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Synaptic Release of Acetylcholine Rapidly Suppresses Cortical
Activity by Recruiting Muscarinic Receptors in Layer 4

Rajan Dasgupta,'? “Frederik Seibt,' and “Michael Beierlein'>
'Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, Houston, Texas 77030 and 2MD Anderson Cancer Center, UTHealth
Graduate School of Biomedical Sciences, Houston, Texas 77030

Cholinergic afferents from the basal forebrain (BF) can influence cortical activity on rapid time scales, enabling sensory information
processing and exploratory behavior. However, our understanding of how synaptically released acetylcholine (ACh) influences cellular
targets in distinct cortical layers remains incomplete. Previous studies have shown that rapid changes in cortical dynamics induced by
phasic BF activity can be mediated by the activation of nicotinic ACh receptors (nAChRs) expressed in distinct types of GABAergic
interneurons. In contrast, muscarinic ACh receptors (mAChRs) are assumed to be involved in slower and more diffuse ACh signaling
following sustained increases in afferent activity. Here, we examined the mechanisms underlying fast cholinergic control of cortical
circuit dynamics by pairing optical stimulation of cholinergic afferents with evoked activity in somatosensory cortical slices of mice of
either sex. ACh release evoked by single stimuli led to a rapid and persistent suppression of cortical activity, mediated by mAChRs
expressed in layer 4 and to a lesser extent, by nAChRs in layers 1-3. In agreement, we found that cholinergic inputs to layer 4 evoked
short-latency and long-lasting mAChR-dependent inhibition of the large majority of excitatory neurons, whereas inputs to layers 1-3
primarily evoked nAChR-dependent excitation of different classes of interneurons. Our results indicate that the rapid cholinergic control
of cortical network dynamics is mediated by both nAChRs and mAChRs-dependent mechanisms, which are expressed in distinct cortical

layers and cell types.
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ignificance Statement

sensory processing are under direct cholinergic control.

N

Acetylcholine (ACh) release from basal forebrain (BF) afferents to cortex influences a variety of cognitive functions including
attention, sensory processing, and learning. Cholinergic control occurs on the time scale of seconds and is mediated by BF neurons
that generate action potentials at low rates, indicating that ACh acts as a point-to-point neurotransmitter. Our findings highlight
that even brief activation of cholinergic afferents can recruit both nicotinic and muscarinic ACh receptors expressed in several cell
types, leading to modulation of cortical activity on distinct time scales. Furthermore, they indicate that the initial stages of cortical
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Introduction

Cholinergic afferents from the basal forebrain (BF) to neocortex
play critical roles in a diverse set of cognitive functions such as
attentional performance (Parikh et al., 2007; Herrero et al., 2008),
learning (Letzkus et al., 2011), and sensory processing (Fu et al.,
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2014; Nelson and Mooney, 2016). Increases in cholinergic activ-
ity are strongly associated with changes in internal cortical state,
defined by a switch from spontaneous, low-frequency, rhythmic
activity to desynchronized activity. Such state changes can be
global, slow and persistent, as during transitions from sleep to
wakefulness (Brown et al., 2012). More recent studies have
revealed much more rapid transitions in cortical dynamics
within the awake state, allowing for the regulation of sensory
processing and behavioral performance on the time scale of
seconds (Crochet and Petersen, 2006; Reimer et al., 2014;
McGinley et al., 2015a; Vinck et al., 2015). Mounting evidence
suggests that BF cholinergic inputs trigger such rapid fluctua-
tions of cortical state (Parikh et al., 2007; Eggermann et al.,
2014; Reimer et al., 2016), predicting a high degree of speci-
ficity and precision in the underlying signaling mechanisms
(Munoz and Rudy, 2014).



Dasgupta et al. ® Cholinergic Synaptic Signaling in Neocortex

BF cholinergic afferents target all cortical layers (Bloem et al.,
2014; Wu et al., 2014) and the various effects of acetylcholine
(ACh) are mediated by both nicotinic ACh receptors (nAChRs)
and muscarinic ACh receptors (mAChRs) expressed in a layer-
and cell-specific manner (Arroyo et al., 2012, 2014; Mufioz and
Rudy, 2014; Hedrick and Waters, 2015; Hay et al., 2016; Verhoog
et al., 2016; Obermayer et al., 2017). The signaling modes in-
volved in the recruitment of nAChRs and mAChRs are assumed
to be very distinct. Brief activation of cholinergic afferents can
trigger fast-latency postsynaptic nAChR-mediated responses in
both excitatory neurons (Hedrick and Waters, 2015; Hay et al.,
2016; Nelson and Mooney, 2016) and different types of inhibi-
tory interneurons (Letzkus et al., 2011; Arroyo et al., 2012; Fu et
al., 2014). In turn, nAChR-mediated activation of interneurons
can lead to either inhibition (Arroyo et al., 2012) or disinhibition
(Letzkusetal., 2011; Fuetal., 2014) of pyramidal cell activity. The
recruitment of mAChRs is thought to occur on much longer time
scales. Although studies performed in vivo have shown that BF-
mediated changes in cortical network properties are at least partly
due to mAChR activation (Pinto et al., 2013; Eggermann et al,,
2014; Kalmbach and Waters, 2014; Mufoz et al., 2017), the evi-
dence for short-latency activation of mAChRs is sparse. Instead,
mAChR recruitment appears to require sustained increases in
cholinergic afferent activity, resulting in more gradual and diffuse
changes in cortical dynamics (Descarries et al., 1997).

