
A Data Colocation Grid Framework for Big Data Medical Image
Processing: Backend Design

Shunxing Baoa, Yuankai Huob, Prasanna Parvathanenib, Andrew J. Plassarda, Camilo
Bermudezc, Yuang Yaoa, Ilwoo Lyua, Aniruddha Gokhalea, and Bennett A. Landmana,b,c

aComputer Science, Vanderbilt University, Nashville, TN, USA 37235

bElectrical Engineering, Vanderbilt University, Nashville, TN, USA 37235

cBiomedical Engineering, Vanderbilt University, Nashville, TN, USA 37235

Abstract

When processing large medical imaging studies, adopting high performance grid computing

resources rapidly becomes important. We recently presented a "medical image processing-as-a-

service" grid framework that offers promise in utilizing the Apache Hadoop ecosystem and HBase

for data colocation by moving computation close to medical image storage. However, the

framework has not yet proven to be easy to use in a heterogeneous hardware environment.

Furthermore, the system has not yet validated when considering variety of multi-level analysis in

medical imaging. Our target design criteria are (1) improving the framework’s performance in a

heterogeneous cluster, (2) performing population based summary statistics on large datasets, and

(3) introducing a table design scheme for rapid NoSQL query. In this paper, we present a heuristic

backend interface application program interface (API) design for Hadoop & HBase for Medical

Image Processing (HadoopBase-MIP). The API includes: Upload, Retrieve, Remove, Load

balancer (for heterogeneous cluster) and MapReduce templates. A dataset summary statistic model

is discussed and implemented by MapReduce paradigm. We introduce a HBase table scheme for

fast data query to better utilize the MapReduce model. Briefly, 5153 T1 images were retrieved

from a university secure, shared web database and used to empirically access an in-house grid with

224 heterogeneous CPU cores. Three empirical experiments results are presented and discussed:

(1) load balancer wall-time improvement of 1.5-fold compared with a framework with built-in data

allocation strategy, (2) a summary statistic model is empirically verified on grid framework and is

compared with the cluster when deployed with a standard Sun Grid Engine (SGE), which reduces

8-fold of wall clock time and 14-fold of resource time, and (3) the proposed HBase table scheme

improves MapReduce computation with 7 fold reduction of wall time compare with a naïve

scheme when datasets are relative small. The source code and interfaces have been made publicly

available.

1. INTRODUCTION

When processing large medical imaging studies, adopting high performance grid computing

resources rapidly becomes important. An inexpensive solution is to locate the data on the

Correspondence to: Shunxing Bao.

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2018 March ; 10597: . doi:10.1117/12.2293694.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computational nodes to avoid the problem of saturating the network by copying data. For

example, the Apache Hadoop Ecosystem provides an extensive suite of tools to co-locate

storage and computation [1–3]. Hadoop is still not widely being integrated into medical

image processing (MIP), although it has shown great success in online commerce [4–6],

social media [7, 8], and video streaming [9–11]. Several recent medical image processing

(MIP) approaches have aimed to take advantage of this big data architecture for specific use

cases with MapReduce and distributed systems [12–15]. We recently presented a "medical

image processing-as-a-service" grid framework, Hadoop & HBase for Medical Image

Processing (HadoopBase-MIP), which integrates the Hadoop and HBase (a database built

upon Hadoop) for data colocation by moving computation close to medical image storage

[16–18]. This system is a general framework for MIP (e.g., structured data retrieval, access

to locally installed binary executables/system resources, structured data storage) without

commingling idiosyncratic issues related to MIP. However, the system has not yet proven

ease to use, and faces several key challenges for wide deployment as illustrated in Figure 1.

Specifically,

1. Heterogeneous hardware: Hadoop/HBase uses an approximately balanced data

allocation strategy by default. In [18], we observe that the throughput of a cluster

is low especially when it combines with different types and / or different number

of cores per machine. Thus, performance aware data collocation models are

needed.

2. Large dataset analysis: When large summary statistical analyses are requested,

huge volumes of data can saturate memory of one machine. Thus, one needs to

split a dataset into small chunks. Most chunks would be sent to where their data

is located and run in parallel on different machines, but few chunks would need

to move data via network. This process is called Map phase in MapReduce

computation paradigm [1, 2]. Once all intermediate results of all chunks are

collected on one machine, they are further processed and final result is generated,

this is depicted as Reduce phase [1, 2]. However, as presented in Figure 1 (B),

integrated processing of large datasets introduces dependencies with the number

of jobs (which is based on chunk size) and a way to optimize chunk size is

needed.

