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SUMMARY

The impact of neurotoxic chemical mixtures on children’s health is a critical public health concern. It is well
known that during early life, toxic exposures may impact cognitive function during critical time intervals of
increased vulnerability, known as windows of susceptibility. Knowledge on time windows of susceptibility
can help inform treatment and prevention strategies, as chemical mixtures may affect a developmental pro-
cess that is operating at a specific life phase. There are several statistical challenges in estimating the health
effects of time-varying exposures to multi-pollutant mixtures, such as: multi-collinearity among the expo-
sures both within time points and across time points, and complex exposure–response relationships. To
address these concerns, we develop a flexible statistical method, called lagged kernel machine regression
(LKMR). LKMR identifies critical exposure windows of chemical mixtures, and accounts for complex
non-linear and non-additive effects of the mixture at any given exposure window. Specifically, LKMR esti-
mates how the effects of a mixture of exposures change with the exposure time window using a Bayesian
formulation of a grouped, fused lasso penalty within a kernel machine regression (KMR) framework.
A simulation study demonstrates the performance of LKMR under realistic exposure-response scenarios,
and demonstrates large gains over approaches that consider each time window separately, particularly
when serial correlation among the time-varying exposures is high. Furthermore, LKMR demonstrates
gains over another approach that inputs all time-specific chemical concentrations together into a sin-
gle KMR. We apply LKMR to estimate associations between neurodevelopment and metal mixtures
in Early Life Exposures in Mexico and Neurotoxicology, a prospective cohort study of child health in
Mexico City.

Keywords: Bayesian analysis; Environmental epidemiology; Hierarchical models; Statistical methods in
epidemiology.

1. INTRODUCTION

A critical public health concern is the impact of neurotoxic chemicals on children’s cognitive development.
There is a large body of literature on the impact of exposure to individual chemicals, such as lead, on
neurodevelopment (Bellinger, 2008; Hu and others, 2006; Sanchez and others, 2011). However, exposure
to chemical mixtures, rather than to individual chemicals, are more reflective of real-world scenarios.
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Accordingly, the National Institute of Environmental Health Sciences (NIEHS) has placed a priority on
quantification of the health impacts of exposure to environmental mixtures (Carlin and others, 2013).

Methods to address the analysis of environmental mixtures are needed if we are to understand the role
that chemicals play in child development. However, the analysis of combinations and doses of chemicals
that are toxic to children requires methods that can address the role of biological development, in which
rapid changes in gene expression, tissue growth, and cell differentiation alter the susceptibility of a child’s
body to toxic chemicals.

Estimation of the health effects of metal mixtures on neurodevelopment can be complex. In particular,
the shape of the exposure–response relationship may exhibit both non-linearity and non-additivity. The
effect of some metals, such as trace elements like manganese, can be non-linear as they are essential
nutrients at low doses but neurotoxic at high exposure levels. These dual roles can result in an inverted-u
relationship with neurodevelopment (Claus Henn and others, 2010). Moreover, existing work on metal
mixtures provides evidence of interactions between individual metals. For instance, summarizing the
expanding body of literature, Claus Henn and others (2014) reported increased lead toxicity in the presence
of higher levels of manganese, arsenic, mercury, and cadmium. In theory, interaction may occur at specific
dose ranges and may not occur at other doses, making the need for statistical methods that can capture all
these properties critical.

Another layer of complexity in the identification of environmental effects on children’s health is that
health effects can be highly dependent on exposure timing. There exist many sequential developmental
processes in early life, as development is unidirectional and specifically-timed, occurring as a complex set
of coordinated, sequential cellular events (Nowakowski and Hayes, 1999). For instance, pregnancy is a state
of sequential physiologic changes, such that an infant may be particularly susceptible to exposure during
a certain developmental stage, which we call a “critical exposure window” or “window of susceptibility”.
Knowledge about time windows of susceptibility could provide insight into the biologic mechanism
underlying the health effect, and therefore inform prevention and treatment strategies. Metal mixture
exposures may be especially harmful during prenatal and early life periods. Several metals cross the
placental barrier, potentially causing injury to the fetal brain (Needham and others, 2011; Yoon and
others, 2009). A previous study reported that the interaction of lead and cadmium may depend on the
stage of pregnancy (Kim and others, 2013). In such cases, measuring exposure either in the wrong critical
window or averaging exposure over the entire pregnancy when only a specific window is most relevant is
a form of exposure misclassification.

There is a paucity of statistical methods to simultaneously accommodate the complex exposure-
response relationship between metal mixtures and neurodevelopment while analysing data on critical
windows of these exposures. Traditionally, these two research questions—(1) assessing health effects of
complex mixtures and (2) identifying time windows of susceptibility—have been studied separately. Meth-
ods to address complex exposure–response relationships include principal components analysis, sparse
partial least squares, classification and regression trees, random forest, cluster analysis, non-parametric
Bayesian shrinkage, Bayesian mixture modeling, and weighted quantile sum regression (Chun and Keles,
2010; Billionnet and others, 2012; Herring, 2010; de Vocht and others, 2012; Diez and others, 2012;
Roberts and Martin, 2006; Gennings and others, 2013). Bobb and others (2015) developed Bayesian
kernel machine regression (BKMR) for estimating health effects of complex mixtures and conducting
variable selection for exposures measured at a single time point. Meanwhile, methods for identifying
time windows of susceptibility have focused on the effects of a single pollutant, such as lead (Hu and
others, 2006; Sanchez and others, 2011). The models mainly use single pollutant distributed lag models
to study the effect of a single toxicant assuming no interaction between time windows (Hsu and others,
2015; Warren and others, 2012, 2013; Darrow and others, 2011). One exception is the work of Heaton
and Peng (2013), who developed a higher degree distributed lag model to account for interaction among
the same exposure measured at multiple time points. However, this model still only considers exposure
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to a single pollutant. Another exception is the work of Bello and others (2017), who developed lagged
weighted quantile sum regression and tree-based distributed lag modeling for time-varying chemical mix-
tures. However, these methods cannot characterize the complex exposure response surface; instead, they
only quantify the magnitude, not directionality, of the mixture effect, and cannot identify which mixture
components are contributing positively or negatively to the mixture. To our knowledge, there are limited
methods to identify critical exposure windows of multi-pollutant mixtures.