Here we determined the contributions of nAChRs and mAChRs to
the fast cholinergic control of cortical circuits. Using an in vitro
model of mouse barrel cortex and optogenetics, we temporally
paired brief ACh increases with evoked neuronal population ac-
tivity aimed to mimic slow and synchronous cortical activity pat-
terns observed during quiet wakefulness (Crochet and Petersen,
2006; Eggermann et al., 2014). This paradigm allowed us to quan-
tify the influence of ACh release on cortical responses with sufficient
temporal precision while eliminating confounding influences pres-
ent in vivo, such as changes in thalamic or other neuromodulatory
inputs. We found that ACh release rapidly and reliably inhibited
cortical network responses for several seconds. This inhibition was
mediated in large part by the activation of mAChRs in layer 4, and to
a lesser extent by the recruitment of nAChRs in the supragranular
layers. In agreement, we found that synaptically released ACh pro-
duced long-lasting mAChR-mediated IPSCs in the majority of layer
4 excitatory neurons and nAChR EPSCs in superficial layer in-
terneurons. Our findings reveal that mAChRs are critically involved
in short-latency control of cortical network activity.

Materials and Methods

Animals. We used bacterial artificial chromosome (BAC)-transgenic
mice of either sex expressing ChR2 under the control of the choline
acetyltransferase (ChAT) promoter (ChAT-ChR2-EYFP; Zhao et al.,
2011). Animals were purchased from The Jackson Laboratory (https://
www.jax.org/strain/014546) and maintained as hemizygous. This mouse
line carries additional copies of the vesicular ACh transporter (VAChT)
gene, potentially leading to enhanced release of ACh (Kolisnyk et al.,
2013). Therefore, additional experiments were performed using ChAT-
Cre/Ai32(ChR2-YFP) mice, generated by crossing ChAT-Cre animals
(https://www.jax.org/strain/006410) with Cre-dependent reporter Ai32
(ChR2-YFP) mice (https://www.jax.org/strain/012569), as described pre-
viously (Hedrick et al., 2016). Some experiments were performed using
C57BL/6 wild-type mice. All animals used in this study were treated
following procedures in accordance with National Institutes of Health
guidelines and approved by the University of Texas Health Science Cen-
ter at Houston (UTHealth) animal welfare committee.

Slice preparation. Animals aged P12-P16 were anesthetized using isoflu-
rane and then decapitated. The brains were rapidly removed and placed in
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ice-cold cutting solution saturated with 95% O,-5% CO,, which consisted
of the following (in mm): 212 sucrose, 2.5 KCl, 1.25 NaH,PO,, 10 MgSO,,
0.5 CaCl,, 26 NaHCOs, and 11 glucose. Thalamocortical slices (400 wm;
Agmon and Connors, 1991) were cut using a vibratome (VT1200 S, Leica
Biosystems) and immediately transferred to artificial CSF (ACSF; satu-
rated with 95% O,-5% CO,), maintained at 35°C and consisting of the
following (in mm): 126 NaCl, 2.5 KCl, 1.25 NaH,PO,, 2 MgCl,, 2 CaCl,,
26 NaHCOs, and 10 glucose. Slices were incubated at 35°C for 20 min and
then stored at room temperature until used for experiments.

Electrophysiology. Electrophysiological recordings were performed in a
recording chamber (RC-26GLP, Warner Instruments) perfused with
ACSF saturated with 95% O,-5% CO, and warmed to 31-34°C using an
in-line heater connected to a temperature controller (TC-324B, Warner
Instruments). Cells were visualized via infrared differential interference
contrast using a fixed stage microscope (BX51WI, Olympus) equipped
with an infrared camera (IR-1000, Dage-MTT). Recordings were acquired
using an amplifier (MultiClamp 700B, Molecular Devices), filtered at 3—10
kHz, and digitized at 20 kHz with a 16-bit analog-to-digital converter (Digi-
data 1440A; Molecular Devices). For voltage-clamp recordings of glutama-
tergic or GABAergic activity in the absence of mAChR-dependent postsynaptic
responses, glass pipettes (3—5 M) were filled with a cesium-based inter-
nal solution consisting of the following (in mm): 120 CsMeSO3;, 1 MgCl,,
1 CaCl,, 10 CsCl, 10 HEPES, 3 QX-314, 11 EGTA, 2 Mg-ATP, and 0.3
Na-GTP (adjusted to 295 mOsm, pH 7.3). For current-clamp recordings
and voltage-clamp recordings of cholinergic postsynaptic responses, we
used a potassium-based internal solution consisting of the following (in
mM): 133 K-gluconate, 1 KCI, 2 MgCl,, 0.16 CaCl,, 10 HEPES, 0.5 EGTA,
2 Mg-ATP, and 0.4 Na-GTP (adjusted to 290 mOsm, pH 7.3). Where
indicated, 5 mMm BAPTA was included to block increases in intracellular
calcium concentration.

Cortical activity was evoked using extracellular electrical stimuli (1-20
MA). Stimuli were generated using an isolated pulse stimulator (Model
2100, A-M Systems) and delivered via a glass electrode filled with ACSF.
For some experiments, exogenous cholinergic agonists were applied us-
ing a Picospritzer (Parker Automation).

NBQX, DHBE, AF-DX 116, picrotoxin, CGP 55845, D-APV, and MLA
were obtained from R&D Systems. All other chemicals were obtained
from Sigma-Aldrich.

Optogenetics. Cholinergic afferents were activated using 5 ms pulses of
blue light using a LED light source (UHP-T-450-EP, Prizmatix) deliv-
ered through a 60X, 0.9 NA water-immersion objective (Olympus) with
an effective illumination diameter of <250 wm. Light intensity was ad-
justed to ~60 mW at the back aperture of the objective and kept constant
throughout all experiments. During recordings, the objective was cen-
tered over the soma of the recorded neuron. For dual recordings of cells
located in distinct cortical layers, postsynaptic responses for each cell
were recorded sequentially.

