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Abstract

Several microRNAs (miRNAs) have been suggested as novel biomarkers for diagnosing

gastric cancer (GC) at an early stage, but the single-marker strategy may ignore the co-reg-

ulatory relationships and lead to low diagnostic specificity. Thus, multi-target modular diag-

nostic biomarkers are urgently needed. In this study, a Zsummary and NetSVM-based method

was used to identify GC-related hub miRNAs and activated modules from clinical miRNA

co-expression networks. The NetSVM-based sub-network consisting of the top 20 hub miR-

NAs reached a high sensitivity and specificity of 0.94 and 0.82. The Zsummary algorithm iden-

tified an activated module (miR-486, miR-451, miR-185, and miR-600) which might serve as

diagnostic biomarker of GC. Three members of this module were previously suggested as

biomarkers of GC and its 24 target genes were significantly enriched in pathways directly

related to cancer. The weighted diagnostic ROC AUC of this module was 0.838, and an opti-

mized module unit (miR-451 and miR-185) obtained a higher value of 0.904, both of which

were higher than that of individual miRNAs. These hub miRNAs and module have the poten-

tial to become robust biomarkers for early diagnosis of GC with further validations. More-

over, such modular analysis may offer valuable insights into multi-target approaches to

cancer diagnosis and treatment.

Introduction

Gastric cancer (GC) is one of the most common malignancies and the second cause of cancer

mortality worldwide, posing a major risk to public health [1–2]. Due to the difficulties in early

diagnosis, the overall five-year survival rate after surgery is only 20%-30% in advanced-stage

GC patients [3]. Although chemotherapy may improve the survival rate of GC patients after

surgery, the efficacy of chemotherapy is limited by metastasis and drug resistance [4–6]. Sev-

eral novel chemotherapeutic and molecular targeted agents, including irinotecan (CPT-11),
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taxanes, oxaliplatin, trastuzumab, sunitinib, and bevacizuma, have been used to improve the

outcomes of GC patients, but the prognosis of advanced or recurrent GC still remains unsatis-

factory [7]. Therefore, it is crucial to identify novel biomarkers for diagnosing GC at an early

stage.

As with many other complex diseases, the occurrence of GC also owes to the disturbance of

multiple genes at the global molecular network level [8–9]. The current single-target diagnostic

or therapeutic strategies may ignore the interactions between several molecular targets and lead

to a low efficacy. Therefore, multi-target modular network research may contribute significantly

to more rational and effective diagnostic and therapeutic strategies [10]. A lot of network-based

studies have attempted to find module biomarkers or targets of GC at gene expression, mRNA

transcription or microRNA (miRNA) levels [11–12], but how to quantificationally identify GC-

related activated modules as early diagnostic biomarkers still remains challenging.

MiRNAs are small non-coding RNAs of 18–24 nucleotides that regulate gene expression by

mediating mRNA degradation or repression of mRNA translation [13]. It has been shown that

miRNAs can serve as biomarkers, drug targets, or tumor suppressors by regulating the expres-

sion of cancer-related genes [14]. Many miRNAs have been found to be related with GC [15–

16], and miRNAs may represent the bridge between Hp-related gastritis and GC development

[17]. Although GC-related miRNA networks have been analyzed [18], there is still a lack of

diagnostic miRNA module biomarkers for GC.

In this study, based on miRNA co-expression networks, Zsummary and Support Vector

Machine (SVM) algorithms were used to systematically identify the hub miRNAs and activated

modules that could potentially be used as GC biomarkers.

Materials and methods

Normal and GC miRNA expression datasets

The miRNA expression data of GC were obtained from Gene Expression Omnibus database

(GEO) with accession number of GSE7390, which were originated from a study by Kim et al

[19]. The custom-designed Agilent microarray contained 1,667 unique miRNA sequences

across all species and each probe had 4 replicates. In this study, human-related unique miR-

NAs were selected. The miRNA expression data of 90 GC patients were used as the reference

group (GC group, S1 Table), another replicated datasets of the same samples were used as the

test group (Rep group, S2 Table), and the miRNA expression data from 34 healthy volunteers

were considered as the normal control group (Norm group, S3 Table).

Detection of miRNA co-expression modules

The construction of miRNA co-expression networks was implemented in the WGCNA R

package [20]. A matrix of pairwise correlations was constructed between all pairs of miRNA

probes by using appropriate soft-thresholding. And then, topological overlap measure (TOM)

and Dynamic Hybrid Tree Cut algorithm [21] were used to detect the miRNA co-expression

modules, and each module was assigned a color. Appropriate soft-thresholds were selected for

each dataset when the network met the best scale-free topology criterion, and the minimum

module size was set at 3.