To address this gap in the statistical literature, we develop methodology to investigate how exposures
to environmental mixtures during early childhood affect long-term cognitive function, and to identify
specific critical windows of exposure. We introduce a new method, called lagged kernel machine regression
(LKMR), to estimate the health effects of time-varying exposures to environmental mixtures, and identify
critical exposure windows of a mixture. We adopt a Bayesian paradigm for inference of LKMR. We use
the kernel machine regression (KMR) framework, which is popular in the statistical genetics literature
where it is used primarily to test the significance of gene sets and predict risk for health outcomes (Cai
and others, 2011; Maity and Lin, 2011). BKMR has also been shown to effectively estimate complex
exposure–response functions associated with metal mixtures (Bobb and others, 2015). We develop LKMR
to handle time-varying mixture exposures. By incorporating methods from the single time point BKMR
and the single exposure distributed lag model, LKMR estimates non-linear and non-additive effects of
exposure mixtures while assuming these effects vary smoothly over time. To accomplish these goals,
we develop a novel Bayesian penalization scheme that combines the group and fused lasso (Yuan and
Lin, 2006; Tibshirani and Saunders, 2005). The group lasso regularizes the exposure-response function at
each time point, whereas the fused lasso shrinks the exposure-response functions from timepoints close
in time towards one another. Notably, we show this can be achieved by embedding the kernel matrix
into the penalty term for the grouped lasso component. We implement the method using Bayesian lasso
methods (Yuan and Lin, 2006; Kyung and others, 2010). Although Bayesian grouped lasso and fused lasso
have been used individually, our new method combines these penalization schemes together with kernel
machine methods, resulting in a novel model formulation.

LKMR can be readily used to analyse a variety of exposure–response relationships. For the purposes of
this article, we focus on time-varying exposures to heavy metal mixtures and their effects on neurodevel-
opmental outcomes. We apply this model to data from the ongoing Early Life Exposures in Mexico and
Neurotoxicology (ELEMENT) study. ELEMENT is a prospective birth cohort study followed in Mexico
City with extensive neurophenotyping and covariate data collected longitudinally. In particular, a novel
tooth biomarker (Arora and others, 2014; Arora and Austin, 2014) was developed for application in this
cohort. Tooth dentine captures exposure to multiple metals including barium (Ba), chromium (Cr), lithium
(Li), manganese (Mn), and zinc (Zn) from the second trimester of pregnancy to early childhood. To our
knowledge, this is the only method in which exposure data can be captured repeatedly and longitudinally
over such a long time span. In our data application, we estimate the neurodevelopmental effects of joint
exposures to five metals (barium, chromium, lithium, manganese, and zinc) at three exposure windows of
early development (second and third trimesters of pregnancy and months 0-3 after birth).

2. METHODS

2.1. Kernel machine regression

We first review KMR as a framework for estimating the effect of a complex mixture when exposure
is measured only at a single time point. We describe the model for a continuous, normally distributed
outcome. For each subject i = 1, . . . , n, KMR relates the health outcome (yi) to M components of the
exposure mixture zi = (z1i, ..., zMi)

T through a flexible function, h(·), while controlling for C relevant
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covariates xi = (x1i, ..., xCi)
T . The model is

yi = h(z1i, ..., zMi) + xT
i β + εi, (2.1)

where β represents the effects of the potential confounders, and εi
iid∼ N

(
0, σ 2

)
. h (·) can be estimated

parametrically or non-parametrically. We employ a kernel representation for h (·) in order to accommodate
the possibly complex exposure–response relationship.

The unknown function h (·) can be specified through basic functions or through a positive definite
kernel function K (·, ·). Under regularity conditions, Mercer’s theorem (Cristianini and Shawe-Taylor,
2000) showed that the kernel function K (·, ·) implicitly specifies a unique function space, HK , that is
spanned by a set of orthogonal basis functions. Thus, any function h (·) ∈ HK can be represented through
either a set of basis functions under the primal representation, or through a kernel function under the dual
representation. The kernel function uses a similarity metric K(·, ·) to quantify the distance between the
exposure profiles zi and zj for subjects i and j in the study. For example, the Gaussian kernel quantifies
similarity through the Euclidean distance; the polynomial kernel, through the inner product. By specifying
different kernels, one is able to control the complexity and form of the exposure-response function.

Liu and others (2007) developed least-squares kernel machine semi-parametric regression for studying
genetic pathway effects. They make the connection between kernel machine methods and linear mixed
models, demonstrating that (2.1) can be expressed as the mixed model

yi ∼ N (hi + xT
i β, σ 2) (2.2)

h = (h1, ..., hn)
T ∼ GP [0, τK(·, ·)], (2.3)

where K is a kernel matrix with i,j-th element K(zi, zj), and GP stands for Gaussian process.

