the
conductivity of ZnO nanorods by releasing the chemisorbed O, electrons back to the ZnO conduction
band.

O, (ads) + 2H; (gas) — 2H,O(gas) + e ™. (3.5)

At higher reverse bias, the released electrons moved at a faster rate due to the greater driving force
across the electrodes and thus, decreased the response times. At the same time, reverse bias also depleted
the electrons in the nanorods and weakened oxygen adsorption resulting in oxygen ions being easily
removed by Hj leading to an improvement in sensor performance. Recovery time of a gas sensor is
determined by the rate at which atmospheric oxygen recombines with the electrons on the ZnO surface.
Owing to the relatively low number of electrons available at high reverse bias, the recovery time is
shorter compared to that at low reverse bias. Figure 10 shows the schematics of the proposed sensing
mechanisms involved.

A comparison of sensitivity, response time and recovery time for hydrogen gas sensor in this work
(table 1) with the reported results from previous studies [11,17,26,27,29,32,33] is shown in table 2. The
sensor reported in this work has the shortest response and recovery times, while the sensitivity of the

dici s vsisto o'y wsunsndisseseioros [



Table 1. Sensitivity, response time and recovery time of the sensor measured at different reverse bias voltages of —2, —4 and —6V n
for different H, concentrations.

response recovery response  recovery response recovery
time (s) time (s) time(s)  time(s) time (s) time (s)
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Table 2. Comparison of the sensitivity, response and recovery times between the present sensor and other existing sensors operated
at room temperature.

operating response recovery sensitivity (%)/
reference materials voltage (V) time (s) time (s) H, (ppm)

this work oriented Zn0 nanorods 6.0 60 49 33/2000

sensor is also higher when compared to others that used ZnO nanorods as the sensing materials except
for Hassan et al. [33]. Despite that, their ZnO sensor showed poorer recovery and response times. A high
sensitivity sensor is suitable for quantitative measurement of gas concentrations, whereas a fast response
sensor, as demonstrated by the sensor characteristics in this work, will be suitable for fast sensing and
detection of gas leakage.

4. Conclusion

In this paper, we have investigated the room temperature hydrogen gas sensing behaviour of ZnO
nanorods grown on Au-coated Si(111) substrate by the galvanic-assisted chemical process. It was
found that the hydrogen sensing behaviour and performance of the sensor depended strongly on the
applied bias voltage. The sensitivity, response time and recovery time could be improved many folds of
magnitude by using large bias voltages. This paves the way for the fabrication of hydrogen gas sensors
with good detection sensitivities and low detection limits for high-speed sensing in real time.
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