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Regulation of BDNF Release by ARMS/Kidins220 through
Modulation of Synaptotagmin-IV Levels
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BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mecha-
nisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion
in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF
secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntington’s disease (HD) showed increased
levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in
hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Ki-
dins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previ-
ously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and

might play a crucial role in the pathogenesis of HD.
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ignificance Statement

BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF
must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal
cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates
BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntington’s disease (HD), causing an
impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients.
Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD.
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Introduction
Brain-derived neurotrophic factor (BDNF), a member of the
neurotrophin family, is important in the development and the
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correct functioning of the nervous system. It contributes to neu-
ronal survival, neurite outgrowth, synaptic activity, learning, and
memory (Park and Poo, 2013). Patients with neurodegenerative
diseases, such as Huntington’s disease (HD) and Parkinson’s dis-
ease, have altered BDNF levels in the CNS (Lu et al., 2013). BDNF
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is stored in secretory granules and mainly secreted through a
regulated pathway in response to neuronal activity, nerve growth
factor (NGF), neurotrophin-3 (NT-3) or neurotrophin-4 (NT-4)
(Canossaetal., 1997; Kriittgen et al., 1998; Lessmann, 1998; Dieni
etal.,, 2012). Different studies have measured endogenous BDNF
release (Griesbeck et al., 1999; Canossa et al., 2001; Aicardi et al.,
2004), and others have identified proteins implicated in the reg-
ulation of BDNF secretion, such as Synaptotagmin-IV (Syt-IV)
(Deanetal., 2009), Synaptotagmin-VI (Wonget al., 2015), Ca?"-
dependent activator protein for secretion 2 (Sadakata et al.,
2004), Synaptobrevin, SNAP25, and SNAP47 (Shimojo et al.,
2015). However, BDNF secretion is not completely understood.
Considering the functional relevance of BDNF, it is essential to
elucidate how BDNF is secreted in vivo and whether other pro-
teins are implicated.

HD is a progressive neurodegenerative disorder caused by a
polymorphic trinucleotide CAG repeat expansion in exon 1 of
the Huntingtin gene. BDNF produced in the cortex and hip-
pocampus is anterogradely transported and released in the stria-
tum, which does not produce BDNF (Altar et al., 1997). In the
brain, the huntingtin protein is involved in the synthesis and
transport of BDNF from the cortex and hippocampus to the
striatum, both of which processes are altered in HD (Zuccato
et al., 2001; Gauthier et al., 2004). The huntingtin protein is
ubiquitously expressed, but its mutation has detrimental ef-
fects particularly in the striatum, where BDNF has neural
survival-promoting activity. These facts have led to the prem-
ise that reduced endogenous BDNF trophic support may con-
tribute to disease onset and/or progression (Zuccato et al,,
2001). Consistent with this, decreased BDNF has been re-
ported in the brains of patients with HD and in various HD
mouse models (Ferrer et al., 2000; Zuccato et al., 2001; Ginés
etal., 2006). Together, these data support the idea thata BDNF
defect is an important component of HD, and BDNF may be a
potentially valuable cotherapeutic agent in HD. So far, to our
knowledge, no studies have been performed addressing
whether BDNF secretion deficits are present in HD.

ARMS (also known as Kidins220) is a scaffold protein with vari-
ous functions. It was discovered as a protein kinase D substrate (Igle-
sias et al., 2000) and as an interacting protein between p75 and Trk
neurotrophin receptors (Kong et al., 2001). Subsequently, ARMS
was identified as important in neurotrophin-dependent and inde-
pendent signaling and was implicated in the modulation of neuronal
activity (for review, see Neubrand et al., 2012). Interestingly, ARMS
has also been implicated in neurotensin hormone secretion in BON
cells, a cell line derived from a human pancreatic carcinoid tumor (Li
et al,, 2008). Furthermore, we recently reported that ARMS nega-
tively regulates NGF-mediated secretion in PC12 cells (Lopez-
Benito et al.,, 2016). However, it is unknown whether ARMS
modulates BDNF secretion.

Here, we demonstrate that ARMS controls the regulated se-
cretion of BDNF in cultured DRGs and cortical neurons, as well
as in ARMS-depleted cortical slices. Therefore, BDNF accumula-
tion is observed in the striatum of mice depleted of ARMS in the
cortex and hippocampus. Furthermore, ARMS levels are in-
creased in the hippocampus of two different HD mouse models at
symptomatic stages and reducing ARMS expression rescued the
impaired regulation of BDNF secretion observed in hippocampal
slices of HD mice. Our findings demonstrate that ARMS regu-
lates BDNF secretion through a mechanism that may involve the
regulation of Syt-IV protein levels by ARMS.
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Materials and Methods

Reagents and antibodies. NGF was obtained from Alomone Labs and
BDNF, NT-3, and NT4 from PreproTech. The following antibodies were
used: mouse ARMS monoclonal (MA1-34070, Fisher Scientific), 10
ug/ml for immunofluorescence; rabbit ARMS C terminus polyclonal,
used previously (Kong et al., 2001), 0.5 ug/ml for immunoblot and 2
pg/ml for immunohistochemistry; rabbit ARMS C terminus poly-
clonal GSC16, used previously (Iglesias et al., 2000), 1:500 for immu-
noblot; mouse GAPDH monoclonal (G8795, Sigma-Aldrich), 1:10,000 for
immunoblot; mouse B-actin monoclonal (A5316, Sigma-Aldrich),
1:5000 for immunoblot; rabbit B-tubulin III polyclonal (T8328, Sigma-
Aldrich), 1:10,000 for immunoblot; rabbit Cre polyclonal (257003, Syn-
aptic Systems), 1:750 for immunoblot and 1:500 for immunohistochemistry;
rabbit Syt-IV polyclonal (sc-30095, Santa Cruz Biotechnology) 1:2000
for immunoblot; BDNF-#1 and #9 were deposited to the DSHB by Y.-A.
Barde (DSHB Hybridoma Product BDNF-1 and -9) (Kolbeck et al.,
1999), for ELISA, BDNF-1 at 1 ug/well for plate coating, and HRP-
labeled BDNF-9 at 12 ng/well.

Postmortem brain tissues. Hippocampal (4 and 7 male and female con-
trols, respectively, and 5 and 5 male and females HD patients, respec-
tively) and prefrontal cortical (5 and 7 male and female controls,
respectively, and 6 and 6 male and female HD patients, respectively)
brain tissues from patients with HD Vonsattel Grades 2 and 4 ranging
from 43 to 72 years and control cases ranging from 40 to 79 years were
supplied by the BT-CIEN and Biobanco Hospital Universitario Fun-
dacién Alcorcon. Samples were kept at —80°C and shipped frozen in dry
ice. All donors had given informed consent. One male HD sample was
excluded because no grade was assigned and one female control sample
because it rendered a value with a deviation of >2 times the SD, and her
age was 14 years older than the older HD patient. The procedures con-
ducted were approved by the Bioethics Committee of the University of
Salamanca, BT-CIEN and Biobanco Hospital Universitario Fundacién
Alcorcén.