2.2. Lagged kernel machine regression

Now assume exposures to a complex mixture are measured at multiple time points, t = 1, .., T , with the
goal of identifying critical windows of exposure, such that we have data on the multi-pollutant exposures
zi,t = (

z1i,t , ..., zMi,t

)T
. We define LKMR as

yi = β0 +
∑

t

ht(z1i,t , ..., zMi,t) + xT
i β + εi. (2.4)

Model (2.4) represents a multiple kernel learning model. The function ht(zi,t) represents the time-specific
effects of exposure mixtures, while controlling for exposure at the other time windows. We use the mixed
model representation proposed by Liu and others (2007), yielding

yi = β0 +
∑

t

hi,t + xT
i β + εi, (2.5)

where ht = (h1,t , ..., hn,t)
T represents the (potentially complex) exposure-response random effects

for the exposures z1,t , ..., zn,t measured at time t, controlling for exposures at all other time points.
It is typically the case in environmental data that exposures are highly correlated across mul-
tiple time points. Thus, naively estimating the time-specific exposure-response function without
addressing this correlation can lead to unstable estimates of the ht(zi,t), t = 1, . . . , T . Accord-
ingly, in LKMR, we impose penalization through a novel combination of Bayesian group lasso
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(Yuan and Lin, 2006) and Bayesian fused lasso (Tibshirani and Saunders, 2005). The group lasso com-
ponent regularizes each ht individually, as exposures at individual time windows can share similarities,
and also provides a framework for incorporating the kernel matrix. The fused lasso component shrinks
differences in elements of ht across neighboring time windows, and smooths adjacent ht estimates towards
one another. To account for the possibility of complex non-linear and non-additive exposure–response
functions at each time t, we use a novel parameterization by incorporating kernel distance functions within
the group lasso implementation.

Specifically, let h = (
hT

1 , . . . , hT
T

)T
. The conditional prior of h|σ 2, which reflects the Bayesian grouped,

fused lasso penalization, is

π(h|σ 2, λ1, λ2) ∝ exp

[
−λ1

σ

T∑
t=1

‖ht‖Gt − λ2

σ

T−1∑
t=1

|ht+1 − ht|1
]

, (2.6)

where ‖ht‖Gt = (ht
T Gtht)

1/2, and corresponds to the group lasso component. We define Gt = K−1
t , where

Kt denotes the kernel matrix for time t with i,j element Kt(zi,t , zj,t). Depending on a particular application,
one can choose one of many different kernel functions. Meanwhile, |ht+1 − ht|1 corresponds to the fused
lasso component, where | · |1 is the L1 norm of a vector.

An advantage of the model is that we can formally specify it in a hierarchical fashion, which allows
for a Gibbs sampler implementation. We introduce the latent parameters τ = (τ 2

1 , ..., τ 2
T ) corresponding

to group lasso and ω = (ω2
1, ..., ω2

T−1) corresponding to fused lasso which parameterize 	h, and specify
the LKMR model using the following hierarchical model formulation:

y|h, X, β, σ 2 ∼ Nn

(
Xβ +

∑
t

ht , σ 2I n

)
(2.7)

h|τ 2
1 , ..., τ 2

T , ω2
1, ..., ω2

T−1, σ 2 ∼ NnT

(
0, σ 2	h

)
(2.8)

τ 2
1 , ..., τ 2

T

iid∼ gamma

(
n + 1

2
,
∑

t

λ1
2

2

)
(2.9)

ω2
1, ..., ω2

T−1

iid∼ gamma
(

1,
λ2

2

2

)
, (2.10)

where τ 2
1 , ..., τ 2

T , ω2
1, ..., ω2

T−1, σ 2 are mutually independent. The form of 	−1
h follows from representing

the Laplace (double exponential) conditional prior of h|σ 2 as a scale mixture of a normal distribution
with an exponential mixing density (Andrews and Mallows, 1974). Section A of supplementary material
available at Biostatistics online provides the full form of the variance covariance matrix 	−1

h , which is
parameterized by τ 2 = (

τ 2
1 , . . . , τ 2

T

)
, ω2 = (

ω2
1, . . . , ω2

T−1

)
, and the parameters in Kt . The diagonal blocks

of size n x n arise due to the kernel structure placed on each ht , whereas the off-diagonals involving the ω2
t

parameters serve to shrink random effects adjacent in time towards one another. Additional details on the
prior specification, MCMC sampler and full conditional distributions for LKMR can be found in Section
B of supplementary material available at Biostatistics online.

2.3. Predicting health effects at new time-varying exposure profiles

An advantage of LKMR is the ability to estimate and visualize the exposure-response surface for exposures
measured at a given time, adjusted for exposures measured at other timepoints. Suppose we are interested
in predicting the exposure–response function for q new metal mixture exposures at time t. The model is
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fit to data from n subjects with exposure values measured at times t = 1, ..., T . To interpret the model
fit, interest focuses on predicting the exposure response surface ht(·) at these q new mixture values,
znew

1,t , . . . , znew
q,t , where znew

i,t = (znew
1i,t , ..., znew

Mi,t)
T . Thus, we predict new random effects hnew

t = (hnew
1,t , ..., hnew

q,t )T

corresponding to subjects with exposures znew
1,t , . . . , znew

q,t at time t given the observed data.

For the convenience of a simple structure for the covariance matrix, we define h̃ as a reordered
h vector, such that the time point of interest, t, is at the end of the vector. Thus, h̃ =(
hT

1 , ..., hT
t−1, hT

t+1, ..., hT
T , hT

t , (hnew
t )T

)T
. We reorder the corresponding covariance matrix and denote this

reordered matrix as σ 2	̃h. The joint distribution of observed and new exposure profiles is:

(
h

hnew

)
∼ N

[
0, σ 2	̃h = σ 2

(
A B

BT C

)−1

= σ 2

(
	̃11 	̃12

	̃T
12 	̃22

)]
, (2.11)

where A represents the appropriately reordered inverse covariance matrix 	̃−1
h , C denotes the q x q matrix

with (i, j)th element constructed using the inverse of the kernel function K(znew
i,t , znew

j,t ) evaluated at the new
mixture values at the time point of interest, and B is a nT × q matrix with (i, j)th element involving the
observed mixture zi,t and a new mixture znew

j,t at the same time point of interest. Here, B is constructed

using the inverse of the kernel function K(zi,t , znew
j,t ) and is zero otherwise. Thus, 	̃11 is a nT x nT matrix,

	̃22 is a q x q matrix, and 	̃12 is a nT × q matrix.
It follows that the conditional posterior distribution of hnew is:

hnew|β, τ 2, ω2, σ 2 ∼ Nq

[
	̃T

12	̃
−1
11

{
WTW + 	̃−1

11

}−1
WT (Y − Xβ), (2.12)

˜σ 2	
T

12	̃
−1
11

{
WTW + 	̃−1

11

}−1
	̃−1

11 	̃12 + σ 2	̃22 − σ 2	̃T
12	̃

−1
11 	̃12

]
.