Experimental design and statistical analyses. In order to minimize response
variability due to differences of ChR2 expression between animals, we first
quantified cholinergic synaptic responses onto neurons in the thalamic
reticular neurons (TRNs) for each animal (Sun et al., 2013). Neurons
were recorded in voltage-clamp and cholinergic afferents were activated
locally with individual pulses (0.5 ms) of constant intensity, as described
above. If nicotinic EPSCs had amplitudes <50 pA, ChR2 expression was
considered too low and slices were not used for experiments. A fraction
of ChAT-Cre/Ai32(ChR2-YFP) animals show ChR2 expression in gluta-
matergic neurons (Hedrick et al., 2016). For TRN recordings, such ecto-
pic expression resulted in light-evoked fast EPSCs and slices were not
further considered for experiments.

Data were analyzed using custom macros written in IGOR Pro
(WaveMetrics). Statistical tests were performed in Prism 5 (GraphPad).
Evoked recurrent activity recorded in voltage-clamp was quantified as
charge transferred to the recorded cell, by calculating the area under the
PSC trace in a time window starting 90 = 3 ms after the first electrical
pulse, and ending when evoked activity returned to baseline. For a given
cell, the same time window was used for paired and unpaired trials. To
account for changes in response magnitudes in unpaired trials over the
course of pharmacological experiments, responses recorded in paired
trials in a given drug condition were normalized to responses recorded in
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unpaired trials in the same drug condition and
time period. Decay time constants of postsyn-
aptic cholinergic currents were determined by
fitting single exponential functions to re-
sponses averaged over >10 trials. Unpaired
comparisons were performed using the two-
tailed unpaired ¢ test. Paired comparisons were
made using the Wilcoxon signed rank test or
paired Student’s t test. Differences were con-
sidered significant when p < 0.05. Data are
shown as mean = SEM.

Results

Synaptic release of ACh suppresses
evoked cortical activity

We investigated the role of cholinergic
synaptic signaling in regulating cortical
activity by using optogenetic techniques
in somatosensory (barrel) cortical slices of
ChAT-ChR2-EYFP mice expressing ChR2
in cholinergic neurons (Zhao et al,, 2011).
Where indicated, experiments were per-
formed in slices derived from ChAT-Cre/
Ai32(ChR2-YFP) mice (Hedrick et al.,
2016). Cortical activity was evoked by ap-
plying brief stimulus bursts (4 stimuli, 40
Hz) delivered through extracellular glass
electrodes placed in layer 4. To monitor ac-
tivity, we targeted layer 2/3 pyramidal cells
in the same cortical column and performed
voltage-clamp recordings using a Cs-based
internal solution (Fig. 1A). Stimulus bursts
generated postsynaptic responses consisting
of short-latency monosynaptic EPSCs with
little latency jitter, as well as long-latency
polysynaptic activity (onset: 45.7 = 6 ms,
duration: 678.9 + 50.9 ms, n = 19 cells),
which displayed considerable jitter from
trial-to-trial (Fig. 1B). Stimulus intensity
was adjusted to reliably evoke polysynap-
tic activity for the majority of trials
(90.3 = 3%, n = 19 cells) in a given re-
cording. Because polysynaptic responses
are mediated by recurrent excitatory con-
nections in local cortical networks, we will
refer to these responses as recurrent activ-
ity (quantified as EPSC charge transfer;
see Materials and Methods). To examine
fast cholinergic modulation of recurrent
activity, we paired extracellular stimula-
tion in layer 4 with single light pulses (5
ms duration), to mimic the phasic dis-
charge pattern of BF cholinergic neurons
observed in vivo (Lee et al., 2005; Hangya
etal.,2015). Light pulses were centered on
the recorded neuron and applied 15 ms
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Figure 1.  AChrelease evoked by single light pulses suppresses evoked cortical recurrent activity. 4, Schematic of experimental
setup. Cortical recurrent activity was evoked using brief bursts of extracellular stimuli applied in layer 4 and was recorded in layer
2/3 neurons in voltage-clamp. Cholinergic afferents were activated using single light pulses (5 ms), 15 ms before electrical
stimulation. B, Top, Representative recording showing multiple trials of recurrent activity, in the absence of (unpaired, black
traces) or following optical stimulation (paired, blue traces). Bottom, EPSCs averaged across all unpaired and paired trials. Note lack
of amplitude reduction of monosynaptic EPSCs (outlined). C, For the same cell shown in B, plot depicts recurrent activity (quantified
as EPSC charge transfer), in paired trials (blue) alternated with unpaired trials (black). D, Summary data showing light-evoked
suppression of recurrent activity in layer 2/3 neurons (n = 19 cells). ***p << 0.001. E, Same data as in D, normalized to unpaired
responses. F, Summary data showing average amplitude of monosynaptic EPSC evoked by the first two stimuli (n = 10 cells) for
unpaired and paired trials. G, Recurrent activity recorded as EPSCs and IPSCs (black, unpaired; blue, paired) from pairs of neigh-
boring layer 2/3 cells, held at —70and 0 mV, respectively. H, Summary data plotting normalized suppression of EPSCs and IPSCs,
for all cell pairs (n = 8). Shaded areas and error bars denote SEM.

before the onset of stimulus bursts. This led to a reliable and ~ Wilcoxon signed rank test; data not shown). In contrast, mono-
repeatable suppression of recurrent activity (29.8 + 0% com-  synaptic EPSCs evoked by the first two stimuli were unaffected by
pared with unpaired trials, n = 19 cells, p < 0.001, Wilcoxon  optical stimulation (100.9 % 2% compared with unpaired trials,
signed rank test; Fig. 1B—E). Similar findings were obtained for ~ 7 = 19, p = 0.5, two-tailed paired ¢ test; Fig. 1F). Next, we tested
ChAT-Cre/Ai32(ChR2-YFP) mice (17.7 = 0% compared with ~ whether cholinergic signaling equally reduced activity in local inhib-
unpaired trials, n = 2 cells). For neurons recorded in current- itory neuronal networks by simultaneously recording EPSCs and
clamp, optical stimulation led to a reduction of spiking activity =~ IPSCs in neighboring neurons, voltage-clamped at —70 and 0 mV,
(36.4 = 11% compared with unpaired trials, n = 6 cells, p = 0.01,  respectively (Fig. 1G,H). Across cell pairs, recurrent activity under
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paired conditions ranged from 71.1 to 1.2% compared with un-
paired trials, with suppression of excitatory and inhibitory activity
being virtually identical for a given cell pair (r* = 0.98; Fig. 1H).
Thus, cholinergic signaling did not alter the balance of synaptic
excitation and inhibition in layer 2/3 during recurrent activity. To-
gether, our data indicate that brief activation of cholinergic afferents
reliably suppresses recurrent activity in cortical networks.