3. Rapid NoSQL query: HBase is a column based NoSQL database, namely all data

that are in same column are stored together [2, 19, 20]. Each row of table is a

multi-record that are based on total number of columns are defined with a unique

name as rowkey. If we store all medical images with other data like index, age

and sex into same column, then when we perform a query, linear search with

image traversal is required, which rapidly decreases the speed of search. On the

other hand, for HBase MapReduce, each single map needs to set a start/stop row

and a typical column. When doing subset datasets analysis, data is scattered in

HBase, and not all record between start/ stop row are needed. It is important to

structure data in a manner to skip unnecessary row and image traversal.

To resolve these challenges, we present a novel interface application program interface

(API) that is based on Hadoop and HBase. We make following contributions: 1) offer better

Bao et al. Page 2

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

data allocation in a heterogeneous cluster for faster processing through an off-line load

balancer; 2) describe an optimal criterion to find the splitting chunk size of large dataset; 3)

enable fast data query and boot up the of MapReduce performance by using a HBase table

scheme.

2. Methods

2.1 HadoopBase-MIP system interface

A simplified hierarchical data storage model of HBase is: Table -> Column family ->

Column qualifier -> data. An HBase table can contain many columns, and a column is

usually denoted as column family. We can define many column qualifiers to specify a

column family. Data is stored within qualifiers. Each row of the table has a unique rowkey.

To retrieve or delete a set of data, users need to specify (table name, rowkey, column family:
column qualifer). Alternatively, one can retrieve a sequences of values by assigning a table

rowkey range with relative column family and qualifier. A table is split into different

regions. If any size of regions exceeds a pre-set threshold, then regions would be split into

two new regions. This split process is activated through region split policy. Regions will be

dispatched to different machines of cluster for balancing issue.

Figure 2 presents our system interface overview and how they may help tackle three

challenges in section 1, which includes Upload, Retrieve, Load Balancer, MapReduce

Template, Delete and Monitor. All operations are command-line based software tool with

different parameters. Table 1 presents more detailed descriptions.

2.2 MapReduce model design and implementation for large datasets

As an exemplar use case, we consider processing of T1-weigthed brain MRI images and

construction of population specific averaged brain image. Creating a specific template for a

group of studies can help improve finding cortical folding pattern and reduce

misclassification of brain tissue [21–23]. In this subsection, we will present a MapReduce

computation model in HadoopBase-MIP to average a large dataset. Figure 3 shows a full

model pipeline to process a large dataset using MapReduce analysis. We first present a

model for the pipeline considering two important factors: wall clock time (what the user

directly experiences) and resource time (time elapsed time on each node when a process

starts across all nodes). We summarize the parameters and helper functions that affect both

wall-clock time and resource time theoretical model for finding optimizing map task chunk

size in Table 2.

In Map phase, η is lower limited by total number of CPU cores since we aim to use one

round to execute all map tasks. The upper bound is a confined by machine’s memory. In

Reduce phase, #job depends on η and further limited by machine’s memory. In summary,

the range of valid η is defined as η ∈ max # img · SizeSmall
mem , #img

core , mem
SizeBig . Equation (1) is an

overview wall-clock time model.

WTwall = WTinit + WTmap + WTshuffle + WTreduce + WTend (1)

Bao et al. Page 3

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where WTinit, WTend are constant, which denote MapReduce job initialization and

conclusion time. WTmap is wall time in Map phase that is presented in equation (2). It

depends on the longest map task, namely the worst case a Map phase is decided by task(s)

contain all large size of images.

WTmap = WTmapIn + WTmapProcess = discR(SizeBig · η) + bdw(SizeBig · η) + discW
(SizeBig · η) + avgANTS(η)

(2)

The worst-case time for shuffle phase depends on all unbuffered data that needs to be

retrieved from local disc, transfer through network and then transfer through band as shown

in equation (3).. WTreduce is wall time in Reduce phase as equation (4) demonstrated.

WTshuffle = discR(SizeGen) + bdw α · #img
η · SizeGen + discW(#img

η · SizeGen) (3)

WTreduce = WTreduceProcess + WTreduceOut = avgA #img
η + discR(SizeGen) + discW

(SizeGen)

(4)

Equation (5) displays resource time, which sums up all the time from map, shuffle and

Reduce phase as Figure 2 shows.