In order to reduce computation time, we approximate the posterior mean and variance of hnew based on
the estimated posterior mean of the other parameters, specifically β, τ 2, ω2, σ 2, λ2

1 and λ2
2.

3. SIMULATION STUDY

We conducted a simulation study to evaluate the performance of the proposed LKMR model for estimating
the exposure–response function at critical exposure windows of environmental mixtures. We compared
the results from LKMR to those from multiple BKMR models applied using exposure data from each
window separately, as well as to those from a joint kernel BKMR (JKBKMR) which includes all chemical
concentrations from all timepoints in a single kernel function.

LKMR simultaneously accounts for all time-varying exposures within a single model and allows for
non-linearity and interaction between components of individual time windows, and provides estimated
time-specific effects. Meanwhile, BKMR is designed for cross-sectional studies, and thus a separate
BKMR model needs to be run for each time window in order to obtain time-specific effects. While BKMR
does consider exposure to a multi-pollutant mixtures and allows for non-linearity and interaction, it only
uses exposures at a single time point for each model.

Lastly, JKBKMR is equivalent to applying BKMR while including all time-varying exposures within
a single kernel. JKBKMR allows for non-linearity and interaction among all time-specific exposures,
including both within-time and between-time interactions. We note that when applying JKBKMR, the
model does not readily provide estimated time-specific effects of a mixture. This is because BKMR
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was designed for cross-sectional studies; therefore, JKBKMR provides a single ĥ for each individ-
ual, regardless of the number of time windows studied. In order to gain information on time-specific
effects in JKBKMR, we use the prediction method proposed in BKMR to estimate a time-specific
health effect for each individual. Specifically, we first run JKBKMR; then, at each time window of
interest, we hold the metal exposures at all other time windows at their median, and use the observed
metal exposures of the time point of interest to predict the time-specific ĥ. The true time-specific h
remains the same for LKMR, BKMR and JKBKMR, allowing us to make comparisons between the three
methods.

Our simulation study considered a five-toxicant scenario: two toxicants (out of five) exert a gradual
non-additive, non-linear effect over four time windows that are representative of pregnancy and early life.
We used the following model: yi = xT

i β +∑
t ht

(
zi,t

) + ei, where zi,t = (
z1i,t , z2i,t , z3i,t

)T
, ei ∼ N (0, 1),

xi = (x1i, x2i)
T and x1i ∼ N (10, 1) and x2i ∼ Bernoulli(0.5). We simulated auto-correlation within

toxicant exposures zm = (zT
m,1, zT

m,2, zT
m,3, zT

m,4)
T for toxicant m = 1, 2, 3, 4, 5 across time, and correlation

among toxicants, using the Kronecker product for the exposure correlation matrix. Four choices for auto-
correlation (AR-1) within toxicants were considered: high (0.8), medium (0.5), low (0.2) and none (0).
The shape of the exposure-response function ht(zi,t), which was assumed to be the same at each time point,
was simulated as quadratic with two-way interactions. We assumed there is no effect of exposure to the
mixture at time t = 1, and a gradual increase in the effect over time, by defining ht(z) = αth(z), where
α = (α1, α2, α3, α4) = (0, 0.5, 0.8, 1.0) and h(z) = z2

1 − z2
2 + 0.5z1z2 + z1 + z2.

Table 1 presents the results of this simulation study. For LKMR, BKMR, and JKBKMR, we used the
quadratic kernel function, such that K(z, z’) = (zT z’ + 1)2. For each simulated data set, to assess the
performance of the model for the purposes of estimating the time-specific exposure-response function, we
regressed the predicted ĥ on h for each time point. We present the intercept, slope and R2 of the regressions
over 100 simulations, each with a dataset of 100 subjects. Good estimation performance occurs when the
intercept is close to zero, and the slope and R2 are both close to one. We also present the root mean squared
error (RMSE) and the coverage (the proportion of times the true hi,t is contained in the posterior credible
interval).

The results in Table 1 suggest that the LKMR significantly outperforms BKMR when there is high
auto-correlation for individual mixture components across time. Specifically, as compared to BKMR,
LKMR provides reductions in RMSE on the order of 70–80% when the auto-correlation in a given
exposure is 0.8, and by 16–41% when the auto-correlation is 0. Credible interval coverage for LKMR
is consistently at or above 95%, as compared to credible interval coverage for BKMR which is 60–74%
for high (0.8) exposure auto-correlation and 82–93% for medium (0.5) auto-correlation. Furthermore, as
demonstrated by a slope of ĥ on h greater than one, BKMR estimates of ĥ at a given time point tend
to be biased when the exposure auto-correlation is high, whereas estimates from the LKMR model are
approximately unbiased under all auto-correlation scenarios. Collectively, these results demonstrate that
naive application of BKMR in this setting suffers from the fact that it estimates the association between
exposure at a given time but does not control for exposure at other time points. When auto-correlation in
exposure among multiple exposure times is high, this lack of adjustment leads to biased estimates of an
exposure effect at the time of interest, whereas when the exposures are approximately uncorrelated, there is
less potential for confounding by exposure at different times. In contrast, because LKMR uses penalization
to borrow information from neighboring time windows, it performs well under both high and low AR-1
scenarios, and is capable of handling time-varying mixture exposures. This simulation study demonstrates
that LKMR is less biased than BKMR at estimating the exposure-response function across multiple time
points.