Cholinergic suppression is largely mediated by mAChRs

Both nAChRs and mAChRs are expressed in different types of
neocortical neurons (Mufoz and Rudy, 2014), but how these
receptors are activated by endogenous ACh to mediate cholin-
ergic control of cortical circuits is not well understood. We found
that bath application of atropine to block mAChRs significantly
reduced cholinergic suppression (paired: 36.7 * 5% compared
with unpaired trials, atropine: 77.9 = 4% compared with un-
paired trials in atropine, n = 10, p < 0.01, Wilcoxon signed rank
test; Fig. 2A, B), indicating that ACh increases evoked by single
light pulses can recruit mAChRs. Atropine application led to a
small increase in recurrent activity in unpaired trials (118.7 * 9%
compared with control, n = 15, p = 0.03, Wilcoxon signed rank
test; Fig. 2B), suggesting that cortical activity is also controlled via
persistent activation of mAChRs. To determine whether this
reduction was due to enhanced levels of ambient ACh in our
transgenic mouse model (Kolisnyk et al., 2013), we repeated these
experiments in slices derived from wild-type animals. Bath appli-
cation of atropine still led to an increase in recurrent activity,
although this effect did not reach statistical significance (120 *
11% compared with control, n = 10, p = 0.07, Wilcoxon signed
rank test). This suggests that persistent activation of mAChRs
might not be limited to ChAT-ChR2-EYFP mice.

Compared with the effects of blocking mAChRs, wash-in of
MLA and DHE to block &7 and non-a7 nAChRs, respectively,
led to a smaller but significant reduction of cholinergic suppres-
sion (paired: 27.5 = 7% compared with unpaired trials; MLA and
DHPBE: 42.5 * 6%, n = 10, p < 0.01, Wilcoxon signed rank test;
Fig. 2C). Furthermore, MLA and DHPE application did not lead
to an increase in recurrent activity in unpaired trials (96.4 * 7%
compared with control, n = 7, p = 0.25, Wilcoxon signed rank test)
suggesting that tonic activation of nAChRs is not prominent.

In addition to evoking ACh release, optical stimuli might lead
to the liberation of GABA from BF afferents (Saunders et al.,
2015) or from neocortical ChAT-positive GABAergic neurons
(von Engelhardt et al., 2007), which express ChR2 in our trans-
genic mouse lines. However, we found that the combined ap-
plication of both mAChR and nAChR antagonists completely
eliminated suppression of recurrent activity (control: 30.4 = 7%
compared with unpaired trials; antagonists: 99.9 * 8%, n = 8,
p < 0.01, Wilcoxon signed rank test; Fig. 2C), suggesting that
light-evoked effects on recurrent activity were exclusively medi-
ated by ACh.

Transient ACh increases lead to prolonged suppression of
recurrent activity

The crucial role of mAChRs in the suppression of recurrent activity
predicts that BF-evoked suppression should be long-lasting. To ex-
amine this possibility, we progressively increased the delay between
optical activation of cholinergic afferents and extracellular stim-
ulation to evoke recurrent activity. Suppression of recurrent ac-
tivity was maximal for delays of 1 and 2 s and remained robust
even at 5 s delays, with delays of 8 s no longer yielding significant
reductions in activity (Fig. 34, B).
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Figure2. Cholinergic suppression of recurrent activity is mediated by both nAChRs and

mAChRs. A, Voltage-clamp recordings from a representative layer 2/3 cell showing that
bath application of the mAChR antagonist atropine (10 wm) largely blocks cholinergic
suppression of recurrent activity (blue, normalized EPSCs in paired control trials; red,
normalized average EPSCs in paired trials following atropine application; gray, EPSCs in
unpaired trials). B, Magnitude of recurrent activity for the same cell across unpaired
(black) and paired (blue) trials during atropine application. €, Summary data of recurrent
activity (normalized to activity in unpaired trials over the same time period) before and
after bath application of nAChR antagonists (500 nm DHBE + 5 nm MLA, n = 10 cells),
atropine (10 um Atr, n = 10 cells), or both (n = 8 cells). **p < 0.01. Shaded areas and
error bars denote SEM.

A strong reduction of recurrent activity several seconds
after the release of ACh does not appear to be compatible with
arole for nAChRs. Indeed, for experiments with delays of 5 s
between optical and electrical stimulation, bath application of
atropine or the M2/M4 mAChR antagonist AF-DX 116 com-
pletely eliminated cholinergic suppression (control: 46.1 =
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trials, for a range of temporal delays between optical and electrical stimulation (15— 8000 ms). B, Summary data quantifying light-evoked suppression of recurrent activity (normalized to responses
in unpaired trials) as a function of temporal delay between and electrical stimulation (n = 5 cells). Summary data were fit by a third order polynomial (x> = 0.013). €, Representative recording
showing that for 5 s delays between optical and electrical stimulation, suppression of recurrent activity (blue) was entirely reversed by bath application of atropine. D, Summary data showing
elimination of light-evoked suppression of recurrent activation following bath application of either atropine or 10 wum AF-DX 116 (circles: atropine, n = 7 cells; triangles: AF-DX 116, n = 4 cells), for

experiments as shown in €. **p << 0.01. Shaded areas and error bars denote SEM.