Plasmids. pLM-CMV-R-Cre was a gift from Michel Sadelain (Addgene
plasmid #27546) (Papapetrou et al., 2011); pROSA26-1 was a gift from
Philippe Soriano (Addgene plasmid #21714) (Soriano, 1999); pLVTHM,
pMD2.G, and psPAX2 were gifts from Didier Trono (Addgene plasmids
#12247, #12259, and #12260, respectively) (Wiznerowicz and Trono,
2003); rSyt-IVpIE was a gift from Jane Sullivan (Addgene plasmid #12503)
(Ting et al, 2006); shControl (5'-GCGCGCTTTGTAGGATTCG-3'),
shARMS-1 (5'-GCCACCAAGATGAGAAATA-3'), and shARMS-2 (5'-
GCCGGAACATACGTGAACATAT-3") sequences, as described previously
(Cortés et al., 2007; Higuero et al., 2010; Yu et al,, 2011), were cloned in
pLVTHM. Flag-BDNF and Syt-IV cDNAs were cloned into pCtetOWP re-
placing the coding sequence of GFP.

Lentivirus production. The lentiviruses used in this study were gener-
ated by cotransfection using calcium phosphate in 293FT cells as previ-
ously described (Yu et al., 2011). The 293FT cells, seeded in a 10 cm
plate the day before, were transfected with 20 ug of pCtetOWP-GFP,
pCtetOWP-Flag-BDNF, pCtetOWP-Syt-1IV, pLM-CMV-R-Cre, or
pLVTHM containing the specific ShRNA sequence, together with 15 ug
of psPAX2 and 6 ug of pMD2.G plasmids. After 8 h, the medium was
replaced with a medium without antibiotics. Subsequently, after 48 h, the
supernatant containing the lentivirus was collected, centrifuged at 500 X
g for 10 min, passed through a 0.45 um filter, and stored in aliquots at
—80°C. DRGs at DIV 4 or cortical neurons at DIV 2 were infected using
50 pul of supernatant containing lentivirus per 1 X 10 cells. Organotypic
hippocampal slices were infected at DIV 1 with 100 ul/slice. The expres-
sion or reduction in levels of the corresponding protein was assessed
using Western blot.

Western blot analysis. Cells were lysed in a lysis buffer (10 mm Tris, pH
7.4, 150 mm NaCl, 2 mm EDTA, 1% NP-40, 1 mm PMSF, 1 ug/ml apro-
tinin, 2 pug/ml leupeptin, I mm sodium orthovanadate, 10 mm NaF, and
20 mm B-glycerophosphate) for 40 min at 4°C with gentle shaking, and
centrifuged at 14,000 X g for 15 min to eliminate the debris. Laemmli
buffer was added to lysates and boiled for 7 min to ensure protein dena-
turation. Proteins were resolved using SDS-PAGE, and Western blots
were performed with specific antibodies. To avoid problems with the Ig
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chains, we used ProtA- or ProtG-conjugated HRP when same species
antibodies were used for both immunoprecipitation and Western blot.
Images were taken with a MicroChemi 4.2 Chemiluminiscence System
using the Gel Capture Software.

qRT-PCR. Trizol reagent (Invitrogen) was used to isolate total RNA
from brain tissues, following the manufacturer’s reccommendations, and
treated with DNase 1. Complementary DNA (cDNA) was synthesized
with 1 ug of RNA and reverse-transcribed using the Maxima Reverse
Transcriptase (Thermo Fisher Scientific) and random primers. The
c¢DNA concentration was determined by measuring absorbance with a
Nanodrop 2000¢ (Thermo Fisher Scientific). Quantitative PCRs were
performed in triplicate using SYBR-Green Power Master Mix (Ap-
plied Biosystems). The mRNA level of bdnfwas normalized using sdha
as a reference. The oligonucleotides used to amplify bdnf (bdnf ref
NM_007540.4, with an efficiency of 96%) were 5'-gacacattaccttectgcatct-3'
and 5'-ggatggtcatcactcttctcac-3" and for sdha (sdha ref NM_023281.1 with
an efficiency of 96.33%) were 5'-acacagacctggtggagacc-3’ and 5'-ggatggg
cttggagtaatca-3'. A Quant Studio 7 Flex detection system (Applied Bio-
systems) was used with the following conditions: 10 min at 95°C followed
by 40 cycles of 15 s at 95°C and 1 min at 60°C. Following amplification,
the melting curves for the products were generated to ensure that a
product represented a homogenous species. A comparative cycle of
threshold fluorescence (C,) was used, and the relative transcription level
of the bdnf mRNA was normalized to that of sdha mRNA using the
2 A% method.

Neuronal and organotypic hippocampal slice cultures. DRGs were dis-
sected from E15.5 rat or E13.5 mouse embryos. They were incubated and
dissociated with 0.25% trypsin in L-15 medium for 45 min at 37°C as
previously described (Yu et al., 2011). Briefly, DRG neurons were plated
in 12-well plates (1.2 X 10> cells/well) using plating medium (MEM,
10% FBS, 0.4% glucose, 2 mm glutamine, 100 U/ml Pen/Strep), and NGF
(100 ng/ml) on Growth Factor Reduced Matrigel (BD Biosciences)
coated plates, overnight at 37°C with 5% CO,. The following day, the
medium was changed to NB (Neurobasal-A medium, B-27 supplement,
0.4% glucose, 2 mm glutamine), NGF (100 ng/ml), and 5-fluorodeoxyuridine
(2.44 pg/ml) and uridine (2.44 pg/ml). Neurons were infected with
shControl, shARMS-1, or shARMS-2 lentiviruses at DIV 4 and/or with
lentiviruses expressing GFP or Syt-IV at DIV 7. The corresponding ex-
periments were performed at DIV 11.

Cortices were obtained from E18.5 Sprague Dawley rat or E16.5 mouse
embryos and incubated with 0.1% 12.5 units/ml of active papain in
Earle’s Balanced Salt Solution (Sigma) for 20 min at 37°C to obtain
individual neurons. These cells were plated in Neurobasal-A medium
(Invitrogen) supplemented with NeuroBrew-21 (MACS) and 1 mm
L-glutamine on poly-D-lysine-coated plates (Sigma) at 37°C with 5%
CO,. Neurons were seeded on 6-well plates (0.8 X 10° cells/well) and
24 h later were infected with shControl, sShARMS-1, or shARMS-2. For
BDNF secretion experiments, lentiviruses expressing Flag-BDNF were
added to the cells at least 2 d before performing the secretion assay.

