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Abstract
Introduction: CNTN6 is an immunoglobulin domain-containing cell adhesion mole-
cule that belongs to the contactin family. It is involved in the development of the 
nervous system. We aim to determine the effect of Cntn6 deficiency on the allocen-
tric navigation in mice.
Methods: We recorded the travel distance and escape time of wild-type and Cntn6 
mutant male and female mice in the Morris water maze task according to the 
protocol.
Results: There was hardly any Cntn6 expression in the hippocampus of postnatal day 
0 (P0) mice, while obvious Cntn6 expression was present in the hippocampal CA1 re-
gion of the P7 mice. During the acquisition period of Morris water maze task (Day 1 to 
4), Cntn6−/− male mice failed to shorten the escape time to reach platform on the third 
day, while the travel distance to platform was not significantly different. There was no 
significant difference in both escape time and travel distance to the platform among 
all female subjects. In the probe trial test (Day 5), spatial memory of the female mutant 
mice was mildly affected, while Cntn6−/− male mice were normal. In the spatial relearn-
ing test (Day 7 to 10), Cntn6−/− male mice showed no difference in escape time to the 
platform compared to the wild-type male mice, while Cntn6 deficient female mice re-
quired shorter escape time to travel to the platform on day 7, day 8, and day 10.
Conclusions: Cntn6 is expressed in the developing hippocampus in mice. Cntn6 defi-
ciency affects spatial learning and memory, indicating that Cntn6 plays a role in the 
development of hippocampus and affects allocentric navigation of the animals.
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1  | INTRODUC TION

Development of the central nervous system is dependent on the 
highly coordinated interactions between diverse cell types. Cell 

adhesion molecules (CAMs) are important signal molecules that me-
diate cell–cell and cell–extracellular matrix interactions in multiple 
neural developmental processes (Doving & Trotier, 1998; Schaal 
et al., 2003), including neuronal migration, neurite outgrowth, 
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axon guidance, synaptogenesis, and synaptic connection (Dalva, 
McClelland, & Kayser, 2007; Geschwind & Levitt, 2007; Maness 
& Schachner, 2007; Murase & Schuman, 1999; Pardo & Eberhart, 
2007; Rubenstein, 2011). Furthermore, CAMs may also function as 
receptors to regulate neuronal apoptosis and survival (Anderson 
et al., 2005; Naus et al., 2004).

Contactin-6 (CNTN6), also termed NB-3, is a member of the con-
tactin family of immunoglobulin (Ig) domain-containing cell adhesion 
molecules (IgCAMs). CNTN6 contains six N-terminal Ig-like and four 
fibronectin type III-like (FNIII) domains and tethers to the cell mem-
brane via a C-terminal glycosylphosphatidylinositol (GPI)-anchor 
(Maness & Schachner, 2007; Shimoda & Watanabe, 2009; Zuko 
et al., 2013). Cntn6 has been identified as a candidate risk gene of 
multiple psychiatric disorders including autism spectrum disorders 
(ASDs), schizophrenia, bipolar disorder, attention-deficit hyperac-
tivity disorder, intellectual disability, and Tourette syndrome (Guo 
et al., 2012; Hu et al., 2015; Huang et al., 2017; Kashevarova et al., 
2014; Kerner, Lambert, & Muthen, 2011; Nava et al., 2014; Oguro-
Ando, Zuko, Kleijer, & Burbach, 2017; Okbay et al., 2016; Pinto et al., 
2010; Van Daalen et al., 2011), suggesting the necessity of CNTN6 
in neural development.

In mice, Cntn6 is exclusively expressed in the nervous system, 
such as cerebral cortex, accessory olfactory bulb, thalamus, and 
cerebellum (Huang, Yu, Shimoda, Watanabe, & Liu, 2012; Lee et al., 
2000). However, the expression of Cntn6 displays distinct patterns 
in different regions in the mouse brain. The level of Cntn6 protein 
in the cerebrum reaches a maximum at P7 and thereafter declines 
to a constant low level in the adulthood (Huang et al., 2011; Lee 
et al., 2000). In contrast, the Cntn6 mRNA level in the cerebellum 
and the hippocampus increases until the adulthood (Lee et al., 
2000). Plenty of studies using null mutant mice indicate that Cntn6 
plays key roles in the developing and mature mouse brains (Mercati 
et al., 2013; Oguro-Ando et al., 2017; Shimoda & Watanabe, 2009). 
In the visual cortex of one-month-old Cntn6−/− mice, alterations in 
the orientation of apical dendrites of pyramidal neurons in layer V 
was observed (Ye et al., 2008). Cntn6 regulates neurite outgrowth 
in vitro, and this property was consistent with the finding that cor-
ticospinal tract formation was delayed in the Cntn6−/− mice (Huang 
et al., 2011, 2012; Mercati et al., 2013). Moreover, Cntn6 contrib-
utes to glutamatergic synapse formation between parallel fibers 
and Purkinje cells during postnatal cerebellar development (Sakurai 
et al., 2009). In addition, behavioral studies have shown that Cntn6-
deficient mice display impaired motor coordination (Takeda et al., 
2003).

