Skip to main content
. 2018 Jun 6;38(23):5325–5337. doi: 10.1523/JNEUROSCI.0089-18.2018

Figure 6.

Figure 6.

Current injections reveal that FTN spike burst durations, but not other intrinsic properties, differ between species. A, Representative FTN responses to current steps in X. laevis (left) and X. petersii (right). Four current steps are shown: the most extreme negative step, rheobase, medium current levels (>110–150% rheobase) and high current levels (>150–200% rheobase). B, Burst duration of X. petersii FTNs is significantly shorter than X. laevis FTNs at medium and high current steps [medium: >110–150% rheobase; X. laevis FTNs (n = 11): 559.9 ± 738.8 ms; X. petersii FTNs (n = 9): 64.0 ± 31.7; GLM: p < 0.01 for all species comparisons; high: >150–200% rheobase; X. laevis FTNs (n = 8): 898.0 ± 782.2 ms; X. petersii FTNs (n = 7): 56.2 ± 29.8; GLM: p ≤ 0.006]. Asterisks (*) indicate statistically significant difference between species. C, Representative EVN responses to current steps in X. laevis and X. petersii EVNs. Four current steps are shown: the most extreme negative step, rheobase, medium current levels (>110–150% rheobase), and high current levels (>150–200% rheobase). D, Burst duration of EVNs in X. laevis and X. petersii do not differ across species at medium or high current steps [medium: X. laevis EVNs (n = 7): 1643.4 ± 545.7 ms; X. petersii EVNs (n = 9), 721.4 ± 853.4; GLM: p > 0.05; high: X. laevis EVNs (n = 8): 1260.6 ± 733.0; X. petersii EVNs (n = 7), 690.5 ± 823.3; GLM p > 0.05 for all species comparisons]. E, Input resistance does not differ across PBX neuron type or species [X. laevis: FTNs (n = 14), 240.3 ± 149.0 MOhm; EVNs (n = 8), 278.6 ± 162.6; X. petersii: FTNs (n = 11), 200.3 ± 58.1; EVNs (n = 12), 229.2 ± 97.6; GLM: p > 0.05 for all comparisons]. F, Resting potential does not differ across PBx neuron type or species [X. laevis: FTNs (n = 14), −74.2 ± 5.6 mV; EVNs (n = 8), −68.3 ± 4.2; X. petersii: FTNs (n = 11), −68.2 ± 5.0; EVNs (n = 12), −69.8 ± 3.5; LM: p > 0.05 for all comparisons]. G, Capacitance does not differ across PBX neuron type or species [X. laevis: FTNs (n = 9), 305.8 ± 130.1 pF; EVNs (n = 3), 480.1 ± 256.4; X. petersii: FTNs (n = 6), 286.3 ± 125.4; EVNs (n = 7), 334.4 ± 149.4; LM: p > 0.05 for all comparisons]. H, Sag index does not differ across PBX neuron type or species [X. laevis: FTNs (n = 15), 0.094 ± 0.051; EVNs (n = 8), 0.143 ± 0.142; X. petersii: FTNs (n = 11), 0.096 ± 0.051; EVNs (n = 12), 0.134 ± 0.066; LM: p > 0.05 for all comparisons]. I, Spike threshold does not differ across PBX neuron type or species [X. laevis: FTNs (n = 13), 680.8 ± 467.8 pA; EVNs (n = 8), 363.8 ± 178.3; X. petersii: FTNs (n = 10), 463.2 ± 282.1; EVNs (n = 11), 478.6 ± 242.4; GLM: p > 0.05 for all comparisons). FTNs (n = 6), 286.3 ± 125.4; EVNs (n = 7), 334.4 ± 149.4; LM p > 0.05 for all comparisons]. J, Action potential half-width does not differ across PBX neuron type or species [X. laevis: FTNs (n = 15), 0.67 ± 0.18 ms; EVNs (n = 8), 0.86 ± 0.54; X. petersii: FTNs (n = 11), 0.91 ± 0.27; EVNs (n = 9), 0.70 ± 0.14; LM: p > 0.05 for all comparisons].