Furthermore, the results in Table 1 suggest that the LKMR also outperforms JKBKMR. As compared to
JKBKMR, LKMR provides reductions in RMSE on the order of 15–52% when auto-correlation in a given
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exposure is 0.8, and by 8–44% when auto-correlation is 0. Across all time windows and all levels of auto-
correlation, both slope and coverage are consistently higher for LKMR than for JKBKMR. This suggests
there are limitations to capturing the time-specific effects of the mixture when all time-varying exposure
data is included in the same model without penalizing within time windows or across time windows. Taken
together, the simulations suggest that across a range of auto-correlation scenarios, LKMR outperforms
both BKMR and JKBKMR.

To further explore the ability of LKMR to estimate time-specific effects of the exposure mixture,
we consider several other simulation scenarios in Section C of supplementary material available at
Biostatistics online. Table S1 of supplementary material available at Biostatistics online considers a
different exposure response function than used in Table 1 in order to study the performance of LKMR
when the shape of the exposure-response surface differs at different time windows. Table S2 of sup-
plementary material available at Biostatistics online considers the performance of LKMR for a larger
number of toxicants (10 toxicants, 4 time windows), while Table S3 of supplementary material avail-
able at Biostatistics online considers the performance of LKMR for a larger number of time windows
(10 time windows, 5 toxicants). Lastly, Table S4 supplementary material available at Biostatistics online
assess the performance of LKMR for a larger number of toxicants and time windows (10 toxicants,
10 time windows). In general, LKMR has a lower RMSE and a higher R2 than BKMR or JKBKMR.
Across all three methods, when a larger number of time windows and/or number of toxicants is stud-
ied while holding the sample size constant, performance generally decreases. However, LKMR is still
better able to estimate the time-specific exposure–response surface, even if its effects are sometimes
attenuated.

4. APPLICATION TO ELEMENT DATA SET

We applied LKMR to analyse the association between neurodevelopment and metal mixture exposures
in the ELEMENT study conducted in Mexico City. In a pilot study (n = 84) nested within this larger
cohort study, we estimated associations between exposure to metal mixtures both before and after birth
and the visual spatial subtest score of the Wide Range Assessment of Visual Motor Abilities (WRAVMA)
(Adams and Sheslow, 1995) administered at approximately 8 years of age. Concentrations of metals
barium, cadmium, lithium, manganese, and zinc were measured in tooth dentine, which provides time-
specific measures of exposure over both the pre- and post-natal period for each child (Arora and Austin,
2014). These time-varying exposures were averaged to reflect three biologically relevant time windows:
second and third trimesters of pregnancy, and months 0–3 after birth (early life). Auto-correlation varied
for different metals, ranging from the lowest value of 0.56 for manganese to the highest value of 0.93 for
lithium. We controlled for child gender, maternal IQ, and child hemoglobin at year two. In conducting the
analysis, exposure covariates were logged, centered, and scaled. Confounder variables were also centered
and scaled.

As a preliminary analysis, we first fit a linear regression model using all five metal exposures from
all three time windows to identify exposures and time point(s) of significance, presented in Figure S2 of
supplementary material available at Biostatistics online. The model included only main effects of each
metal at each time window. Second trimester zinc had a positive association with neurodevelopment
(p = 0.04), and third trimester zinc had a negative association with neurodevelopment (p = 0.006).
Third trimester manganese was positively associated with neurodevelopment (p = 0.04), and early life
manganese was negatively associated with neurodevelopment (p = 0.006). Second trimester chromium
had a positive association (p = 0.02), and early life chromium had a negative association (p = 0.02).
These results suggest that under assumptions of a linear regression model, there is some evidence of
an exposure-response relationship across multiple time points, which warrants further exploration using
LKMR.
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Fig. 1. LKMR estimated relative importance of each metal at three critical windows for ELEMENT data. Plot of the
estimated relative importance of each metal, as quantified by the difference in the mean response at the 75th percentile
versus the 25th percentile of a given metal exposure, while holding all other metal exposures constant at their median
values.

We then applied LKMR to study time-varying metal mixture exposure effects during early life on
visual spatial ability. Previous literature has shown an inverted-u relationship between metals and neu-
rodevelopment (Claus Henn and others, 2010); thus, we chose Kt to be a quadratic kernel, such that
K(z, z’) = (zT z’+1)2. The quadratic kernel allows for the possibility that a given metal can have different
effects (beneficial and toxic) at different exposure levels. Due to the moderate sample size, we also assessed
the sensitivity of LKMR to different choices of prior hyperparameters, and found that the results to be
stable, and would recommend sensivity analysis when applying LKMR to any given application. Using
LKMR, we estimated the relative importance of each metal separately for each time window. Relative
importance is quantified as the difference in the estimated exposure-response function when a single metal
is at a high exposure level (75th percentile) versus a low exposure level (25th percentile), holding all other
metals constant at their median exposure levels. Figure 1 shows the results, which are similar to those
from simple linear regression. Third trimester zinc was detected to be negatively associated with neurode-
velopment. The results also suggest evidence of a positive association of third trimester manganese with
neurodevelopment, which shifts to a negative association after birth. This qualitatively different (positive
vs. negative) association between manganese and neurodevelopment for prenatal vs. postnatal manganese
exposure is particularly intriguing, as manganese is both an essential nutrient and a toxicant. It could be
that the developing fetus needs manganese prenatally and receives it via the mother, whereas post-natal
levels reflects environmental exposures that are more harmful.