In the hippocampus, a significant reduction in glutamatergic syn-
apses was found in the Cntn6-deficient mice in the postnatal stage 
(Sakurai, Toyoshima, Takeda, Shimoda, & Watanabe, 2010; Sakurai 
et al., 2009). Amila Zuko et al. found that Cntn6 deficiency in the 
dentate gyrus (DG) may impair the fasciculation of mossy fibers 
that innervate pyramidal cells in the hippocampus (Cremer, Chazal, 
Goridis, & Represa, 1997; Heyden, Angenstein, Sallaz, Seidenbecher, 
& Montag, 2008; Montag-Sallaz, Schachner, & Montag, 2002; Zuko 
et al., 2016). Some studies showed that F3/Contactin, another 

member of the contactin family, promotes hippocampal neurogen-
esis in adult mice (Mercati et al., 2017; Puzzo et al., 2013; Sakurai 
et al., 2009, 2010). These studies suggest that Cntn6 may play an 
important role in the hippocampal development and function. 
However, the effect of Cntn6 deficiency on hippocampal-related be-
havior is still unclear.

In this study, we found that there was hardly any Cntn6 expres-
sion in the hippocampus of P0 mice, but obvious Cntn6 expression 
in the hippocampal CA1 region of P7 mice. Morris water maze task 
(MWM) was used to determine whether Cntn6 deficiency in mice 
would affect allocentric navigation which involves hippocampus 
and its related brain structures. Our results suggest that deletion of 
Cntn6 leads to functional deficiency of the hippocampus, especially 
the spatial learning ability in mice.

2  | MATERIAL S AND METHODS

2.1 | Animal

Cntn6-deficient mice (Takeda et al., 2003) were maintained on a 12-hour 
light/dark cycle with ad libitum food and water in a specific pathogen-
free (SPF) animal facility at the Capital Medical University, China. All 
animal procedures were approved by the university’s Committee for 
Animal experiments and conformed to the guidelines for the care and 
use of laboratory animals of the Chinese Society for Neuroscience.

Cntn6 knockout mice were generated using 129/SVJ embryonic 
stem cells and then were backcrossed with C57BL/6J mice for more 
than 20 generations. In all experiments described in this article, 
homozygous and heterozygous mutants were compared with their 
wild-type littermates.

2.2 | Colorimetric detection of LacZ expression

Cntn6+/− mice at postnatal day 0 and 7 were perfused with PBS and 
then with 2% paraformaldehyde dissolved in PIPES, pH 6.9, contain-
ing 2 mM MgCl2 and 5 mM EGTA. Brains were removed and postfixed 
overnight at 4°C. The brains were then cryoprotected by incubation 
overnight in 20% sucrose containing 2 mM MgCl2. Floating sections 
(50 μm) were prepared using a cryostat. Sections were washed twice 
in PBS containing 2 mM MgCl2 and then incubated in PBS contain-
ing 2 mM MgCl2, 0.005% sodium deoxycholate and 0.01% NP-40 for 
10 min at 4°C. Colorimetric reaction was performed in the same solu-
tion containing 5 mM K3[Fe(CN)6], 5 mM K4[Fe(CN) 6], and 0.05% 5-br
omo-4-chloro-3-indolyl–D-galactoside (X-gal) at 37°C overnight. The 
sections were washed, mounted, air-dried and were counterstained 
with 0.5% neutral red to visualize the brain architecture.