Organotypic hippocampal slice cultures were prepared from 20- to
30-week-old and 8-month-old R6/1 and KI HD mice (see below), respec-
tively, with the corresponding controls according to the interface method
previously described (Stoppini et al., 1991; Vinet et al., 2012), with minor
modifications. In brief, slice cultures were prepared under sterile condi-
tions. After decapitation, the hippocampi from both hemispheres
were isolated in ice-cold DPBS (Invitrogen). Using a stereo micro-
scope, isolated hippocampi were cut by hand into slices that were
subsequently placed in 0.4 pum high-density PET membrane inserts
(Falcon) (4 slices per insert). These inserts were transferred to 24-well
plates containing 0.4 ml of Neurobasal-A medium (Invitrogen) supple-
mented with NeuroBrew-21 (MACS) and 1 mm L-glutamine. Slices were
infected with 400 ul/well of supernatant containing lentiviruses express-
ing shControl or shARMS-1. The slice cultures were kept at 35°C in a
humidified atmosphere (5% CO,), and the culture medium was re-
freshed every 72 h. Secretion experiments were performed 7 d after
infection.

BDNF immunoassay. BDNF quantification was performed using an
ELISA previously described (Kolbeck et al., 1999), with minor modifica-
tions. In brief, 96-well white polystyrene plates (Nunc) were coated with
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1 pgofanti BDNF-1 antibody in 100 ul carbonate buffer, pH 9.7, per well
overnight at 25°C. Plates were blocked with 4% BSA in PBS and washed
three times with TBST. Samples and standards (1-1024 pg of recombi-
nant purified BDNF per well) supplemented with 1% BSA and 1% NP-40
were incubated for 3 h at 30°C together with BDNF-9 antibody coupled
to HRP. Plates were washed three times with TBST. SuperSignal ELISA
Femto Substrate (Invitrogen), diluted 50% in H,O, was used as the sub-
strate. With these modifications to the assay, we improved its sensitivity
to detect 1 pg of BDNF per well (Fig. 1-1A, available at https://doi.org/
10.1523/JNEUROSCI.1653-17.2018.f1-1). In addition, using a range of
standards with different amounts of recombinant BDNF (1-1024 pg/
well), we generated standard curves for each experiment performed,
which allowed us to precisely quantify the BDNF present in different
cells, tissues, and supernatants (Fig. 1-1B, available at https://doi.org/
10.1523/JNEUROSCI.1653-17.2018.f1-1). The amount of secreted
BDNF was calculated as the percentage of total BDNF detected in media
and cell lysates. There were no differences in basal secretion observed in
any of the experiments performed; therefore, basal secretion was set to
100% to express the regulated secretion as a percentage of basal secretion.

To assess BDNF secretion, DRG neurons were infected as described
previously; and at DIV 11, the culture media was changed to DMEM-F12
(Invitrogen) and 4 h later secretion experiments were performed. To
induce secretion, neurons were first incubated for 30 min with a physi-
ological saline solution (PSS: 15 mm HEPES-NaOH, pH 7.4, 145 mm
NaCl, 5.6 mm KCI, 2.2 mm CaCl,, 0.5 mm MgCl,, and 5.6 mm glucose),
and the media were collected for the basal condition. Then, neurons were
incubated with PSS + NGF (100 ng/ml), and media were collected for the
induced condition. Finally, cells were lysed in a buffer containing 10 mm
Tris, pH 7.4, 150 mm NaCl, 1% NP-40, and protease inhibitors. BDNF
levels in the basal and induced conditions of media and in cell lysates
were determined using ELISA.

To assess BDNF secretion, cortical neurons were infected at DIV 2
with shControl, shARMS-1, or shARMS-2. Because we were unable to
detect endogenous BDNF in these cultures, neurons were infected with
lentiviruses expressing BDNF from DIV 7 to DIV 11, when secretion
assays were performed. Before inducing secretion, the culture media was
changed to DMEM-F12 for 4 h. Afterward, cortical neurons were incu-
bated for 30 min with PSS, and the solution was collected for the basal
condition. These cells were then incubated with PSS + NT-3 (100 ng/
ml), PSS + NT-4 (100 ng/ml) or with high potassium depolarizing solu-
tion (15 mM HEPES-NaOH, pH 7.4, 95 mm NaCl, 56 mm KCl, 2.2 mm
CaCl,, 0.5 mm MgCl,, and 5.6 mm glucose) for 30 min, and solution was
collected for the induced condition. Then, cells were lysed as described
above for DRG neurons and BDNF levels were determined in the basal
and induced media and cell lysates using ELISA.

Cortical slices obtained from 4-month-old male shARMS and
shARMS;CamK2a-Cre mice were maintained in PBS for 30 min, and
secretion experiments were performed as described above for cortical
neurons.

To assess BDNF secretion in organotypic hippocampal slice cultures,
shControl or shARMS-1 lentiviruses were added at DIV 1. Media was
changed to DMEM-F12 at DIV 7, and 4 h later secretion experiments
were performed as described previously for cortical neurons.

Images were taken with a MicroChemi 4.2 Chemiluminiscence System
using the Gel Capture Software.

BDNF levels in the brains of mice either exposed or not exposed to physical
activity. A set of male and female mice (1- or 4-month-old) performed 4
sets of 5 min of physical activity in a Rota Rod apparatus (acceleration
from 4 to 40 rpm within 5 min) on 4 consecutive days. On the last day,
after the final Rota Rod set, mice were placed in activity wheels for 2 h.
They were then killed, their brains were obtained, and the cerebral cortex,
hippocampus, striatum, and cerebellum were dissected. The tissue was
mechanically disaggregated on ice and lysed in cold lysis buffer (as de-
scribed for the Western blot procedure) supplemented with 0.1% SDS.
Cell debris was eliminated using centrifugation. The amount of total
protein present in the samples was quantified using the Bradford method
before quantifying BDNF levels as described above.