Module-based comparison among different groups

In order to compare the miRNA co-expression patterns at network module level, we used the

module-based consensus ratio (MCR) to illustrate the module similarities across different

groups [22]. The MCR was defined as the ratio of significantly overlapped module pairs to all
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the module pairs between two groups. The significantly overlapped module pairs were deter-

mined based on a Fisher’s exact test (p< 0.05). The MCR is defined by Eq 1, where NM repre-

sents the number of modules, a and b represent two different groups, and NMoverlap is the

number of module pairs with a p< 0.05.

MCRa;b ¼
NMoverlap

NMa � NMb
� 100% ð1Þ

Identification of miRNA module biomarkers

We adopted a Zsummary statistic to identify the preserved and activated modules related to GC.

The Zsummary value is composed of 4 statistics related to density and 3 statistics related to con-

nectivity, which can quantitatively assess whether the co-expression patterns of a specific mod-

ule in the reference group is preserved or disrupted in the test group. The equation of Zsummary

is listed below Eq 2, where a Zsummary� 2 indicates preservation or reproducibility, while a

negative Zsummary value indicates disruption or variation [23]. Compared with the Norm

group, modules with a negative Zsummary value in the GC group would be considered activated

modules, which might potentially be used as the miRNA module biomarkers of GC.

Zsummary ¼
medianðZmeanCor;ZmeanAdj;ZpropvarExp l;ZmeamKMEÞ þmedianðZcor:KIM;Zcor:KME;Zcor:corÞ

2
ð2Þ

SVM-based identification of core miRNAs and sub-network

In order to identify the core miRNAs and sub-network as potential GC biomarkers, the NET-

work constrained Support Vector Machines (NetSVM) Cytoscape App was used in our study

[24]. As an extension of the conventional SVM, NetSVM exploits the decision hyperplane to

predict the classification of genes, which can be used to identify biologically meaningful net-

work biomarkers from network and gene expression data. Along with the core nodes and sub-

network, NetSVM also reports the sensitivity, specificity, ROC curve and AUC values for the

classification. In our study, the GC miRNA expression data and network data were entered

into the NetSVM Cytoscape App, and the top miRNAs and sub-network with higher weights

were identified.

Evaluation of the diagnostic performance of module biomarkers

Based on the expression level of the miRNAs in the GC and Norm groups, the area under the

ROC curve (AUC) was used to evaluate the diagnostic performance of the miRNA module

biomarkers. All analyses were performed using SPSS 19.0 software. For the modular biomark-

ers, the original single miRNAs’ expression value were combined, and the mean value was

used for the ROC curve analysis. The NetSVM-based weights were taken into account when

calculating the mean expression value of miRNA modules. The weighted value was used as the

summary score for the diagnostic tests. Optimal cut-off value was set as the threshold with the

highest Youden’s index (Sensitivity + Specificity -1).

Prediction of the target genes of miRNA modules

After the identification of GC activated miRNA modules, we predicted their target genes based

on three independent databases, i.e. Targetscan Human 7.1 (http://www.targetscan.org/),

miRDB (http://www.mirdb.org/miRDB/), and miRTarBase (http://mirtarbase.mbc.nctu.edu.

tw/). The GC activated miRNA modules were loaded into the three databases and the back-

ground species was selected as “human”. Genes that were predicted by all of the three data-

bases were considered as target genes for further analysis.
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Functional annotation of miRNA modules

To characterize the functions of activated miRNA modules and further investigate the mecha-

nisms underlying the development of GC, we performed GO and KEGG pathway enrichment

analysis by using the Database for Annotation, Visualization and Integrated Discovery

(DAVID) [25]. For each module, an over-representation of a functionally relevant annotation

was defined by a modified Fisher’s exact p-value with an adjustment for multiple tests using

the Benjamini method. GO terms and pathways with a p< 0.05 were considered significant.

Results

GC miRNA co-expression network and modules

As described in the Methods section, the WGCNA analysis was performed to construct the

GC miRNA co-expression network and detect modules. Based on the scale-free topology

model computation, the soft threshold power was set at β, of which was appropriate for the

network construction (S1 Fig). The hierarchical clustering procedure found 16 miRNA co-

expression modules, and each module corresponded to a branch of the resulting clustering

tree and was labeled a unique color (Fig 1A). The network hotmap of all miRNAs is provided

in S2 Fig. The detailed information about the miRNA module membership labeled by colors

and numbers can be found in S1 Table. The average size (the number of miRNAs) of GC mod-

ules was 20, ranging from 3 to 120.