2.3 | Morris water maze task

Learning and memory tasks of adult mice (2–4 months) were as-
sessed using a Morris water maze task according to previous reports 
(Petravicz, Boyt, & McCarthy, 2014; Schenk & Morris, 1985). The 
stainless steel circular pool (150 cm in diameter, 51 cm in depth) was 
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filled with white opaque water maintained at 21 ± 1°C. The platform 
(10 cm in diameter) was submerged 1 cm beneath water surface. The 
locations of the starting points were identified using different colors 
and dimensions visual extra-maze cues attached to the room walls 
and were kept consistent during each experiment. The pool was di-
vided into four quadrants using a computerized tracking/image ana-
lyzing system (video camcorder coupled with computational tracking 
system: Coulbourn Instrument). During the acquisition training trails, 
the platform was placed in the middle of the northwest (NW) quad-
rant and remained in the same position. Subjects were placed pseu-
dorandomly with their heads facing the pool wall into each of four 
starting locations (northwest, northeast, southeast, and southwest) 
for each of four daily acquisition training trials. Trials lasted 60 s or 
until the subjects mounted the platform with a 30-min intertrial in-
terval. On the first day (Day 1) of training, the subjects were manually 
placed on the platform and allowed to stand on it for 15–20 s if they 
did not find the platform after 60 s. The escape time, travel distance 
and mean velocity to reach the platform were recorded during the 
four-day training. A probe trial to test reference memory was con-
ducted on day 5. Subjects were placed into the opposite quadrant 
of the platform quadrant and allowed to swim during 60 s in the ab-
sence of the platform. The number of platform crossings, the number 
of target quadrant crossings, and the proportion of swimming time 
spent in four quadrants were recorded and analyzed.

The reversal task (relearning training trial) was performed from 
day 7 to day 10 exactly as the acquisition training protocol, while the 
hidden platform was placed in the opposite quadrant (southeast). 
The escape time, travel distance, and mean velocity to reach the 
platform were recorded. The subjects were blind to the genotypes.

2.4 | Statistical analysis

A two-way ANOVA followed by the Bonferroni posttest was used 
to analyze escape time to platform and travel distance. The results 

are displayed as mean ± standard error of the mean (SEM). Multiple 
t test followed by the Sidak–Bonferroni method was used to analyze 
the time in quadrant. A one-way ANOVA followed by the Bonferroni 
posttest was used to analyze and obtain statistics of the entries to 
target quadrant.

3  | RESULTS

3.1 | Expression of Cntn6 in the developing mouse 
hippocampus

To assess the potential role of Cntn6 in hippocampal development, 
the spatiotemporal expression of Cntn6 was analyzed in the develop-
ing mouse hippocampus. The segment between initiation codon of 
the second exon and the Bgl I site in the second intron of the Cntn6 
gene was replaced by LacZ gene, so that the generated mutant mice 
were expected to produce β-galactosidase instead of Cntn6 protein. 
The LacZ gene expression was driven by the promoter of the Cntn6 
gene and accordingly reflected the expression of Cntn6 (Takeda et al., 
2003). We first examine the expression of the LacZ in the whole brain 
(Figure 1a,b) and hippocampus (Figure 1c,d) of P0 and P7 Cntn6+/− mice 
via X-gal staining. The LacZ expression pattern was essentially the same 
as that observed in the Cntn6 in situ hybridization previously reported 
by Lee et al. (2000). In the hippocampus of P0 mice, there was hardly 
any Cntn6 expression in the CA1, CA3, and DG regions (Figure 1c). 
However, there was obvious Cntn6 expression in the CA1 but not in 
the CA3 and DG regions of P7 mice (Figure 1d). These results were 
indicating that Cntn6 is expressed in the developing hippocampus.

3.2 | Cntn6 deficiency affects spatial learning of 
male mice in the Morris water maze task

The hippocampal structure plays an important role in spatial learn-
ing and memory. It has been reported that the length and area size 

F IGURE  1 Expression of Cntn6 in 
the developing mouse hippocampus. 
Localization of cells expressing Cntn6 
monitored by LacZ expression in the 
medial sagittal sections of the Cntn6+/− 
brains at P0 and P7. (c,d) Higher 
magnification of the hippocampus in (a,b). 
Scale bars, (a,b) 1 mm, (c,d) 0.1 mm

(a)

(c) (d)