Immunohistochemistry and immunofluorescence. Mice were anesthe-
tized and perfused with 4% PFA in 0.1 M PB. Before fixing, the circulatory
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system was washed with saline solution. Once the brains were extracted,
they were kept in the fixing solution for 2—4 h and then immersed in 30%
sucrose w/v until they sunk to the bottom of the flask. The 40 wm sections
were obtained from the freezing microtome, which remained at 0.1 M, pH
7.4, phosphate buffer. Sections to be used for immunohistochemistry
were pretreated with hydrogen peroxide and methanol to block peroxi-
dase activity. Those to be used for immunofluorescence were quenched
with 50 mm NH,CI. Then, all sections were treated with 5% normal goat
serum to block nonspecific reactions and 0.1% Triton X-100 to perme-
abilize membranes. Subsequently, the sections were incubated with rab-
bit anti-ARMS antibody (immunohistochemistry) or mouse anti-ARMS
and rabbit anti-Cre antibodies (immunofluorescence), for at least 3 d at
4°C. After washing, sections were incubated with biotin-conjugated
anti-rabbit antibody, and proteins were subsequently detected using a
diaminobenzidine solution (immunohistochemistry) or with the corre-
sponding fluorescent secondary antibody (AlexaFluor) (immunofluo-
rescence). Images were taken in selected fields using an Olympus
ProvisAX70 microscope equipped with a DP Olympus camera (immu-
nohistochemistry) and in Carl Zeiss Time Lapse Model AIXO Observer
Z1 equipped with an AIXOCAM MRmCarl Zeiss using ZEN2011 soft-
ware (immunofluorescence).

ShARMS mice. A cassette was generated to decrease ARMS protein
levels in a regulated way using the sShARMS-1 (Cortés et al., 2007) sub-
cloned in the pPVIII plasmid. This plasmid contains a cassette that in-
cludes the cDNA of enhanced GFP (eGFP) and the H1 promoter both in
the 3’ to 5" orientation and the shARMS-1. The eGFP and H1 promoter
are flanked by two pairs of LoxP and Lox2272 sites at opposite orienta-
tions (Fig. 2-1A, available at https://doi.org/10.1523/JNEUROSCI.1653-
17.2018.£2-1). A neomycin-resistance gene flanked by FRT sites was
inserted downstream from shARMS. This cassette, plus the neomycin
gene, was subcloned into the pROSA26 -1 plasmid (Soriano, 1999) using
the Xbal site, generating a targeting vector to allow insertion of the cas-
sette into the endogenous ROSA26 locus by homologous recombination.
The pROSA26-1 also contains a diphtheria toxin gene placed at the end
of the ROSA26 3' fragment for negative selection (Fig. 2-1A4, available at
https://doi.org/10.1523/]NEUROSCI.1653-17.2018.f2-1). The targeting
vector was linearized at a unique upstream SaclI site and was electropo-
rated into CJ7 embryonic stem (ES) cells, as previously described (Tes-
sarollo, 2001). G418-resistant colonies were screened for homologous
recombination using Southern blot with both external and internal
probes. The external probe was a 300 bp DNA fragment obtained by PCR
from genomic DNA, which hybridizes with the ROSA26 promoter up-
stream from the homologous recombination region. An internal probe
against the neomycin gene was used (Fig. 2-1B, available at https://
doi.org/10.1523/J]NEUROSCI.1653-17.2018.f2-1). Three targeted ES
clones were injected into C57BL/6 blastocysts to generate chimeric mice
that were bred with C57BL/6 mice expressing the Flp recombinase driven
by the actin promoter to remove the Neo cassette. All three chimeras gave
germline transmission. shARMS mouse genotyping was performed rou-
tinely using PCR with tail genomic DNA and the following three primers:
ROSA26-5"-F (5'-GAGAAGGCCGCACCCTTC-3'), H1 F/R (5'-GGG
AATCTTATAAGTTCTG-3") and ROSA26-3'-R (5'-CACACCAGGT
TAGCCTTTAAGCC-3") (Fig. 2-1B,D,F, available at https://doi.org/
10.1523/JNEUROSCI.1653-17.2018.f2-1). A 194 bp product was ampli-
fied from the WT allele, and a 271 bp product was amplified from the
targeted allele in absence of Cre recombination. Once Cre recombination
occurs, this PCR amplifies a 253 bp product (Fig. 2-1 D, H, available at
https://doi.org/10.1523/INEUROSCI.1653-17.2018.£2-1).

Mouse lines. CamK2a-cre transgenic mice in C57BL/6 background, in
which Cre recombinase expression begins postnatally (at 3—4 weeks) in
excitatory neurons (Tsien et al., 1996) were obtained from The Jackson
Laboratory. shARMS (in mixed C57BL6-129c1 background) and
CamK2a-cre male and female mice were bred to generate age-matched
shARMS;CamK2a-cre as cases and ARMS-shRNA or CamK2a-cre litter-
mates as controls. Hdh?'1/Q11 knock-in mutant mice (KI) (in C57BL/6
background) expressing mutant huntingtin with targeted insertion of
109 CAG repeats extending the glutamine segment in murine huntingtin
to 111 residues, have been described previously (Wheeler et al., 1999).
Hdh?”/?"! heterozygous male and female mice were intercrossed to
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generate age-matched Hdh?”/?'!! heterozygous and Hdh?”’/?” wild-type
littermates. Only male mice were used for these experiments. R6/1 heterozy-
gous transgenic mice (Mangiarini et al., 1996) (in C57BL/6 background)
expressing exon-1 mutant huntingtin with 115 glutamines under the HD
human promoter were obtained from The Jackson Laboratory. Their
wild-type littermates were used.

Animals were bred in a specific, pathogen-free facility with freely-
available food and water at 20°C-22°C with a 12 h light/dark cycle, and
55%-—65% humidity. All animals were housed with a maximum of 5 mice
per cage and bred in the SPF Animal Facility of the University of Sala-
manca. Proper measures were taken to reduce the pain or discomfort of
experimental animals, and procedures were conducted in accordance
with protocols approved by the Bioethics Committee of the University of
Salamanca and following the European Community guidelines.

Statistical analysis. No statistical methods were used to predetermine
sample sizes; however, sample sizes were estimated based on similar ex-
periments reported in previous publications from our laboratory. Data
collection and analysis were performed blind to the conditions of the
experiments when mice were used. Our data are presented as mean *
SEM and were analyzed using Microsoft Excel and Graph Pad Prism
software and quantified with Adobe Photoshop. Comparisons between
the means of different groups were performed using paired or unpaired
two-tailed Student’s ¢ tests because it is the most restrictive method to
assess differences.

Data availability. The data that support the findings of this study are
available from the corresponding author upon reasonable request.