As the estimated relative importance from LKMR indicate effects of manganese and zinc, we focus
on those two metals when exploring the exposure-response relationship. Because the exposure-response
surface is five-dimensional, we use heat maps and cross-sectional plots to reduce dimensionality and
graphically depict the exposure-response relationship. Figure 2 presents the plot of the posterior mean of
the exposure-response surface of manganese and zinc at the median exposure levels of barium, cadmium,
and lithium estimated using LKMR. The shape of the surface at the second trimester suggests an interaction
between manganese and zinc, which will be further explored below. Also, the results suggest that the
direction of the association changes at birth. At the third trimester, high manganese and moderate zinc
exposures are associated with higher scores, while after birth, low manganese and a range of zinc exposures
are associated with higher scores.

To further reduce dimensionality, and to show estimates of the posterior uncertainty of the exposure–
response function, Figure 3 depicts the cross-section of the exposure-response surface for manganese, at
low and high zinc concentrations and median values of the barium, chromium, and lithium exposures.
These results suggest that the association between manganese exposure and visual spatial score depends on
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Fig. 2. LKMR estimated time-specific exposure response functions applied to ELEMENT data. Plot of the estimated
exposure-response surface for Mn and Zn, at the median of Ba, Cd, Li.

Fig. 3. LKMR estimated time-specific exposure-response functions for Mn at low and high Zn levels applied to
ELEMENT data. Plot of the cross-section of the estimated exposure-response surface for Mn, at the 25th (top panel)
and 75th (bottom panel) of Zn exposure, holding Ba, Cr, and Li constant at median exposures.

exposure timing. Comparing the top panel (low zinc) to the bottom panel (high zinc), we detect suggestion
of a manganese-zinc interaction, specifically effect modification in the presence of higher zinc levels during
the second trimester. At the second trimester, there is a positive association between manganese exposure
and visual spatial score in the presence of low zinc levels. However, the association becomes negative
in the presence of high zinc levels. Notably, this interaction is not suggested in the plot of the relative
importance, where the effects of manganese and zinc are both non-significant at the second trimester.
In the cross-sectional plot Figure 3, we also note evidence of a positive association between manganese
and neurodevelopment before birth at the third trimester, and a negative one after birth. Lastly, the cross-
sectional graphs suggest the effects are mainly linear, indicating that a quadratic kernel is sufficient to
capture the exposure-response relationship.
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Fig. 4. LKMR estimated Mn–Zn interaction at three critical windows for ELEMENT data. Plot of the estimated
interaction effect between Mn and Zn, holding Ba, Cr, and Li constant at median exposures. The interaction effect was
calculated as follows. First, we estimated the exposure-response effect for high (75th) versus low (25th) manganese
exposures, at high zinc levels. Next, we estimated the exposure-response effect for high versus low manganese
exposures, at low zinc levels. The difference between the two estimated exposure-response effects quantifies the
manganese-zinc interaction. All other metal exposures are held constant at their median values.

In Figure 4, we focus on the estimated interaction effect between manganese and zinc at the three
critical time windows. First, we estimated the exposure-response effect for high (75th percentile) versus
low (25th percentile) manganese exposures, at high zinc levels and median levels of barium, chromium
and lithium. Next, we estimated the exposure-response effect for high versus low manganese exposures,
at low zinc levels and median levels of barium, chromium and lithium. The difference between the two
estimated exposure–response effects quantifies the manganese–zinc interaction. The results indicate that
there is a significant manganese–zinc interaction at the second trimester.

To complete our case study, we compare the results under LKMR to those obtained by BKMR applied
using data from each critical window separately, and to those obtained from JKBKMR, which captures
all time-varying exposures within a single kernel, in Section D of supplementary material available at
Biostatistics online. Figure S2 supplementary material available at Biostatistics online shows the relative
importance of each metal as estimated by BKMR and JKBKMR. The results from BKMR suggest that
when focused on manganese and zinc, only third trimester zinc exposure was significantly negatively
associated with visual spatial score. This differs from the results found under LKMR and the linear model,
which indicate a positive association of third trimester manganese and a negative association of third
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trimester zinc. Meanwhile, the results from JKBKMR do not identify any metals at any time points as being
significantly associated with the outcome. Figure S3 of supplementary material available at Biostatistics
online depicts the posterior mean of the exposure-response surface of manganese and zinc at the median of
barium, cadmium, and lithium for BKMR and JKBKMR. Neither BKMR nor JKBKMR detect associations
or interactions between second trimester manganese and zinc exposures with neurodevelopment. However,
under LKMR, there was suggestion of a second trimester manganese–zinc interaction. In months 0-3 after
birth, however, findings from LKMR, BKMR, and JKBKMR are generally consistent, with low manganese
exposure associated with higher neurodevelopmental scores across a range of zinc exposures. However,
the estimated time-specific exposure response surfaces for BKMR and JKBKMR have an attenuated signal
compared to that from LKMR which identifies an interaction at the second trimester. Lastly, Figure S4
of supplementary material available at Biostatistics online depicts the predicted cross-sectional plot for
BKMR and JKBKMR, which do not suggest a Mn–Zn interaction any any time window, in contrast to
LKMR. Taken together, these findings further suggest that both BKMR and JKBKMR have limited ability
to detect a signal, which may be due to serial correlation and confounding by exposure at the other time
points.

5. DISCUSSION

In this article, we have developed a LKMR model that uses Bayesian regularization to analyse data on
time-varying exposures of environmental mixtures to identify critical windows of exposure in children’s
health.A unique exposure biomarker that captures the temporal variation in exposure in short time windows
makes this methodology possible. The kernel framework allows for a flexible specification of the unknown
exposure–response relationship. We use a Bayesian formulation of the group lasso, which regularizes each
kernel surface, and the fused lasso, which smooths multivariate exposure–response surfaces over time. Our
method can account for auto-correlation of mixture components over time while exploring the possibility
of non-linear and non-additive effects of individual exposures. A key contribution of this article is the
incorporation of the kernel machine framework into a grouped, fused lasso framework.