(b)
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of the suprapyramidal bundle (SPB) in the hippocampus were sig-
nificantly increased in Cntn6−/− mice (Zuko et al., 2016). Here, we 
examined whether Cntn6 deficiency affected hippocampus-related 
behavior in the Morris water maze task. Over the 4-day acquisi-
tion training period, all animals improved their ability to find the 
submerged platform by exhibiting shorter escape time and travel 
distance to the platform (Figure 2a,b). There was no significant 
difference in performance among all female subjects (Figure 2d). 
However, although Cntn6−/− male mice could swim as fast as wild-
type mice and willingly found a hidden platform, their escape time 
was significantly longer than their wild-type and Cntn6+/− litter-
mates on the third day (Figure 2c). No significant difference in es-
cape time was detected on the fourth day in Cntn6−/− male mice 
(Figure 2c). These results indicated that spatial learning is mildly 
compromised in the Cntn6−/− male mice.

3.3 | Cntn6 deficiency affects the spatial memory of 
female mice, but not male mice

After the 4-day successive acquisition training period, we meas-
ured the time of movement of all the experimental groups in the 
60-second probe trial test on day 5 (Figure 3a). We calculated the 
time the mice spent in the target quadrant and the opposite quad-
rant after entering the pool in the last 40 s of the probe trial. Similar 
with the wild-type male mice, Cntn6−/− mutant male mice spent 
significant shorter time in the opposite quadrant than in the target 
quadrant, indicating that the Cntn6 deficiency has no serious ef-
fect on male mice’s ability of recalling the previously learned spatial 
strategy (Figure 3b). Although Cntn6+/− and Cntn6−/− female mice 
also spent shorter time in the opposite quadrant, the change was not 
significant, (Figure 3c). We further analyzed the number of times the 

F IGURE  2 Cntn6 deficiency affects 
spatial learning of male mice in the 
Morris water maze task. (a) A schematic 
representation of the Morris water maze 
training protocol. Mice were trained 
for 4 days to locate a hidden platform 
(acquisition trials). A probe trial was 
performed on the fifth day, when the 
platform was removed. The hidden 
platform was moved to the opposite 
quadrant during reversal training. (b) 
Representative traces of swimming plot in 
Morris water maze task. (c) Quantitative 
analyses of the Morris water maze. 
Performance of the Cntn6−/− male mice 
(2–4 months) in the spatial learning 
phases of the Morris water maze task, 
measured by escape time to platform. 
n = 10 (wild-type, WT), 15 (Cntn6+/−), 10 
(Cntn6−/−). Right panel, the swimming 
speed of male mice on the first day. (d) 
Performance of Cntn6−/− female mice 
in the spatial learning. n = 9 (WT), 12 
(Cntn6+/−), 8 (Cntn6−/−). Data represent as 
mean ± SEM. Two-way ANOVA followed 
by Bonferroni posttest for escape time 
and travel distance and One-way ANOVA 
for swimming speed. *, p < .05; ns, not 
significant
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mice crossed the target platform location. There was no significant 
difference in the entries to target quadrant among all experimen-
tal subjects (Figure 3d). Together, these results indicated that Cntn6 
deficiency of leads to mild deficits in the spatial memory of female 
mice.

3.4 | Improved spatial relearning in Cntn6 deficient 
female mice

To investigate the effect of Cntn6 deficiency on spatial relearn-
ing, we performed a reversal task in the Morris water maze. Mice 
were trained for 4 additional days (day 7 to day 10) with the hid-
den platform placed in the opposite quadrant (Figure 4a). There 
was no significant difference in travel distance between wild-
type and mutants mice in both sexes (Figure 4b,c). Cntn6−/− and 

Cntn6+/− male mice showed no difference in escape time to the 
platform in the reversal task (Figure 4b). Interestingly, compares 
with the wild-type female mice, both Cntn6+/− and Cntn6−/− female 
mice spent shorter time to reach the platform, and the change was 
significant between the wild-type and the Cntn6+/− female mice on 
day 7 (wild-type vs. Cntn6+/−, p = .031), day 8 (wild-type vs. Cntn6–/−, 
p = .0288; wild-type vs. Cntn6+/−, p = .0002), and day 10 (wild-type 
vs. Cntn6+/−, p = .0228) (Figure 4c). These results indicate that 
Cntn6 deficiency improves spatial relearning in female mice.