Results

ARMS levels regulate BDNF secretion in cultured DRG and
cortical neurons

First, we addressed whether ARMS expression regulates BDNF
secretion in DRG neurons in response to NGF because we have
previously demonstrated that ARMS modulates NGF-mediated
secretion (Lopez-Benito et al., 2016). We depleted ARMS using
lentiviruses expressing two different shRNAs against ARMS
(shARMS-1 or shARMS-2). The reduction of ARMS expression
in infected DRG neurons was monitored using Western blot (Fig.
1A) and quantified in several independent experiments (Fig.
1-1A, available at https://doi.org/10.1523/JNEUROSCI.1653-
17.2018.f1-1). Then, BDNF secretion was quantified as described
(see Material and Methods; Fig. 1-1C,D, available at https://doi.org/
10.1523/JNEUROSCI.1653-17.2018.f1-1). Regulated BDNF se-
cretion increased significantly in ARMS-depleted DRG neurons
(Fig. 1B), with no differences in basal secretion observed in this
experiment. Therefore, ARMS levels affect NGF-regulated BDNF
release in DRG neurons. In the CNS, regulated BDNF release is
controlled by neuronal activity (Balkowiec and Katz, 2002). To
address whether regulated BDNF was regulated in DRG neurons
by neural activity, we performed experiments using TTX, a neu-
ronal activity blocker. NGF-mediated BDNF secretion was still
present in presence of TTX (Fig. 1-1E, available at https://doi.org/
10.1523/JNEUROSCI.1653-17.2018.f1-1). However, basal BDNF
secretion was impaired to ~50% upon TTX treatment (Fig. 1-1E,
available at https://doi.org/10.1523/J]NEUROSCI.1653-17.2018.
f1-1). These data suggest that BDNF secretion from DRG neu-
rons in response to NGF does not require neuronal activity,
whereas basal BDNF secretion does need it.

We then assessed BDNF release in cortical neurons with
downregulated ARMS expression upon K™ depolarization or
stimulation with NT-3 or NT-4. Reduced ARMS expression in
neurons expressing ShARMS-1 and shARMS-2 was confirmed
using Western blot (Fig. 1C) and quantified (Fig. 1-1B, available
at https://doi.org/10.1523/JNEUROSCI.1653-17.2018.f1-1). De-
pletion of ARMS significantly enhanced BDNF release in re-
sponse to all three stimuli (Fig. 1D). Together, our results suggest
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Figure 1.

ARMS regulates BDNF release in DRG and cortical neurons. A, ARMS depletion in cultured DRG neurons. Cultured DRG neurons were infected at DIV 4 with control (shControl), ARMS

shRNA-1 (shARMS-1), or ARMS shRNA-2 (shARMS-2) lentiviruses and lysates were obtained at DIV 11. Western blot analyses were performed. A representative blot is shown (n = 4). B, BDNF
secretion in response to NGF is enhanced in ARMS-depleted DRG neurons. BDNF ELISA was performed using the supernatant of DRG neurons from A that were nonstimulated (basal) and then
stimulated with NGF for 30 min at DIV 11. Cell lysates were collected to assess BDNF levels (n = 4). Paired Student's ¢ test, mean == SEM. shControl versus shARMS-1, t = 3.745, df = 3; shControl
versus shARMS-2, t = 3.638, df = 3. C, ARMS knockdown in cultured cortical neurons. Cultured cortical neurons were infected with shControl, shARMS-1, or shARMS-2 lentiviruses at DIV 2 and with
lentiviruses expressing BDNF at DIV 7. Cell lysates were obtained at DIV 10. Western blot analyses were performed. A representative blot is shown (n = 4). D, ARMS knockdown potentiates BDNF
release in response to different stimuli in cortical neurons. BDNF ELISA was performed using the supernatant of cortical neurons from Cthat were nonstimulated (basal) and then stimulated with KCI,
NT-3, or NT-4for 30 minat DIV 10 (n = 9,n = 5,and n = 4for shControl, shARMS-1, and shARMS-2, respectively). Unpaired Student’s ttest, mean = SEM.K ™ Depol: shControl versus shARMS-1,
t = 2.846, df = 12; shControl versus ShARMS-2, t = 5.923, df = 11; NT-3: shControl versus shARMS-1,t = 3.917, df = 12; shControl versus shARMS-2, t = 10.03, df = 11; NT-4: shControl versus
shARMS-1, t = 3.742, df = 12; shControl versus shARMS-2, t = 9.148, df = 11. See also Figure 1-1 (available at https://doi.org/10.1523/INEUR0SCI.1653-17.2018.f1-1).

that ARMS levels modulate regulated BDNF secretion in cultured
cortical neurons.

Generation of a new conditional ARMS mouse model

To address the role of ARMS in BDNF release in vivo, we gener-
ated a new mouse model lacking ARMS using an RNA interfer-
ence strategy (Dickins et al., 2007) (see Material and Methods). A
cassette carrying an expression-inducible st ARMS against ARMS
was generated (Fig. 2A). To avoid the side effects of random
insertion, the cassette was inserted in the ROSA26 locus using
homologous recombination in ES cells (Fig. 2-1A, available at
https://doi.org/10.1523/J]NEUROSCI.1653-17.2018.£2-1).  The
targeted ES cells were monitored using Southern blot (Fig.

2-1B,C, available at https://doi.org/10.1523/JNEUROSCI.1653-
17.2018.f2-1), and mice were generated, which we refer to here-
after as shARMS mice. They were viable, fertile, and had a normal
life span. Genotyping was performed using PCR (Fig. 2-1B, D,
available at https://doi.org/10.1523/JNEUROSCI.1653-17.2018.
f2-1). The functionality of the cassette depleting ARMS levels
was tested in cultured cortical neurons (Fig. 2-1E, available
at https://doi.org/10.1523/JNEUROSCI.1653-17.2018.f2-1) and
DRG neurons (Fig. 2-1F-I, available at https://doi.org/10.1523/
JNEUROSCI.1653-17.2018.f2-1) in the presence or absence of
Cre recombinase. Therefore, a new mouse model was generated
by inserting a cassette carrying an expression-inducible shARMS
against ARMS at the ROSA26 locus to allow a conditional, effi-
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Figure2. Generation ofa mouse modelto knock down ARMS expression. 4, Schematics of the targeted allele before and after Cre recombination. DTA, Diphtheria toxin; H1, promoter H1; PGK neo,
neomycin resistance gene; PROM, promoter R0SA26. B, Immunofluorescence showing the downregulation of ARMS protein (red) in cortical neurons from shARMS,CamK2a-Cre mice. Arrowheads
indicate Cre-positive (green) in the cortex. Arrows indicate Cre-negative neurons in the cortex. Nuclei are labeled with Hoechst (blue). Representative pictures are shown (n = 4). Scale bar, 5 m.
C, ARMS expression is downregulated in the cortex and hippocampus, but not in other brain areas, of shARMS;CamK2a-Cre mice at 4 months of age. A representative staining is shown (n = 2). See
also Figure 2-1 (available at https://doi.org/10.1523/INEUR0SCI.1653-17.2018.f2-1).