We demonstrated that the LKMR method achieves large gains over a simpler cross-sectional approach
that considers each critical window separately, particularly when serial correlation among the time-varying
exposures is high. LKMR also outperforms a method that accounts for all time-varying exposure data
within a single kernel and does not adjust for time-specific effects. We applied LKMR to analyse asso-
ciations between neurodevelopment and metal mixtures in the ELEMENT cohort. In the presence of
complex exposure–response relationships that can vary with the timing of exposures, LKMR is a promis-
ing method to quantify health effects and identify time windows of susceptibility. In the application of
LKMR to data from the ELEMENT study, LKMR, which uses information from neighboring time win-
dows through penalization, is able to detect effect modification that was missed by both BKMR and
JKBKMR. Specifically, LKMR detected an interesting interaction between manganese and zinc. At low
levels of zinc, manganese exposure at the second trimester of pregnancy is positively associated with
neurodevelopment. However, this positive association shifts after birth, at which point manganese is neg-
atively associated with visual spatial ability. This suggests manganese functions as a trace element and an
essential nutrient before birth, and as a toxicant after birth. Furthermore, this effect is not present under
high exposure levels of zinc at the second trimester. The finely detailed interaction effect is captured by
LKMR but not by BKMR or JKBKMR. We also note that in this case study, we saw similarities between
results from LKMR and those from the linear model. The linear model, which is used for preliminary
analysis, makes strong assumptions of linearity and additivity. It is important to use a flexible method
like LKMR to check these assumptions as they can be violated; for example, in the case study from
BKMR, the authors detected a non-linear and non-additive exposure–response function for two metals
(Bobb and others, 2015). LKMR also provides added advantage over the linear model by detailing the
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interaction between Mn and Zn, through visualization of the exposure response surface from heatmaps
and cross-sectional plots.

LKMR is best-suited for analysis of environmental mixture data where exposures are measured at a
small number of time windows, as may arise from exposures measured in blood or other biomarkers.
Alternative data structures, such as exposures measured semi-continuously over time—for example, air
pollution measurements measured weekly—may require alternative methods based on functional data
analysis (Wang and others, 2015; Malloy and others, 2010) or distributed lag modeling (Bello and others,
2017).

There is currently limited knowledge on the health effects of exposure to chemical mixtures. Therefore,
the development of statistical methods that can handle the complexity of multi-pollutant mixtures, whose
effects may vary over time, can make an important contribution to environmental health research.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

ACKNOWLEDGMENTS

The authors thank the associate editor and two anonymous reviewers for their invaluable comments and
suggestions. The computations in this paper were run on the Odyssey cluster supported by the FAS Division
of Science, Research Computing Group at Harvard University. Conflict of Interest: None declared.

FUNDING

This work was supported by the National Institutes of Health [ES000002, ES007142, ES022986,
ES024332-01A1, ES025453, ES026033, OD023286, and OD023337]; and the National Science Founda-
tion [1514970 and 1614102].

REFERENCES

ADAMS, W. AND SHESLOW, D. (1995). Wide Range Assessment of Visual Motor Abilities. Wilmington, DE: Wide
Range.

ANDREWS, D. F. AND MALLOWS, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical
Society, Series B (Methodological) 36, 99–102.

ARORA, M. AND AUSTIN, C. (2014). Teeth as a biomarker of past chemical exposure. Current Opinion in Pediatrics 25,
261–267.

ARORA, M., AUSTIN, C., SARRAFPOUR, B., HERNÁNDEZ-ÁVILA, M., HU, H. AND WRIGHT, R. O. (2014). Determining
prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels.
PLoS One 9, e97805.

BELLINGER, D. C. (2008).Very low lead exposures and children’s neurodevelopment. Current Opinion in Pediatrics 20,
172–7.

BELLO, G. A., AUSTIN, C., HORTON, M. K., WRIGHT, R. O. AND GENNINGS, C. (2017). Extending the distributed lag
model framework to handle chemical mixtures. Environmental Research 156, 253–264.

BILLIONNET, C., SHERRILL, D. AND ANNESI-MAESANO, I. (2012). Estimating the health effects of exposure to multi-
pollutant mixture. Annals of Epidemiology 22, 126–41.

BOBB, J. F., VALERI, L., CLAUS HENN, B., CHRISTIANI, D. C., WRIGHT, D. O., MAZUMDAR, M., GODLESKI, J. J.
AND COULL, B. A. (2015). Bayesian kernel machine regression for estimating the health effects of multi-pollutant
mixtures. Biostatistics 16, 493–508.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx036#supplementary-data
http://biostatistics.oxfordjournals.org


340 S. H. LIU AND OTHERS

CAI, T., TONINI, G. AND LIN, X. (2011). Kernel machine approach to testing the significance of multiple genetic
markers for risk prediction. Biometrics 67, 975–86.

CARLIN, D. J., RIDER, C. V., WOYCHICK, R. AND BIRNBAUM, L. S. (2013). Unraveling the health effects of
environmental mixtures: an NIEHS priority. Environmental Health Perspectives 121, A6–A8.

CHUN, H. AND KELES, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and
variable selection. Journal of the Royal Statistical Society, Series B (Methodological) 72, 3–25.

CLAUS HENN, B., COULL, B.A. AND WRIGHT, R. O. (2014). Chemical mixtures and children’s health. Current Opinion
in Pediatrics 26, 223–229.

CLAUS HENN, B., ETTINGER, A. S., SCHWARTZ, J., TELLEZ-ROJO, M. M., LAMADRID-FIGUEROA, H., HERNANDEZ-
AVILA, M., SCHNAAS, L., AMARASIRIWARDENA, C., BELLINGER, D. C., HU, H. and others (2010). Early postnatal
blood manganese levels and children’s neurodevelopment. Epidemiology 21, 433–439.