4  | DISCUSSION

Previous studies have shown that CNTN6 is important for the 
normal development and stability of the a few brain regions (Hu 

F IGURE  3 Cntn6 deficiency affects 
spatial memory of female mice. (a–d), 
A probe trial of the Morris water maze. 
(a) Representative trajectories of WT, 
Cntn6+/−, and Cntn6−/− mice during the 
probe trial. (b) The time male mice spent 
in the target quadrant and the opposite 
quadrant during the probe trial in which 
the target platform is removed. n = 10 
(WT), 10 (Cntn6+/−), 9 (Cntn6−/−). Multiple 
t test followed by Sidak–Bonferroni 
posttest. (c) The time female mice spent 
in the target quadrant and the opposite 
quadrant during the probe trial. n = 7 
(WT), 10 (Cntn6+/−), 8 (Cntn6−/−). Multiple 
t test followed by Sidak–Bonferroni 
posttest. (d) Number of entry to the target 
quadrant in the 60 s probe trial. Two-way 
ANOVA. Data represent as mean ± SEM. *, 
p < .05; ns, not significant
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et al., 2015; Kashevarova et al., 2014; Lee et al., 2000; Sakurai 
et al., 2009). Here, we found that the expression of Cntn6 in 
the hippocampal CA1 region increases during early postnatal 
stage, which is consistent with the data set provided by Allen 
Brain database (http://developingmouse.brain-map.org/gene/
show/33165), suggesting that Cntn6 is necessary for hippocam-
pal structural formation and function. In the Morris water maze 
task, we found Cntn6−/− male mice failed to reduce the escape 
time to reach the hidden platform on day 3 of the acquisition 
trials. Interestingly, although female Cntn6 mutant mice exhib-
ited similar performance as the wild-type mice in the acquisition 
trials, their spatial memory was mildly affected in the following 
probe trial. Moreover, female Cntn6 mutant mice also showed a 
decreased escape time to reach the platform in the spatial re-
learning test.

The structural integrity of hippocampus is crucial for spa-
tial learning and memory (Daugherty, Bender, Yuan, & Raz, 2016; 
Guderian et al., 2015; Penner & Mizumori, 2012). The so-called 
“trisynaptic loop” in hippocampus conducts synaptic transmission 
and consists of three major excitatory pathways: perforant path 
(from entorhinal cortex to DG), mossy fiber (from DG to CA3), and 
Schaffer collateral (from CA3 to CA1) (Andersen, Bliss, Lomo, Olsen, 
& Skrede, 1969; Inoue & Watanabe, 2014; Kesner, Lee, & Gilbert, 
2004; Knierim, 2015; Lee et al., 2017; Okada & Okaichi, 2009; Piatti, 
Ewell, & Leutgeb, 2013; Rolls & Kesner, 2006; Rongo, 2002). The 
CA1 region is also thought to help encode memory into a form that 
can be sent back to the entorhinal cortex via the subiculum for subse-
quent longer-term spatial memory and consolidation, but not short-
term acquisition or encoding processes (Lassalle, Bataille, & Halley, 
2000; Lee & Kesner, 2004; Rolls, 2015; Rolls, Dempere-Marco, & 

F IGURE  4 Cntn6 deficiency improves 
spatial relearning of female mice. (a) 
Representative traces of swimming plot 
in Morris water maze reversal task. (b) 
Quantitative analyses of the Morris water 
maze. Performance of Cntn6−/− male mice 
(2–4 months) in the spatial relearning 
phase of the Morris water maze task, as 
measured by escape time to platforms. 
n = 10 (WT), 14 (Cntn6+/−), 9 (Cntn6−/−). 
(c) Performance of Cntn6−/− female mice 
in spatial relearning. n = 8 (WT), 12 
(Cntn6+/−), 8 (Cntn6−/−). Data represent 
mean ± SEM. Two-way ANOVA followed 
by Bonferroni posttest. *, p < .05; ***, 
p < .001

http://developingmouse.brain-map.org/gene/show/33165
http://developingmouse.brain-map.org/gene/show/33165
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Deco, 2013; Rolls & Treves, 1994; Rolls & Xiang, 2006; Treves & 
Rolls, 1992). We found that Cntn6 is not expressed in the hippo-
campus of P0 mice, but is expressed in the CA1 region of P7 mice 
(Figure 1). Consistent with the expression pattern of Cntn6, the 
length and area size of mossy fiber projections in the SPB were sig-
nificantly increased in the hippocampus of Cntn6−/− mice, indicating 
that Cntn6 deficiency may impair the fasciculation of mossy fibers 
(Zuko et al., 2016). We therefore used the Morris water maze task 
to check whether the loss of Cntn6 affects hippocampus-regulated 
spatial learning and memory.