8% suppression, atropine/AF: 99.2 = 5% suppression, n = 11,
p < 0.01, Wilcoxon signed rank test; Fig. 3C,D). Thus,
nAChRs and mAChRs mediate cholinergic suppression of re-
current activity on distinct timescales, with nAChRs mediating
transient reduction and mAChRs being responsible for long-
lasting reduction of cortical activity.

Cholinergic suppression via mAChRs is prominent in layer 4

Next, we tested whether the contributions of nAChRs and mAChRs to
cholinergic suppression could be localized to distinct cortical lay-
ers. To address this question, we surgically removed layers 1-3 by
performing cuts parallel to the pial surface just above layer 4, and
performed recordings from layer 4 neurons deemed excitatory
(Fig. 4A). Extracellular stimulation applied to the same barrel still
led to recurrent activity, but with reduced magnitude (uncut
slice: 105 + 15 pC, n = 19, layer 4—6 slice: 54.9 = 8 pC, n = 15).
Furthermore, we still observed robust light-evoked suppression
of recurrent activity (38.5 = 5% compared with unpaired trials,
n =15, p < 0.001, Wilcoxon signed rank test; Fig. 4 B, C). However,
in contrast to our findings in intact slices, atropine almost com-
pletely reversed cholinergic suppression (control: 35.4 £ 7% com-
pared with unpaired trials, atropine: 92.8 *+ 4%, n = 6, p = 0.01,
Wilcoxon signed rank test; Fig. 4 B, C), whereas application of MLA
and DHpE to block nAChRs no longer reduced cholinergic supp-

ression (control: 35.1 * 6% compared with unpaired trials, MLA
and DHE: 30.2 = 5%, n = 6, p = 0.23, Wilcoxon signed rank test;
Fig. 4D, E). Furthermore, increasing the delay between optical and
extracellular stimuli to 5 s still led to atropine-sensitive suppression
of recurrent activity (control: 46.4 = 8% compared with unpaired
trials, atropine: 124.6 = 27%, n = 5, p = 0.02, Wilcoxon signed rank
test; Fig. 4 F, G). These data indicate that cholinergic inputs to layers
4-6 can mediate robust and long-lasting mAChR-mediated sup-
pression of cortical activity. Furthermore, they suggest that the
nAChR-dependent suppression of network activity primarily occurs
in more superficial layers. However, it is possible that severing den-
drites and translaminar projections eliminated the contributions of
nAChR activation in deeper cortical layers.

To further constrain the location of mAChR-mediated sup-
pression, we performed recordings from layer 5 pyramidal
neurons in slices with layers 1—4 surgically removed, and evoked
recurrent activity using electrodes placed in the white matter. The
magnitude of recurrent activity was further reduced under these
conditions (uncut slice: 105 = 15 pC, n = 19, layer 5-6 slice:
12.8 = 3 pC, n = 6). Importantly, optical stimulation no longer
reduced recurrent activity (90.9 = 8% compared with unpaired
trials, n = 6, p = 0.12, Wilcoxon signed rank test; Fig. 4H,I),
suggesting that fast synaptic ACh release in the infragranular
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layers is not involved in the control of cor-
tical activity, at least under our experi-
mental conditions.

Together, our findings show that the
contributions of nAChRs and mAChRs to
the suppression of network activity are not
uniform across cortical layers. Instead, they
indicate that nAChR-dependent suppres-
sion is primarily mediated by layers 1-3,
whereas mAChR-dependent suppression is
particularly prominent in layer 4.

Cholinergic postsynaptic responses are
cell-type and layer-specific

Our results described so far are consistent
with the activation of nAChRs expressed
in layer 2/3 GABAergic interneurons,
leading to transient suppression of corti-
cal activity. In addition, they suggest a
strong recruitment of mAChRs in layer 4,
resulting in a long-lasting depolarization
of GABAergic interneurons, a long-lasting in-
hibition of excitatory neurons, or both.
Next, we performed recordings from neu-
rons in layers 1-4 using a K *-based re-
cording solution and determined the
nature and frequency of light-evoked
postsynaptic responses in different cell
types. Neurons were classified as either
regular-spiking (RS) cells considered ex-
citatory, or as fast-spiking (FS) or non-
fast-spiking (non-FS) cells considered
inhibitory, based on their intrinsic firing
properties (Beierlein et al., 2003; Fig. 5A).
In agreement with previous findings (Ar-
royo et al., 2012), neurons in layer 1
showed nAChR-mediated EPSCs (nEPSCs;
11/12 neurons) that were fully blocked by
a combination of MLA and DHE (data
not shown). In layer 2/3, a large percent-
age of inhibitory interneurons displayed
nEPSCs that were blocked by DHBE (FS:
39%, non-FS: 77%; Fig. 5B, C), although a
minority of neurons displayed long-lasting
mAChR-dependent currents (FS: 23%,
non-FES: 5%; Fig. 5B, C). To confirm the ex-
istence of functional mAChRs in non-FS
neurons as shown previously (Chen et al.,
2015), we used a Picospritzer to apply
brief puffs of muscarine. For all neurons
examined (n = 9), which showed a light-
evoked nEPSP only, muscarine applica-
tion led to a robust depolarization, which
was blocked by atropine (Fig. 6). These
data indicate that although mAChRs are
expressed in layer 2/3 non-FS neurons,
they do not appear to be recruited by brief
activation of cholinergic afferents.