cient knockdown of ARMS protein upon Cre recombinase  al., 2009; Cesca et al., 2012). Therefore, we depleted ARMS levels
expression. in vivo exclusively in neurons from postnatal mice using a

Deletion of ARMS expression during nervous system devel-  CamK2a-Cre mouse. This ensured that ARMS would be depleted
opment has detrimental effects on neuronal maturation (Wu et  specifically in CamK2a-expressing neurons after forebrain devel-
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opment, where BDNF is highly expressed postnatally (Maison-
pierre et al., 1990; Phillips et al., 1990). An efficient reduction of
ARMS protein was observed in cortical neurons expressing Cre
recombinase from the cortex of 4-month-old shARMS;CamK2a-
Cre mice (Fig. 2B). Additional immunohistochemistry with
ARMS antibodies supported the presence of specific ARMS de-
pletion in the cortex and hippocampus, but not other brain areas,
of these mutant mice (Fig. 2C). Therefore, ARMS expression can
be regulated in vivo using Cre recombinase in shARMS mice.

ARMS regulates BDNF secretion in the cortex and BDNF
levels in the striatum

We next assessed secretion of endogenous BDNF in dissected
cortices from 4-month-old control (shARMS) and mutant
(shARMS;CamK2a-Cre) mice in response to K depolarization,
NT-3, and NT-4. Regulated BDNF release increased significantly
in mutant compared with control cortices in response to all three
stimuli (Fig. 3A, orange vs blue dots). The differences observed in
regulated secretion of BDNF were not a consequence of differen-
tial BDNF expression in the cortex of control and mutant mice
because similar total BDNF levels were observed (Fig. 3B,
CORTEX, solid dots). Therefore, ARMS negatively regulates
BDNF secretion in vivo in response to different stimuli.

Considering the increased BDNF secretion observed in
ARMS-depleted cortices, BDNF protein levels in the striatum
and other brain regions were analyzed in control and mutant
mice. We observed significantly higher levels of BDNF in the
striatum of shARMS;CamK2a-Cre mice compared with control
mice (Fig. 3B, orange vs blue, solid dots). This accumulation of
BDNEF protein in the striatum was specific, as BDNF levels in the
cortex, hippocampus, and cerebellum were similar in mutant and
control mice (Fig. 3B, orange vs blue, solid dots). Thus, ARMS
levels selectively affected BDNF levels in the striatum.

The above experiments were conducted with mice housed in
standard conditions (i.e., resting conditions). It is well known
that bdnf mRNA and BDNF protein levels increase in response to
physical activity (Neeper et al., 1996; Sleiman et al., 2016). To
assess whether BDNF levels in the cortex and hippocampus of
ARMS-depleted mice were altered in response to physical activ-
ity, control and mutant animals were investigated following
physical activity (see Material and Methods). BDNF levels were
increased in the cortex of 4-month-old mice subjected to physical
activity compared with resting conditions (Fig. 3B, empty vs solid
dots), but no differences were observed between genotypes (Fig.
3B, blue vs orange, empty dots). Interestingly, BDNF levels in the
striatum were augmented in both control and mutant mice un-
dergoing physical activity compared with resting conditions (Fig.
3B, empty vs solid dots), maintaining the significant difference
between genotypes (Fig. 3B, blue vs orange dots). In the hip-
pocampus, there were significantly higher BDNF levels in mutant
mice than in control mice subjected to exercise (Fig. 3B, orange vs
blue, empty dots). No differences in BDNF levels were observed
in the cerebellum between genotypes in resting conditions or in
response to exercise.

To figure out whether bdnf mRNA levels were affected by
physical activity in our mice, we performed additional experi-
ments. Total mRNA was obtained from brain tissues of control
and mutant mice in resting conditions or after physical exercise,
and bdnf mRNA levels were assessed by qPCR. With the exercise
protocol used (see Material and Methods), only the cortex of
mutant mice showed a significant increase in bdnf mRNA in re-
sponse to exercise, although there was also a tendency to increase
in the cortex and hippocampus of control mice (Fig. 3-1A, avail-
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able at https://doi.org/10.1523/JNEUROSCI.1653-17.2018.f3-1).
These data suggest that the accumulation observed in the stria-
tum and hippocampus of mutant mice in response to exercise
was due to an enhanced secretion. Together, the results regarding
BDNF protein and bdnf mRNA amounts indicate that ARMS
levels affect regulated secretion of BDNF in vivo in response to
exercise, leading to an accumulation of BDNF in the striatum and
hippocampus.

To further confirm that the differences in BDNF levels ob-
served were due to ARMS protein levels, we performed similar
experiments using control or mutant mice aged 4 weeks. At this
age, forebrain ARMS levels have yet not been depleted (Fig. 3-1 B,
available at https://doi.org/10.1523/JNEUROSCI.1653-17.2018.
f3-1). No differences were observed between genotypes in BDNF
levels in the striatum, cortex, hippocampus, or cerebellum (Fig.
3C, orange vs blue, solid dots). Moreover, increased BDNF in
response to physical activity was similar in both genotypes and,
interestingly, was observed exclusively in the striatum (Fig. 3C,
empty vs solid dots). Therefore, no differences in BDNF levels in
brain tissues were observed between control and mutant mice at
4 weeks of age because ARMS levels were not depleted.

Knockdown of ARMS expression in the hippocampus of HD
mice rescues impaired BDNF secretion

Taking into account that reduced BDNF levels and transport
deficits have been reported in different mouse models of HD, we
investigated whether differences exist in ARMS expression in
these mice. We chose two different HD mouse models: the
Hdh?”"! knock-in mice (KI mice) and R6/1. These differ in
disease onset and progression, with an earlier onset and faster
disease progression in the R6/1 mice than in KI mice (Kim et al.,
2011). First, because the cortex and hippocampus are the main
regions secreting BDNF, we assessed ARMS expression in these
tissues of symptomatic KI and R6/1 (8-month-old and 20- to
30-week-old, respectively) and the corresponding control mice.
ARMS levels were increased in the hippocampus of the same KI
or R6/1 compared with control mice (Fig. 4A,C), whereas no
differences were observed in ARMS expression in cortical lysates
from these HD mice (Fig. 4-1A, B, available at https://doi.org/
10.1523/JNEUROSCI.1653-17.2018.f4-1). Thus, ARMS levels
are elevated in the hippocampus of symptomatic HD mice.