RT = RTmap + RTshuffle + RTreduce (5)

Similar with wall time, the worst-case resource time involve all big size image retrieval

either through local disc or network, and it sums up all map tasks’ images average time

presented in equation (6).

RTmap = RTmapIn + RTmapProcess = discR(# img · SizeBig) + discW(# img · SizeBig)

+ bdw β · #img
η η · SizeBig + #img

η · avgANTS(η)

(6)

RTshuffle is the resource shuffle time shown in equation (7), which includes all unbuffered

data loading via local disc, all data transfer through network and all data writing to

temporarily place to local disc in the end of shuffle. RTreduce is wall time in Reduce phase as

equation (8) demonstrated that is identical with WTreduce.

Bao et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RTshuffle = α #img
η · [discW(SizeGen) + discR(SizeGen)] +

bdw #img
η · SizeGen + discW #img

η · SizeGen

(7)

RTreduce = RTreduceProcess + RTreduceOut = avgANTS #img
η + discR(SizeGen)

+ discW(SizeGen)

(8)

2.3 NoSQL fast query – new table design scheme

In this subsection, we will discuss how to create age-specific template in HadoopBase-MIP.

As potential solution that is presented in Figure 1(C), we need to separate image data with

relative indexes (i.e., age, sex, demographics, etc.) into different column families. It is to be

noted that if they are in same column family using different column qualifiers, the query can

still not avoid image traversal. If users only have image files are needed to store and process,

in this case, we recommend users using file path/name as table rowkeys, and same rowkey

corresponds to one column family that stores image data, and another column family for

storing file size as index. Each file size record occupies only several bytes and can help

hierarchical region split policy decides the right split point [2, 17].

This table scheme is simple but useful especially for medical imaging data query to avoid

image traversal. Here are several benefits for HadoopBase-MIP interface using our proposed

table scheme. First, the separate index column family can help speed up checking if file

exists when uploading, retrieving and deleting data. Second, it can also collect group or

individual data and skip unnecessary record without traversing image data. Third, summary

statistical analysis based on subset of data, i.e., average all female’s brain within 20–40

years old, and we all image data in one column, and stores indexes in a separate column.

Both columns are in different column family. When lauching map tasks, our target is column

2 so that we can quickly filter which rowkeys are needed. Column 1 shares exactly same

rowkey with Column 2, thus we can do data retrieval within the map and keep the data

locality.

2.4 Experiment Design

Experiment cluster setups for both Hadoop and SGE are presented in Figure 4. Each job

takes one CPU core with 4 GB memory available. We estimate achievable empirical average

bandwidth as 70 Mb/second; disk read speed as 100 Mb/second with write speed as 65 Mb/

second. The metrics to verify our proposed methods are wall clock time and resource time.

SGE is empirically used as a baseline comparison.

2.4.1. Datasets—The experiment uses 5,153 T1 images retrieved from normal healthy

subjects gathered from [25].

Bao et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.4.2 Use case 1: Heterogenous cluster—In [18], we found that Hadoop would spent

more wall time than SGE if data is balanced allocated on heterogeneous machines. A new

HadoopBase-MIP load balancer result is shown at Table 2 based on number and the

performance of the CPU per machine. Our goal is to empirically verify how load balancer

can improve the performance of Hadoop in a heterogeneous cluster. We use the same

experimental design strategy as [18], which is compressing 5,153 T1 images to the .gz

format. Each job compresses only one NiFTI image with 2GB memory available and

generate one compressed image. The total input size of the images is 77.4 GB and the

processing generates 45.7 GB of compressed files as output. To explore the impacts of

processing time, we artificially increase the processing time by adding a sleep function

without any data retrieval to make the job length of the experiment take an additional 15 –

105 seconds (10 s, 25 s, 40 s, 55 s, 70 s, 85 s, 100 s, 115 s respectively) on a fixed dataset to

mimic different job processing requirements. Each machine was used as a Hadoop Datanode

and HBase RegionServer for data locality [26]. All machines were also configured using

SGE. An additional machine for both approaches serves as a cluster master.