At first acquisition of spatial learning was evaluated via repeti-
tive training during which the mice use distinct spatial cues to swim 
from the starting position to the submerged platform. On day 3 of 
the acquisition training trails, the Cntn6−/− male mice took longer 
time to find the hidden platform than the wild-type male mice, in-
dicating that Cntn6−/− male mice learn more slowly but catch up at a 
later stage of the acquisition training trials (Figure 2). This increase 
in escape time on day 3 in Cntn6−/− male mice is not due to impaired 
motor coordination as their swimming speed was comparable with 
the wild-type male mice, and they performed equally well on day 1, 
2, and 4 of the acquisition trials (Figure 2). After the acquisition train-
ing, a single probe trial was performed on day 5 with the platform 
withdrawn from the water tank to assess their spatial memory. The 
Cntn6−/− male mice performed similar as the wild-type mice, while 
the spatial memory in female mutant mice was mildly compromised 
(Figure 3). Interestingly, in the relearning/reversal phase (day 7 to 10) 
when mice were forced to find the submerged platform at a different 
location, Cntn6+/− and Cntn6−/− female mice performed better than 
their wild-type littermates (Figure 4), while no difference was de-
tected in the male mice, suggesting that female Cntn6 mutant mice 
are less perseverative for the previous acquisition platform location 
and are more readily to adapt to the changed contingencies.

Contactin family belongs to immunoglobulin (Ig) domain-
containing cell adhesion molecules (IgCAMs) and contains six mem-
bers, CNTN1 (Contactin), CNTN2 (TAG-1), CNTN3 (BIG-1), CNTN4 
(BIG-2), CNTN5 (NB-2), and CNTN6 (NB-3) (Shimoda & Watanabe, 
2009). CNTN6 is structurally and functionally similar to the other 
five family members. CNTN4 and CNTN6 followed by the close ho-
mologue of L1 (CHL1) are located on chromosome 3p25-pter in the 
human genome (Kamei, Tsutsumi, Taketani, & Watanabe, 1998; Wei 
et al., 1998; Zeng et al., 2002). The deletion of this locus will cause 
3p deletion syndrome with symptoms of microcephaly, growth 
retardation, intellectual disability, and distinctive facial features 
(Dijkhuizen et al., 2006; Fernandez et al., 2004, 2008). These three 
genes are closely located on chromosome 6p~ in the mouse genome 
and exhibit similar expression pattern. Thus, we speculate that the 
mild effect of Cntn6 deficiency on learning and memory may be due 
to the compensational effects of other contactin family members for 
the in the Cntn6−/− brain.

Our results show that Cntn6 mutant mice exhibit sexual differ-
ence in spatial learning and memory impairments. The selection 
of female mice was random and did not exclude the factors of the 
menstrual cycle. Cntn6−/− male mice show slower spatial learning, 

while female mutant mice may be compromised in long-term mem-
ory retention. No sexual difference in hippocampus morphology 
or architecture has been discovered in the Cntn6 mutant mice. Sex 
hormones are involved in the cognitive differences between men 
and women, and sex-selective effects were also detected with 
regard to spatial learning and memory (Piber, Nowacki, Mueller, 
Wingenfeld, & Otte, 2018). Young males rodents also have an ad-
vantage in spatial learning in Morris water maze tasks (Brandeis, 
Brandys, & Yehuda, 1989). Male and female mice perform the same 
when they are 6 months old, suggesting that the sex difference in 
young animals may reflect a difference in maturation rate (Bucci, 
Chiba, & Gallagher, 1995). We also found that Cntn6−/− female mice 
have an advantage in spatial relearning during the reversal task 
compared with the wild-type female mice. Reversal learning is a 
form of cognitive flexibility, an executive process that allows the 
adaptive modification of behavior in response to changes (Rygula, 
Walker, Clarke, Robbins, & Roberts, 2010). It has been reported 
that abnormal hippocampal structure leads to inflexible behaviors 
in women (Vilà-Balló et al., 2017). We therefore speculate that the 
Cntn6 deficiency may specifically increase cognitive flexibility in 
female mice.

In conclusion, Cntn6 is expressed during postnatal hippocampal 
development. The absence of Cntn6 affects hippocampal spatial 
learning and memory. However, its cellular and molecular mecha-
nism need further study.
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