To address whether enhanced ARMS expression affects BDNF
release, we infected organotypic hippocampal slices obtained
from KI or R6/1 and the corresponding control mice with shCon-
trol or shARMS-1 lentiviruses. ARMS downregulation from the
hippocampal slices infected with shARMS-1 for 7 d was con-
firmed using Western blot (Fig. 4-1C,D, available at https://
doi.org/10.1523/JNEUROSCI.1653-17.2018.f4-1). We performed
BDNF secretion assays to assess endogenous BDNF release in the
hippocampal slices. We observed a significant regulated BDNF
release in the slices from control mice infected with shControl
unlike the KT or R6/1 slices, which barely responded above basal
secretion (Fig. 4B, D; first vs second dots of each treatment).
Depletion of ARMS in the hippocampal slices from control mice
further potentiated the release of BDNF (Fig. 4 B, D, third dots of
each treatment), supporting our previous results (Fig. 3A). Inter-
estingly, ARMS knockdown in the organotypic slices from both
HD mice using sShARMS-1 partially rescued the deficient BDNF
secretion to the levels of wild-type animals in control conditions
(Fig. 4B,D; compare fourth and first dots of each treatment).
Therefore, increased hippocampal ARMS levels in HD mouse
models correlate with deficient regulated BDNF release, whereas
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Figure3.  ARMSregulates BDNF secretion in vivo, and its depletion leads to BDNF accumulation in the striatum. A, ARMS levels requlate BDNF secretion in vivo. Cortical slices from control (shARMS)
ormutant mice (shARMS;CamK2a-Cre) were obtained and incubated in PBS for 30 min (basal secretion). Then slices were stimulated with KCI, NT-3, or NT-4 for 30 min, the supernatant collected, and
the slices were lysed. BDNF ELISA was performed to assess secretion (n = 4). Unpaired Student’s ¢ test, mean = SEM. K * Depol: shControl versus shARMS-1, t = 2.764, df = 6; NT-3: shControl
versus ShARMS, t = 2.548, df = 6; NT-4: shControl versus shARMS-1, t = 2.927, df = 6. B, BDNF levels from different brain areas of 4-month-old control (shARMS or Camk2a-Cre) (blue dots) and
mutant (shARMS,CamK2a-Cre) mice (orange dots) in resting conditions (solid dots) or after physical activity (empty dots) (n = 14,n = 10,n = 15, and n = 12 for shARMS, shARMS after physical
activity, shARMS;Camk2a-Cre, and shARMS;CamK2a-Cre after physical activity, respectively). Unpaired Student’s t test, mean == SEM. shARMS or CamK2a-(re versus shARMS;Camk2a-Cre: striatum
rest conditions, t = 5.748, df = 27; striatum after physical activity, t = 7.850, df = 20; hippocampus after physical activity, t = 2.155, df = 20. C, BDNF levels from different brain areas of
4-week-old controls (shARMS or CamK2a-Cre) (blue dots) and mutant (shARMS;Camk2a-Cre) (orange dots) mice in resting conditions (solid dots) or after physical activity (empty dots) (1 = 23,n =
13, n =10, and n = 11 for shARMS, shARMS after physical activity, shARMS,;Camk2a-Cre, and shARMS,;CamK2a-Cre after physical activity, respectively). See also Figure 3-1 (available at

https://doi.org/10.1523/JNEUR0SCI.1653-17.2018.f3-1).
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t = 13.46, df = 6. See also Figure 4-1 (available at https://doi.org/10.1523/INEUR0SCI.1653-17.2018.f4-1).

reduction of ARMS expression in mutant mice partially rescues
hippocampal BDNF secretion deficits.

Increased expression of ARMS in the hippocampus and PFC
of patients with HD

To address whether there was any correlation between the altered
ARMS levels observed in the HD mice and in patients with HD,
we performed Western blot analysis in human postmortem tis-
sues (Fig. 5A). The hippocampus and PFC of patients with HD
showed a significant increase in the amount of ARMS compared
with controls independently of sex or age (Fig. 5B). Therefore,
patients with HD have augmented ARMS levels, which correlate
with those observed in HD mouse models.

ARMS regulates BDNF release altering Syt-IV levels

Syt-IV has been described as a regulator of BDNF release (Dean et
al., 2009), and it is recruited to mature dense-core vesicles being
an NGF-dependent regulator for exocytosis (Fukuda et al., 2003;

Mori et al., 2008). Considering these previous findings and that
our results indicate that ARMS modulates NGF-mediated BDNF
secretion (Fig. 1A), we wondered whether ARMS and Syt-IV
function together to regulate BDNF secretion. Coimmunopre-
cipitation assays indicated that ARMS and Syt-IV are closely as-
sociated in cultured DRG and cortical neurons, although the
interaction was independent of NGF or BDNF treatment, respec-
tively (Fig. 6A,B). To address whether ARMS and Syt-IV act
together to influence BDNF secretion, we performed release as-
says in response to NGF in DRG neurons. Overexpression of
Syt-IV using lentiviruses abolished NGF-mediated secretion of
endogenous BDNF, compared with GFP overexpression, without
affecting basal secretion (Fig. 6C), which is consistent with pre-
vious results in hippocampal neurons (Dean et al., 2009). How-
ever, depletion of ARMS levels in neurons infected with lentivirus
that overexpressed Syt-IV leads to an increase in NGF-mediated
BDNF secretion similar to that obtained by only depleting ARMS
(Fig. 6C). To our surprise, we observed that ARMS knockdown
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Figure 5.

HD patients have increased ARMS levels. 4, Representative Western blot showing ARMS protein expression. Actin and GAPDH were used as loading controls. C, Control sample; HD, HD

sample. B, Quantification of ARMS levels in the hippocampus and PFC of patients with HD (for hippocampus,n = 4,n = 7,n = 5,and n = 5 for male and female controls and male and female
patients with HD, respectively; for PFC,n = 5,n = 7,n = 6, and n = 6 for male and female controls and male and female patients with HD, respectively). Unpaired Student's ¢ test, mean == SEM.
Control versus HD patients: hippocampus, t = 2.998, df = 19; PFC, t = 4.510, df = 22.* = nonspecific band.

hindered overexpression of Syt-IV with lentivirus, and even en-
dogenous Syt-1V levels were significantly reduced when ARMS
was knocked down (Fig. 6D). Together, these results suggest that
ARMS protein controls regulated BDNF secretion through
modulation of Syt-IV levels. Next, we assessed whether Syt-1V
depletion modulates NGF-mediated BDNF secretion in DRGs
using lentiviruses to deplete Syt-IV protein. We observed
that Syt-IV reduction enhanced BDNF release in response to
NGF above control conditions (Fig. 6E). Finally, we assessed
whether ARMS levels were modified in response to Syt-IV
knockdown. ARMS amount was unchanged after Syt-1V de-
pletion (Fig. 6F). Therefore, Syt-IV regulates BDNF secretion
in DRG neurons in response to NGF but does not alter ARMS
protein levels.