2.4.3 Use case 2 - Large dataset analysis—We first used NiftyReg [27] to perform

rigid affine transformation on all images to register to MNI-305 space template [28, 29]. Our

goal is to average all 5,153 datasets using ANTS AverageImages tool. Empirically, the

largest file size in the dataset is SizeBig = 20 MB, the smallest file size is SizeSmall = 6

MB, and average generated files size is SizeGen = 21 MB. Based on cluster’s configuration,

we assessed the range of map chunk size of images as η ∈ [30,160], so we manually

increase the chunk size by 5 from 30, and empirically test both Hadoop and SGE scenarios.

2.4.4 Use case 3 – Rapid NoSQL query—This use case aims to verify the benefit of

using proposed table design scheme. Two major population based study features that we are

concerned to do average are: age and sex. There are 10 experiments whose setup can be seen

in Table 3. Two Hadoop approaches are deigned and compared. A naïve table scheme is to

store data of all images, index, sex and age information in a same column family. Our

proposed one is to save image data in a separate column family, while the reset index and

population info is in another column family. Two Hadoop scenarios are compared with

baseline SGE performance. We empirically set 50 images per chunk for one map task.

3. RESUltS

Use case 1: Heterogeneous cluster

Figure 3 presents the verification on both modeled and empirical result for Hadoop (before /

after using load balancer) and SGE. The wall-clock time performance in Figure 4(A) for

SGE is initially limited because of network saturation. As the processing time of a single job

increases, SGE performance is linearly increases with lessened network saturation. For both

Hadoop scenarios, initial overhead is high when job processing time is small. We can see

that as the job processing time increases, Hadoop without load balancing performs worse

than SGE, while Hadoop with load balancer performs better than SGE with similar trend.

Figure 4(B) shows an aggressive upper bound of theoretical upper bound for SGE; both

Bao et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hadoop scenarios spend less resource time than SGE, and Hadoop with load balancer

performs a little bit better when processing time is less than 40s.

Use case 2: Large datasets analysis

Figure 4 presents the validation of Hadoop and SGE on averaging 5,153 T1 images. SGE

spends 5-fold of wall time and up to 20-fold of resource time more than Hadoop that are

presented at Figure 4 (A, B). Figure 5 (C, D) shows the empirical wall time model has same

trend with its theoretical model. When the map task chunk size is 50–60, we can observe an

optimized wall time. The Hadoop resource model shows an aggressive upper bound, and

reveals when chunk size increases to more than 80, resource time are similar. The empirical

Hadoop result shows when chunk size more than 80, the resource time becomes similar. The

qualitative difference between 5,153 images average and MNI-305 space is shown in Figure

5.

3.3 Use case 3: Rapid NoSQL query

When averaging large subsets like all female and all male’s T1 images, SGE spends about 3-

fold wall time and 6-fold resource time more than proposed Hadoop time. As the size of

subsets decreases, we can see that SGE’s wall / resource time also decreases, and proposed

Hadoop table scheme design also generates similar decreasing trend, and use less wall /

resource time than SGE. However, naïve table design scheme leads to opposite trend, for

example, averaging all male’s T1 images within 40–60 years old cost naïve Hadoop scenario

namely when subset’s size is small, it spends 6.5-fold wall time more than SGE and about 9-

fold more than proposed Hadoop, and 7-fold resource time more than SGE with 12-fold

more than proposed Hadoop.

4. Conclusion and discussioN

The paper presents HadoopBase-MIP backend design which is a data Colocation Grid

Framework for Big Data MIP. We use three use cases to validate the performance and the

usage of the system interface, all cases are compared with SGE. For heterogamous cluster

case, SGE’s trend reveals that its performance will be degraded by network saturation. When

network saturation’s impact decreases, Hadoop without load balancer performs worse than

SGE due to low utilization of cluster CPU resource. Hadoop with load performance can help

reduce this resource overload / starvation issue. The reason of both Hadoop scenarios wall

time is high when job processing time is very small reveals when data processing type is

high read / write type, the write performance would make congestion of the whole process.

For large dataset analysis case, image averaging analysis is a read intensive with short

computation processing. SGE’s performance stuck due to data movement via network.

Combining theoretical wall time with resource time model for Hadoop summary statistic, we

can conclude 50–60 optimal map task chunk. For rapid NoSQL query case, SGE’s

performance is correlated with the subsets size that needs to do averaged, since there is no

query efficiency issue, all data has to be retrieved from network storage to cluster

computation node. For naïve Hadoop table scheme, it costs more time than proposed

Hadoop and SGE especially when subsets size is relatively small. The reason for this is this

Bao et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

scheme would force query traverse image data that is not needed which takes more time than

proposed Hadoop scheme that skip small index without image traversal. In summary,

HadoopBase-MIP system provides a complete backend interface developed upon built in

Hadoop and HBase API.