In contrast to interneurons, most RS
cells in layer 2/3 did not show light-
evoked postsynaptic responses (75%; Fig.
5B,C), with the remaining neurons
displaying small-amplitude mAChR-
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mIPSCs in RS cells were considerably slower (rise time: 328.3 =
23 ms, decay time constant: 3281.7 = 157 ms, n = 21). For
non-ES cells, mEPSCs displayed extremely slow kinetics (rise
time: 1248.3 = 125 ms, decay time constant: 23.7 * 5.4s,n = 7).
Thus, the recruitment of mAChRs via brief ACh transients can
control postsynaptic activity on dramatically different time
scales, depending on the cell type.

Our data suggest that excitatory neurons in layer 4 are much
more likely to receive cholinergic inputs compared with excit-
atory neurons in layer 2/3. Next, we compared the strength of
cholinergic postsynaptic responses in excitatory neurons located
in distinct layers. To account for postsynaptic response variability
due to differences of ChR2 expression between slices and ani-
mals, we performed dual recordings from RS neurons in layer 4
and layer 2/3 or layer 4 and layer 5 in the same cortical column.
For almost all pairs examined, mIPSC amplitudes in layer 4 were
larger compared with responses in either layer 2/3 or layer 5 (layer
2/3:21.5 = 10% compared with layer 4, n = 11 pairs, p < 0.001;
layer 5: 16.0 * 5% compared with layer 4, n = 14 pairs, p <
0.0001, two-tailed paired ¢ test; Fig. 7A, B). Finally, mIPSC am-
plitudes in layer 4 RS cells were indistinguishable between the two
transgenic mouse lines (Cre/Ai32(ChR2-YFP): 9.0 = 1.0 pA, n =
8 cells; ChAT-ChR2-EYFP: 11.0 = 1.0 pA, n = 23 cells, p = 0.38,
two-tailed unpaired f test) suggesting that VAChT overexpres-
sion does not lead to a significant enhancement of response am-
plitudes.

Next, we probed the mechanisms mediating mIPSCs in layer 4
RS neurons. Synaptic currents had onset latencies of 30.6 = 1 ms
(n = 19 cells), reversed at ~—96 mV, displayed strong inward
rectification and could be blocked by bath application of barium
(15.11 = 2% of control, n = 4 cells, p = 0.05, two-tailed paired ¢
test; Fig. 7C), indicating that the mIPSCs were mediated by

G-protein-coupled inwardly-rectifying potassium (GIRK) con-
ductances. By contrast, bath application of the small conductance
calcium-activated potassium (SK) channel antagonist apamin
had little effect on mIPSC amplitudes (93.0 = 4% of control, n =
6 cells, p = 0.09, two-tailed paired t test; Fig. 7D) and recordings
using an internal solution containing 5 mm BAPTA did not at-
tenuate mIPSCs (n = 4 cells; data not shown), suggesting that SK
channel activation is not involved in mediating mIPSCs in layer 4
neurons.

Together, our data show that the synaptic release of ACh in
layer 4 leads to the recruitment of mAChRs in all major cell types
including the large majority of RS cells, suggesting that the mono-
synaptic inhibition of excitatory neurons contributes to the pro-
longed suppression of recurrent activity.

Synaptic ACh reduces neuronal firing in layer 4 RS cells via
hyperpolarizing inhibition

Next, we determined the impact of light-evoked mAChR IPSPs
(mIPSPs) on postsynaptic action potential activity in RS cells, in
the absence of recurrent activity. For RS neurons held at =70 mV,
mIPSPs had amplitudes of 2.9 = 0 mV and decay time constants
of 5140.5 = 427 ms (n = 25). When mIPSPs were paired with
action potential firing evoked by depolarizing current steps, fir-
ing frequencies were rapidly (<100 ms) and persistently reduced
compared with unpaired trials (n = 11; Fig. 8A—C). To examine
cholinergic control under more physiological conditions, we
paired optical stimulation with action potential activity (At = 1)
evoked by extracellular stimulation of glutamatergic afferents (4
stimuli at 40 Hz). For these experiments, we added the NMDAR
antagonist APV (25 uM) to block recurrent activity and to isolate
fast monosynaptic responses (Beierlein et al., 2002). Light-evoked
mIPSPs reduced synaptically-evoked action potential activity
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Figure8.  Cholinergic synapticinputs to layer 4 reduce neuronal firing in RS cells. 4, Top, mIPSCin
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(57.9 = 5% compared with unpaired trials, n = 10 cells, p < 0.01,
Wilcoxon signed rank test; Fig. 9A-C). To test whether these
effects were mediated in part by a reduction of glutamate release,
we paired glutamatergic and cholinergic inputs but performed
voltage-clamp recordings using a Cs-based internal solution to
block postsynaptic mIPSCs. Glutamatergic EPSCs were slightly
but not significantly reduced (91.5 = 2% compared with un-
paired trails, n = 8 cells, p = 0.13, two-tailed paired ¢ test). These
data suggest that cholinergic inputs trigger a rapid and long-lasting
reduction of layer 4 RS cell activity by activating postsynaptic
mAChRs.

How does postsynaptic mAChR signaling influence the pro-
cessing of subthreshold synaptic inputs? Activation of mAChRs
and the opening of GIRK conductances will lead to a hyperpolar-
ization of membrane potential and in addition, to an increase in
membrane conductance generating a potential “shunt” (Egger-
mann and Feldmeyer, 2009). Shunting inhibition is thought to be
a critical mechanism underlying the spatiotemporal summation
of excitatory and inhibitory synaptic inputs in neocortex and
other brain areas (Koch, 1999). When probed with brief (300 ms)
hyperpolarizing current steps, mIPSPs led to a significant re-
duction in input resistance of the postsynaptic RS cell (86.2 * 3%
compared with control, n = 14 cells, p < 0.001, Wilcoxon signed
rank test). Next, we examined whether subthreshold glutamatergic
EPSPs are controlled by mAChR-mediated shunting inhibition, by ac-
tivating glutamatergic afferents (4 stimuli at 40 Hz) during light-
evoked mIPSPs (At = 1 s). Surprisingly, we found that both
glutamatergic EPSP amplitude and area of the paired postsynap-
tic response were on average nearly identical to the linear sum of
the EPSP and the mIPSP evoked separately (EPSP amplitude:
100.1 = 2% compared with linear sum, n = 16, p = 0.16, EPSP
area: 99.6 * 2%, n = 16, p = 0.34, Wilcoxon signed rank test; Fig.
9D, E). Together, our data suggest that cholinergic inputs to layer
4 excitatory cells control synaptic integration primarily via hyper-
polarizing inhibition.