Discussion

Low endogenous BDNF levels make the study of its secretion in
vivo difficult. As such, researchers have resorted to using exoge-
nously expressed tagged-BDNF and cultured neurons. Therefore,
there has been a lack of direct in vivo evidence of endogenous
BDNF secretion. Here, we report that endogenous BDNF secre-
tion can be precisely monitored using a finely tuned BDNF im-
munoassay that has been previously described (Kolbeck et al.,
1999). Using several different methods and various mouse mod-
els, we have shown that the ARMS protein negatively affects reg-
ulated secretion of BDNF under physiological and pathological
conditions and that ARMS levels are altered in HD mouse models
and patients with HD as follows: (1) using lentiviruses expressing
two independent shRNAs against ARMS in cultured DRG or
cortical neurons to show that depletion of ARMS expression en-
hanced BDNF release in response to different stimuli; (2) in
ARMS-depleted cortical slices from a newly generated transgenic
mouse, we observed increased endogenous BDNF secretion; (3)
in ARMS-depleted mice, BDNF accumulates in the striatal re-
gion; (4) in the hippocampus of two mouse models of HD, ARMS
levels were increased and BDNF secretion was impaired; (5) re-
duced ARMS levels in the hippocampus of HD mice partially
rescued BDNF release in mutant mice; (6) ARMS protein levels
are significantly increased in the hippocampus and PFC from
human HD postmortem samples; and (7) knocking down ARMS

levels leads to a reduction in Syt-IV protein boosting BDNEF-
regulated secretion.

ARMS is abundant in the developing nervous system. ARMS
levels are downregulated during development and by neuronal
activity (Cortés et al., 2007), whereas BDNF expression peaks
postnatally (Maisonpierre et al., 1990; Phillips et al., 1990) when
neuronal differentiation and synaptogenesis are maximal. We
have previously described that ARMS expression negatively reg-
ulates plasma membrane insertion of the GluA1l AMPAR sub-
unit, suggesting that ARMS levels may be important to keep
basal synaptic transmission in check during synaptogenesis
(Arévalo et al., 2010). Our current data showing that ARMS
expression affects regulated BDNF release, together with the
fact that ARMS levels are controlled by neuronal activity, sug-
gest that ARMS might also influence synaptic transmission
that directly depends on BDNF. Further experiments will be
required to address this.

In this study, we have observed that NGF-mediated secretion
of BDNF from DRGs was not blocked by TTX, but basal BDNF
secretion was reduced (Fig. 1-1E, available at https://doi.org/
10.1523/JNEUROSCI.1653-17.2018.f1-1). Previously, it has been
reported that BDNF release in response to different patterns of
electrical field stimulations in cultured hippocampal neurons was
affected by TTX (Balkowiec and Katz, 2002). A plausible expla-
nation is that on DRGs NGF binding to TrkA activates PLCv,
leading to intracellular release of Ca*", which triggers BDNF
secretion. On the other way, the reduced basal BDNF secretion
observed by TTX treatment may respond to the inhibition of
TTX-regulated channels and, therefore, network activity on
DRGs. Previous studies suggest that TTX chronic treatment re-
duces the release of a diffusible factor in DRGs (Beaudu-Lange et
al., 2000), the secretion of gonadotropin-releasing hormone in
cultured neurosecretory neurons (Mellon et al., 1990) and the
release of glucagon-like peptide 1 in primary colonic cultures
(Rogers et al., 2011) in basal conditions. Therefore, basal and
regulated BDNF secretion might be achieved by different
mechanisms.

We have previously demonstrated that ARMS negatively reg-
ulates NGF-mediated secretion in PC12 cells. The fact that Syt-1V
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was reported as a negative regulator of BDNF release (Dean et al.,
2009), with similar action to ARMS (Lépez-Benito et al., 2016),
prompted us to study whether there was a relationship between
ARMS and Syt-IV. First, we observed an interaction between
ARMS and Syt-1V, suggesting that they may function together.
The demonstration of both proteins working together came from
the results in which ARMS knockdown rescued the secretion
deficits observed upon Syt-IV overexpression. These results sug-
gested that ARMS may control Syt-IV function; and indeed, we
found that ARMS modulates Synaptogmin-IV levels. This result
was unexpected because, to our knowledge, no effects have been
reported of ARMS on the expression of any other protein. There-
fore, further experiments will be required to understand how
ARMS regulates Syt-IV levels.

Altered BDNF levels in neurons derived from mouse models
have been directly linked to HD pathogenesis. The classical view
of the HD suggests an important role for an impairment in the
corticostriatal pathway (Zuccato and Cattaneo, 2014), but it has
also been reported that hippocampal dysfunction is responsible
for the cognitive decline observed in mouse models and human
patients (Giralt et al., 2012). Interestingly, we observed increased
ARMS expression in the hippocampus of symptomatic HD
mouse models, which correlated with deficient BDNF release.
Remarkably, ARMS levels are increased in the hippocampus and
PEC of patients with HD. In addition, knockdown of the ARMS
protein in the HD mice reverted the BDNF secretion to the levels
of wild-type animals. It has been reported that HD mice show
deficits in synaptic activity in the hippocampus, which is be-
lieved to underlie cognitive impairment in the disease (Brito et
al., 2013; Plotkin et al., 2014). Interestingly, the synaptic def-
icits in the hippocampus of HD mice can be rescued by BDNF
addition (Lynch et al., 2007; Brito et al., 2013). Furthermore,
BDNEF is required for the induction of LTP (Figurov et al,
1996; Korte et al., 1996; Patterson et al., 1996). Last, a previous
report indicated that ARMS heterozygous mice have enhanced
hippocampal LTP (Wu et al., 2010). These reports, together
with our current results, suggest that LTP deficits reported in
HD mice could be a consequence of impaired BDNF secretion
and altered ARMS protein levels, supporting a pathological
role of ARMS in HD.

Recently, several studies have revealed abnormal levels of
ARMS in various diseases, including Alzheimer’s disease, Parkin-
son’s disease, and autism spectrum disorder (Scholz-Starke and
Cesca, 2016). Different ARMS polymorphisms have also been
observed in patients with schizophrenia (Kranz et al., 2015) and
psychosis (Kranz et al., 2016). Furthermore, splice variants of
ARMS have been reported in patients with spastic paraplegia,
intellectual deficit, nystagmus, and obesity (Josifova et al., 2016).
Interestingly, all these pathologies have been directly, or indi-
rectly, related to BDNF changes (Adachi et al., 2014). Further
research is required to elucidate the potential relationship be-
tween BDNF and ARMS in these human diseases.
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