Acknowledgments

This work was funded in part by NSF CAREER IIS 1452485 and in part by the National Institute on Aging
Intramural Program. We are appreciative of the many anonymous volunteers who contributed their time and data to
create the de-identified imaging resources used in this study. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
NSF. This study was in part using the resources of the Advanced Computing Center for Research and Education
(ACCRE) at Vanderbilt University, Nashville, TN. This project was supported in part by ViSE/VICTR VR3029 and
the National Center for Research Resources, Grant UL1 RR024975-01, and is now at the National Center for
Advancing Translational Sciences, Grant 2 UL1 TR000445-06.

References

1. Apache Hadoop Project Team. The Apache Hadoop Ecosystem.

2. Apache HBase Team. Apache hbase reference guide.

3. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of
the ACM. 2008; 51(1):107–113.

4. Jiang, J., Lu, J., Zhang, G., et al. Scaling-up item-based collaborative filtering recommendation
algorithm based on hadoop; 2011 IEEE Word Congress; p. 490-497.

5. Walunj, SG., Sadafale, K. Proceedings of the 2013 annual conference on Computers and people
research. ACM; 2013. An online recommendation system for e-commerce based on apache mahout
framework; p. 153-158.

6. Zhao Z-D, Shang M-S. User-based collaborative-filtering recommendation algorithms on hadoop.
WKDD'10. :478–481.

7. Walker, S John. Big data: A revolution that will transform how we live, work, and think. Taylor &
Francis; 2014.

8. Pennacchiotti, M., Gurumurthy, S. Investigating topic models for social media user
recommendation. Proc. of the 20th international conference companion on World wide web; p.
101-102.

9. Garcia, A., Kalva, H., Furht, B. A study of transcoding on cloud environments for video content
delivery; Proceedings of the 2010 ACM multimedia workshop on Mobile cloud media computing;
p. 13-18.

10. Ryu, C., Lee, D., Jang, M., et al. Cloud Computing Technology and Science (CloudCom). Vol. 2.
IEEE; 2013. Extensible video processing framework in apache hadoop; p. 305-310.

11. Tan, H., Chen, L. Multimedia and Expo (ICME). IEEE; 2014. An approach for fast and parallel
video processing on Apache Hadoop clusters; p. 1-6.

12. Jai-Andaloussi, S., Elabdouli, A., Chaffai, A., et al. Telecommunicaions (ICT), 2013 20th
Internaional Conference on. IEEE; Medical content based image retrieval by using the Hadoop
framework; p. 1-5.

13. Sagiroglu S, Sinanc D. Big data: A review. :42–47.

14. Taylor RC. An overview of the Hadoop/MapReduce/HBase framework and its current applications
in bioinformatics. BMC bioinformatics. 2010; 11(Suppl 12):S1.

15. Yang, C-T., Chen, L-T., Chou, W-L., et al. Implementation of a medical image file accessing
system on cloud computing; Comuptational Science and Engineering (CSE), 2010 IEEE 13th
International Conference on; p. 321-326.

16. Bao, S., Landman, B., Gokhale, A. Cloud Engineering (IC2E), 2017 IEEE International
Conference on. IEEE; Algorithmic Enhancements to Big Data Computing Frameworks for
Medical Image Processing; p. 13-16.

Bao et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

17. Bao, S., Plassard, AJ., Landman, BA., et al. Cloud Engineering Principles and Technology
Enablers for Medical Image Processing-as-a-Service; Cloud Engineering (IC2E), 2017 IEEE
International Conference on; p. 127-137.

18. Baoa, S., Weitendorfa, FD., Plassarda, AJ., et al. Theoretical and empirical comparison of big data
image processing with apache hadoop and sun grid engine; SPIE Medical Imaging. International
Society for Optics and Photonics 2017 on; p. 101380B-101380B-8.

19. Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems (TOCS). 2008; 26(2):4.