Discussion

Recent in vivo and in vitro work has shown that the fast activation
of GABAergic interneurons by nAChRs can mediate cholinergic
control of cortical activity. However, the conditions leading to
the recruitment of mAChRs are far less understood. Here we have
demonstrated that the release of ACh evoked by brief afferent
activity can reliably activate postsynaptic mAChRs in the large
majority of excitatory neurons of layer 4, leading to a long-lasting
inhibition of neuronal firing. Our results highlight a critical role
of mAChRs in the rapid and flexible modulation of cortical cir-
cuit dynamics.

Mechanisms underlying cholinergic synaptic signaling

We found that activation of cholinergic afferents led to mAChR-
dependent IPSCs in excitatory neurons of layer 4. IPSCs were
blocked by the M2/M4-specific antagonist AF-DX 116, showed
strong inward rectification and were blocked by barium, consis-
tent with the involvement of M2/M4 mAChRs leading to GIRK
opening by a membrane delimited pathway, as was observed pre-
viously for cholinergic synapses targeting thalamic neurons (Sun
etal., 2013). This extends previous findings in layer 4 of rat barrel
cortex showing GIRK activation following exogenous agonist ap-
plication (Eggermann and Feldmeyer, 2009). In contrast, we did
not find evidence for an involvement of SK channels in generat-
ing mAChR-dependent inhibition, as observed using exogenous
agonists in other cortical areas and layers (Gulledge and Stuart,
2005; Gulledge et al., 2007).
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tobelocated in more distal dendritic regions
or on branches devoid of glutamatergic syn-
apses. Alternatively, cholinergic transmis-
sion might trigger multiple signaling
cascades with opposing effects, resulting
in little overall change in the PSP wave-
form. How cholinergic synaptic signals
dynamically regulate postsynaptic inte-
gration in dendritic trees will require fur-
ther investigation.

What is the signaling mode responsible
for the synaptic recruitment of mAChRs in
layer 4?2 It remains unclear how widespread
ultrastructurally defined cholinergic syn-
apses are in neocortex, with studies report-
ing either classic synapses (Turrini et al.,
2001), small varicosities (Umbriaco et al.,
1994), or a complete absence of distinct re-
lease sites. Furthermore, specific mAChR
subtypes do not appear to be preferentially
expressed near suspected sites of ACh re-
lease (Yamasaki et al., 2010), suggesting
that their activation requires sustained in-
creases in BF afferent activity that lead to
widespread increases in ambient ACh.
However, such a scenario is difficult to
reconcile with the phasic discharge pat-
tern of BF cholinergic neurons during the
o awake state (Lee et al., 2005; Hangya et al.,

2015). Our demonstration of short-latency
o (~30 ms) mAChR-mediated postsynaptic re-
o sponses in the large majority oflayer 4 neurons
suggests that mAChRs can participate in
point-to-point transmission, via either con-
ventional synapses or unique forms of non-
synaptic transmission, as has been proposed
for certain types of nAChR-mediated re-
sponses (Bennett et al., 2012).

In this study we focused exclusively on
postsynaptic mechanisms of cholinergic

Paired 5mV] @’b 060 signaling. We did not examine whether

L i ST 20 ms b N fast release of ACh leads to the recruit-

((\Q ment presynaptic nAChRs or mAChRs

¥ and it remains possible that presynaptic

. - ' o ) . modulation of glutamatergic (Gil et al,,
Figure9. Cholinergic afferents to layer 4 mediate hyperpolarizing inhibition. 4, Schematic of experimental setup. Glutamater-

gic EPSPs in layer 4 neuron were paired with single optical stimulus (5 ms), applied 1s before electrical stimulation. Recordings
were performed in the presence of APV (25 wum) to block recurrent activity. B, Glutamatergic-evoked spikes are significantly
suppressed or delayed, as shown for several trials in control (black) or with paired optical stimulation (blue). ¢, Summary data
showing cholinergic-mediated suppression of spiking suppression (n = 10 cells). **p << 0.01. D, mAChR-mIPSPs do not cause
shunting of glutamatergic EPSPs. Top, Light-evoked mIPSP was paired with a train (40 Hz) of electrically evoked glutamatergic
EPSPs (delay: 1's). Bottom, Close-up of glutamatergic EPSPs in top trace showing that paired response (blue trace) is identical to
linear sum of mIPSP and EPSPs evoked separately (red trace). E, Summary data quantifying both area under the paired EPSPs and
amplitude of the first paired EPSP, normalized to their respective unpaired controls (n = 16 cells).

Surprisingly, mAChR-dependent postsynaptic responses in
layer 4 RS cells did not generate shunting inhibition of glutama-
tergic postsynaptic responses. In addition to being strongly
distance-dependent, shunting inhibition is most effective for in-
hibitory synapses located “on-path”, i.e., between excitatory syn-
apses and the spike initiation zone in the axon (Vu and Krasne,
1992). Because our extracellular stimuli likely recruited both in-
tracortical and thalamocortical glutamatergic synapses target-
ing the entire dendritic arbor, cholinergic synapses are predicted

1997; Eggermann and Feldmeyer, 2009;
Urban-Ciecko et al., 2018) or GABAergic
(Kruglikov and Rudy, 2008) responses is
at least partly responsible for the suppres-
sion of network activity we observed.
Finally, our results also indicate the pres-
ence of functional mAChRs in layer 2/3
non-FS neurons, which were not readily
recruited by brief ACh transients (Fig. 6)
suggesting the existence of more diffuse forms of ACh signal-
ing that are involved in the recruitment of extrasynaptic
receptors.