CRISTIANINI, N. AND SHAWE-TAYLOR, J. (2000). An Introduction to SupportVector Machines. Cambridge: Cambridge
University Press.

DARROW, L.A., KLEIN, M., STRICKLAND, M. J., MULHOLLAND, J.A. AND TOLBERT, P. E. (2011).Ambient air pollution
and birth weight in full-term infants in Atlanta, 1994-2004. Environmental Health Perspectives 119, 731–737.

DEVOCHT, F., CHERRY, N. AND WAKEFIELD, J. (2012).A Bayesian mixture modeling approach for assessing the effects
of correlated exposures in case-control studies. Journal of Exposure Science & Environmental Epidemiology 22,
352–60.

DIEZ, D. M., DOMINICI, F., ZARUBIAK, D. AND LEVY, J. I. (2012). Statistical approaches for identifying air pollu-
tant mixtures associated with aircraft departures at Los Angeles International Airport. Environmental Science &
Technology 46, 8229–35.

GENNINGS, C., CARRICO, C., FACTOR-LITVAK, P., KRIGBAUM, N., CIRILLO, P. M. AND COHN, B. A. (2013). A Cohort
study evaluation of maternal PCB exposure related to time to pregnancy in daughters. Environmental Health 12,
66.

HEATON, M. J. AND PENG, R. D. (2013). Extending distributed lag models to higher degrees. Biostatistics 15, 398–412.

HERRING, A. H. (2010). Nonparametric bayes shrinkage for assessing exposures to mixtures subject to limits of
detection. Epidemiology 21, S71–6.

HSU, L. H., CHIU, L. H., COULL, B. A., KLOOG, I., SCHWARTZ, J., LEE, A., WRIGHT, A. AND WRIGHT, R. J. (2015).
Prenatal particulate air pollution and asthma onset in urban children: identifying sensitive windows and sex
differences. American Journal of Respiratory and Critical Care Medicine doi: 10.1164/rccm.201504-0658OC.

HU, H., TELLEZ-ROJO, M. M., BELLINGER, D., SMITH, D., ETTINGER, A. S., LAMADRID-FIGUEROA, H., SCHWARTZ,
J., SCHNAAS, L., MERCADO-GARCIA, A. AND HERNANDEZ-AVILA, M. (2006). Fetal lead exposure at each stage of
pregnancy as a predictor of infant mental development. Environmental Health Perspectives 114, 1730–1735.

KIM, Y., HA, E. H., PARK, H., HA, M., KIM, Y., HONG, Y. C., KIM, E. J. AND KIM, B. N. (2013). Prenatal lead and
cadmium co-exposure and infant neurodevelopment at 6 months of age: the Mothers and Children’s Environmental
Health (MOCEH) study. Neurotoxicology 35, 15–22.

KYUNG, M., GILL, J., GHOSH, M. AND CASELLA, G. (2010). Penalized regression, standard errors and Bayesian lassos.
Bayesian Analysis 5, 369–412.

LIU, D., LIN, X. AND GHOSH, D. (2007). Semiparametric regression of multidimensional genetic pathway data:
least-squares kernel machines and linear mixed models. Biometrics 63, 1079–88.

MAITY, A. AND LIN, X. (2011). Powerful tests for detecting a gene effect in the presence of possible gene-gene
interactions using garrote kernel machines. Biometrics 67, 1271–84.



Lagged kernel machine regression 341

MALLOY, E. J., MORRIS, J. S., ADAR, S. D., SUH, H., GOLD, D. R. AND COULL, B. A. (2010). Wavelet-based functional
linear mixed models: an application to measurement error-corrected distributed lag models. Biostatistics 11,
432–452.

NEEDHAM, L. L., GRANDJEAN, P., HEINZOW, B., JORGENSEN, P. J., NIELSEN, F., PATTERSON, D. G., SJODIN, A.,
TURNER, W. E. AND WEIHE, P. (2011). Partition of environmental chemicals between maternal and fetal blood and
tissues. Environmental Science & Technology 45, 1121–6.

NOWAKOWSKI, R. S. AND HAYES, N. L. (1999). Cns development: an overview. Development and Pscyhopathology 11,
395–417.

ROBERTS, S. AND MARTIN, M. A. (2006). The use of supervised principal components in assessing multiple pollutant
effects. Environmental Health Perspectives 114, 1877–1882.

SANCHEZ, B. N., HU, H., LITMAN, H. J. AND TELLEZ-ROJO, M. M. (2011). Statistical methods to study timing of
vulnerability with sparsely sampled data on environmental toxicants. Environmental Health Perspectives 119,
409–415.

TIBSHIRANI, R.AND SAUNDERS, M. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical
Society, Series B (Methodological) 67, 91–108.

WANG, J. L., CHIOU, J. M.AND MULLER, H. G. (2015). Review of functional data analysis.Annual Review of Statistics 7,
1–41.

WARREN, J., FUENTES, M., HERRING, A. AND LANGLOIS, P. (2012). Spatial-temporal modeling of the association
between air pollution exposure and preterm birth: identifying critical windows of exposure. Biometrics 68, 1157–
1167.

WARREN, J., FUENTES, M., HERRING, A. AND LANGLOIS, P. (2013). Air pollution metric analysis while determining
susceptible periods of pregnancy for low birth weight. Obstetrics and Gynecology 2013, 1–9.

YOON, M., NONG, A., CLEWELL, H. J., TAYLOR, M. D., DORMAN, D. C. AND ANDERSEN, M. E. (2009). Evaluating
placental transfer and tissue concentrations of manganese in the pregnant rat and fetuses after inhalation exposures
with a pbpk model. Toxicological Sciences 112, 44–58.

YUAN, M. AND LIN, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society, Series B (Methodological) 68, 49–67.

[Received December 6, 2016; revised July 7, 2017; accepted for publication July 21, 2017]