20. Dimiduk N, Khurana A. [HBase in action] Manning. 2013

21. Sanchez CE, Richards JE, Almli CR. Age-specific MRI templates for pediatric neuroimaging.
Developmental neuropsychology. 2012; 37(5):379–399. [PubMed: 22799759]

22. Wilke M, Holland SK, Altaye M, et al. Template-O-Matic: a toolbox for creating customized
pediatric templates. Neuroimage. 2008; 41(3):903–913. [PubMed: 18424084]

23. Yoon U, Fonov VS, Perusse D, et al. The effect of template choice on morphometric analysis of
pediatric brain data. Neuroimage. 2009; 45(3):769–777. [PubMed: 19167509]

24. Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight j. 2009; 2:1–35.

25. Huo, Y., Aboud, K., Kang, H., et al. International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer International Publishing; 2016. Mapping lifetime brain
volumetry with covariate-adjusted restricted cubic spline regression from cross-sectional multi-site
MRI; p. 81-88.

26. Apache HBase Team. Apache hbase reference guide. 2016. http://hbase.apache.org/book.html

27. Ourselin S, Roche A, Prima S, et al. Block matching: A general framework to improve robustness
of rigid registration of medical images. MICCAI 2000. 1935:557–566.

28. Evans, AC., Collins, DL., Mills, S., et al. Nuclear Science Symposium and Medical Imaging
Conference. IEEE; 1993. 3D statistical neuroanatomical models from 305 MRI volumes; p.
1813-1817.

29. Mazziotta J, Toga A, Evans A, et al. A probabilistic atlas and reference system for the human
brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the
Royal Society of London B: Biological Sciences. 2001; 356(1412):1293–1322. [PubMed:
11545704]

Bao et al. Page 9

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hbase.apache.org/book.html

Figure 1.
Use cases for three main challenges. (A) If a traditional cluster model is used, average

throughput would be seen (red dash), which would leave some machines starved (e.g. A, B),

while others overloaded (e.g. C, D and E). Hence, a traditional approach will degrade the

overall execution time due to those overloaded/starved cores. (B) The time to run a large

dataset depends on total number of jobs and the longest map job to take. The total number of

jobs should be neither too large or too small. (C) HBase is not designed for storing image

data given variability of size and volume of medical imaging studies. If information like

age / sex / genetics are stored in same column with image data, image traversal is

unavoidable, which degrades the search efficiency.

Bao et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
HadoopBase-MIP system interface overview. Except cluster monitoring, all operations are

extended.

Bao et al. Page 11

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
MapReduce model implementation for constructing population specific brain MRI

templates.

Bao et al. Page 12

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Experiment cluster setup and Data allocation for HadoopBase-MIP. Two different systems

(eight machines with 12 slower cores and four machines with 32 fast cores) are used in

cluster before applying the load balancer, each machine contains similar amount of image

data. After using the load balancer, the data allocations match the ratio #CPU*MIPS.

Bao et al. Page 13

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.

Bao et al. Page 14

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.

Bao et al. Page 15

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Qualitative results for summary statistics analysis on large datasets and age / sex-specific

image averaging analysis.

Bao et al. Page 16

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure-6.
Proposed table scheme design vs. naïve scheme vs. SGE

Bao et al. Page 17

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bao et al. Page 18

Table 1

HadoopBase-MIP system interface description

Operation Interface Parameter Description

Upload - Table name: will create a table if it does not exist.

- A text file path for a file contains groups of <column family, qualifier> - to create / alter a table scheme.

- A text file path for a file contains all images’ tuple of <system file path, file unique name, column family,
qualifier>; File unique name will be used as rowkey.

- Overwrite – Boolean value. It helps update images or avoid uploading duplicate data.

- Region split policy : default policy, hierarchical policy [2]

- Pre-split: Boolean value. It is only valid when creating a new table.

- A text file path for a file contains all rowkeys for pre-split a table.

Retrieve - Table name

- Rowkey: set this value if retrieval is image based

- Start rowKey and / or stop row key: set them for a retrieval range, if both keys are empty, then retrieval is
whole table column based.

- Column family

- Column qualifier

- A text file path for a file contains all data retrieval destination path.

- A text file path for a file contains all row keys need to skip to retrieve.

Delete All options are same with Retrieve except a text file path for a file contains all data retrieval destination path.

Monitor Hadoop built in job monitoring tool.

MapReduce Template - Table name: two names, one for source table to read data, another one for target table to write back result.

- Column family: three values, one for data query (will introduce more in section 2.3), one for image data
retrieval, the last one for target table.