The role of interneurons in cholinergic control of

cortical activity

Many questions remain regarding the role of interneurons in
mediating cholinergic control of cortical processing. Elegant in
vivo studies have shown that cholinergic afferents can rapidly
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engage layer 1 interneurons (Letzkus et al., 2011) as well as vaso-
active intestinal peptide (VIP)-expressing interneurons (Fu et al.,
2014) by activating postsynaptic nAChRs. As both types of neu-
rons primarily target other interneurons (Letzkus et al., 2011,
2015; Lee et al., 2013; Pfeffer et al., 2013; Pi et al., 2013), which in
turn project onto pyramidal neurons, cholinergic inputs in su-
perficial cortical layers can increase activity in cortical networks
by disinhibition (Letzkus et al., 2015). Here we find that nAChR-
mediated cholinergic signaling in fact moderately suppresses
cortical activity. This suggests that under our experimental con-
ditions, cholinergic afferent inputs recruit interneurons, which
generate feedforward inhibition of excitatory neurons, includ-
ing somatostatin-expressing (SOM) non-FS cells as proposed
previously (Chen et al., 2015) or FS cells. Further activation of
SOM cells might be generated by an increased excitatory drive
mediated by presynaptically expressed nAChRs (Urban-
Ciecko et al., 2018). The balance between BF-evoked inhibi-
tion and disinhibition is likely to be highly dependent on the
activity levels of distinct types of interneurons associated with
different cortical activity patterns (Moore et al., 2010; Kuchib-
hotla et al., 2017).

Contrary to our findings for layer 2/3 neurons, a high per-
centage of layer 4 non-FS neurons displayed mAChR-
mediated depolarizations, consistent with recent in vivo
results (Munoz et al., 2017). Therefore, mAChR-mediated ex-
citation of layer 4 non-FS interneurons might be partly re-
sponsible for cholinergic suppression. However, because
mAChR-mediated responses in these cells show extremely slow
rise times, they are unlikely to contribute to cortical suppression
at short latencies. Furthermore, the majority of non-FS cells we
recorded from in layer 4 are likely to be SOM neurons (Rudy et
al., 2011) and activation of these cells is predicted to generate
disinhibition of layer 4 cortical activity, via their preferential in-
hibition of FS cells (Xu et al., 2013). In conclusion, the rapid
suppression of cortical activity in layer 4 is at least partly mediated
by a direct mAChR-dependent inhibition of excitatory neurons.

Finally, whether cortical interneurons not only form an
important target for BF cholinergic afferents, but also act as a
source of ACh remains unclear (Granger et al., 2017). Some reports
suggest that ChAT-expressing GABAergic neurons which consti-
tute a subgroup of VIP cells can liberate ACh acting on presyn-
aptic or postsynaptic nAChRs (von Engelhardt et al., 2007;
Karnani et al., 2016). Because these neurons express ChR2 in the
mouse lines we used it is possible that their activation is at least
partly responsible for the fast cholinergic control of cortical cir-
cuits examined here.

Cholinergic control of cortical state

Information processing in cortical circuits is strongly modulated
by the internal cortical state, as defined by the degree of low-frequ-
ency synchronous activity in the local network (Harris and
Thiele, 2011). Transitions between cortical states can occur on a
range of time scales, from very slow and sustained typical for sleep—
wake transitions, to very rapid and highly transient, as observed for
sub-states within the awake state (McGinley et al., 2015b). Fast state
transitions from quiet wakefulness to a medium arousal state or to
locomotor behavior are characterized by a suppression of low-
frequency rhythmic activity, thereby enabling increased sensory
responses and improved behavioral performance. The mecha-
nisms underlying fast cortical state transitions remain poorly
understood but likely involve a number of highly coordinated
processes, including several distinct neuromodulatory systems
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(Aston-Jones and Cohen, 2005; McGinley et al., 2015b) and
changes in thalamocortical and corticothalamic activity patterns
(Zagha and McCormick, 2014). BF cholinergic afferent activity
is likely critical for mediating moment-to-moment changes in
brain state, for example during whisking (Eggermann et al., 2014)
or locomotor activity (Nelson and Mooney, 2016; Reimer et al.,
2016).

Our findings are consistent with previous in vitro studies that
have shown a reduction of spontaneous slow oscillatory cortical
activity following exogenous ACh application (Favero et al., 2012;
Wester and Contreras, 2013; Castro-Alamancos and Gulati, 2014).
In addition, we have identified a physiologically plausible mecha-
nism for the precise spatiotemporal control of cortical activity
by synaptically released ACh. In our hands, even brief ACh tran-
sients are sufficient to cause a prolonged suppression of cortical
activity, via the rapid activation of mAChRs in layer 4. As an
example, this might explain how transient BF activity at the onset
of whisking suppresses low-frequency synchronous activity typ-
ical for quiet wakefulness (Eggermann et al., 2014).

More generally, our findings suggest that layer 4 excitatory
neurons are a critical target of cholinergic control, with BF affer-
ent activity tracking increases and decreases in thalamic afferent
activity associated with different behavioral states. Such ongoing
adjustments in layer 4 gain might underlie low-noise cortical
computations during periods of heightened arousal. In addition,
long-lasting gain control in layer 4 might allow for more rapid
nAChR-mediated computations involving both inhibition and
disinhibition in local circuits in superficial layers (Letzkus et al.,
2015).
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