- Column qualifier: three correspondence value with column family.

- A text file path for a file contains all start / stop row key pair, each pair is input for a map job.

- A text file path for a file contains all row keys need to skip to retrieve.

- Analysis level – three options, image-based [18], dataset based [17] and large dataset based (will introduce
more in section 2.2 & 2.3).

Load Balancer HBase default built in balancer is to balance the total number of region on each server. Our proposed load balancer is
offline greedy allocation. First it finds all regions and images on each serve; second, moving images based on region;
finally, the data allocation ratio of each machine meets the ratio of (total number of CPU * Million instructions per
seconds (MIPS)) per nodes. MIPS is calculated by Linux perf and is varied based on different types of CPU.

- Table name

- Column family

- Column qualifier

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bao et al. Page 19

Table 2

Model of wall time and resource time for average analysis parameters definition

Definition Description

#img The total number of images that are needed to be averaged.

#job The total number of map jobs that are split from large datasets.

η The total number of images per map task, which is the chunk size. It helps find the total number of map jobs: #job =
#img/η. This is the variable that we are trying to find an optimizing value. We assume there is no local weighted
concern in split map tasks, it means all map tasks share the same value of η.

SizeBig Maximum input file size of datasets, we use it for worst case scenario estimation.

SizeSmall Minimum input file size of datasets, we use it for upper and lower bound of η.

SizeGen Maximum output file size that is generated by image averaging software.

Bandwidth The bandwidth of cluster.

VdiscR,VdiscW Data read / write speed of local hard drive.

#region The total number of regions of a table in cluster.

mem The total memory of one machine. We presume all machines have same amount of memory.

core The total number of CPU cores of the cluster.

α When map tasks generate intermediate results, part of them are stored in network buffer, and others are flushed into local
temporarily and transfer to reduce task’s shuffle phase later. α is unbuffered ratio of map tasks’ results due to limit of
heap size and cannot be held in memory.

β β is an experimental empirical parameter to represent the ratio of rack-local map task for Hadoop scenario, namely the
data is loaded/stored via network. We empirically get its value with 0.9.

discR(x) discW(x) x is the size of a file. The function is used to calculate the time to read / write a file from / to local disc, namely discR(x) =
x/VdiscR; discW(x) = x/VdiscW

bdw(x) x is the size of a file. The function is used to calculate the time to transfer through network, namely bdw(x) = x/
Bandwidth

avgANTS(η) x is the size of a file. We use ANTS AverageImages [24] to empirically test average summary statistics analysis. We also
do several profiling experiments to model this image processing. However, it is hard to conclude a concrete model for
ANTS average to match all profiling results. We can prove the total number of file sizes that are needed to be averaged
(η·x) grows much slower than chunk size η itself. And the best solution is doing all average on 1 CPU. We found a worse
case of avgANTS(η) = 0.4η + 5 to illustrate this process.

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bao et al. Page 20

Ta
b

le
 3

H
ad

oo
p

v.
s.

 S
G

E
 e

xp
er

im
en

t c
lu

st
er

 s
et

up
 w

ith
 s

am
e

m
em

or
y

al
lo

ca
tio

n
an

d
fi

xe
d

da
ta

se
ts

.

E
xp

er
im

en
t

1
2

3
4

5
6

7
8

9
10

A
ge

(y
ea

rs
)

A
ll

4–
20

20
–4

0
40

–6
0

>
60

F
em

al
e(

#p
eo

pl
e)

23
70

11
57

65
1

23
0

33
2

M
al

e(
#p

eo
pl

e)
21

20
69

8
64

8
28

0
49

4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 June 07.

	Abstract
	1. INTRODUCTION
	2. Methods
	2.1 HadoopBase-MIP system interface
	2.2 MapReduce model design and implementation for large datasets
	2.3 NoSQL fast query – new table design scheme
	2.4 Experiment Design
	2.4.1. Datasets
	2.4.2 Use case 1: Heterogenous cluster
	2.4.3 Use case 2 - Large dataset analysis
	2.4.4 Use case 3 – Rapid NoSQL query

	3. RESUltS
	Use case 1: Heterogeneous cluster
	Use case 2: Large datasets analysis
	3.3 Use case 3: Rapid NoSQL query

	4. Conclusion and discussioN
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 3
	Figure 3
	Figure 4
	Figure 5
	Figure-6
	Table 1
	Table 2
	Table 3