Module similarities

To investigate the miRNA co-expression patterns of GC, Rep and Norm groups at network

module level, we compared their module similarities based on MCR. There were 20 and 33

modules in the Rep and Norm groups, respectively. Compared with the Rep and Norm groups,

the consistencies in miRNA composition and module pairs with a certain number of overlap-

ping miRNAs in the GC group are presented in Fig 1B and 1C. It showed that the number of

GC-Rep overlapping module pairs was much larger than that of GC-Norm overlapping mod-

ule pairs. Almost all the miRNA modules in the GC group overlapped with those in the Rep

group, particularly Mod_8 completely overlapped with Mod_rep_6, reflecting the reproduc-

ibility of modules. The MCRs for pairwise comparisons were 5.0% (GC vs. Rep) and 2.8% (GC

vs. Norm), respectively, indicating significant variation of the miRNA co-expression pattern in

GC patients.

Zsummary-based module preservation

In order to assess whether the miRNA modules in the GC group were preserved, the Zsummary

values of each module were calculated with Rep as the test group. As mentioned above, a

Zsummary� 2 indicates module preservation, and a Zsummary� 10 represents strong preserva-

tion [23] or module reproducibility. Fig 2A lists the Zsummary values of all the miRNA modules

in the GC group compared with the Rep group. Except Mod_9, Mod_11, Mod_16, all the

other modules were preserved, and two modules (Mod_1 and Mod_2) were strongly preserved

in the GC group.

Zsummary-based module biomarker

Compared with the Norm group, disruption or rewiring of the miRNA co-expression modules

in the GC group might reflect the pathogenesis of GC. We still used Zsummary to assess the dis-

ruption of miRNA modules. Modules with a negative Zsummary were considered as the acti-

vated modules of GC. Fig 2B lists the Zsummary values of all the miRNA modules in the GC
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Fig 1. Hierarchical cluster modules of GC group and their similarities with those of Rep and Norm groups. A. The

hierarchical cluster tree (dendrogram) of GC group; each major tree branch represents a module, and each module is

Identification of miRNA-module diagnostic biomarkers for gastric carcinoma
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group compared with the Norm group. Two modules, i.e. Mod_14 and Mod_16, had negative

Zsummary values, but Mod_16 was activated module in the GC v.s. Rep comparison, so only

Mod_14 (Fig 3D) was chosen as the activated module of GC v.s. Norm, which was viewed as a

potential miRNA module biomarker for GC. Modules with major variations of the Zsummary

values when the GC group was compared with the Norm group or Rep group are also visual-

ized in Fig 3.

NetSVM-based core miRNAs and sub-network

Based on the miRNA expression levels and network interactions, the NetSVM [24] was used to

identify the core miRNAs and sub-network as the potential GC biomarkers. Compared with

the Norm group, the weights of all the miRNAs in networks were obtained (S4 Table). The

top 20 up- or down-regulated miRNAs and their attributed modules are listed in Table 1.

Among the top 40 miRNAs, MiR-424 and MiR-146a had the largest weights in the up- and

down-regulated miRNAs, respectively; and 70% of these miRNAs belonged to a specific mod-

ule. The members of the biomarker module (Mod_14), miR-486 and miR-451, ranked 14

and 20 of the up-regulated miRNAs, respectively (Fig 3). Taken the up- and down-regulated

miRNAs together, a sub-network of the top 20 miRNAs (13 up-regulated and 7 down-regu-

lated) was constructed (Fig 4), which had a high sensitivity and specificity of 0.94 and 0.82,

respectively.

The diagnostic performance of the GC module biomarker

The diagnostic performance of the biomarker Mod_14 and its miRNA members were evalu-

ated based on the ROC AUC value (Fig 5A, S5 Table). The AUC value of the biomarker

Mod_14 was 0.838, with optimal specificity of 0.941 and sensitivity of 0.689 (Youden’s index =

0.63) at the cut-off value of 0.241, which was much higher than that of any individual miRNAs.

Besides, we also evaluated the diagnostic performance of the combinations of certain Mod_14

labeled with a color below the dendrogram. B. Similarity of modules between GC and Rep groups; each row of the

table corresponds to GC modules (labeled by color and labels), and each column corresponds to Rep modules.

Numbers in the table indicate gene counts in the intersection of the corresponding modules of GC and Rep groups.

Coloring of the table encodes -log (p), with p being the Fisher’s exact test p-value for the overlap of the two modules.

The darker the red color is, the more significant the correlation is. C. Similarity of modules between GC and Norm

groups; the table legend is the same as (B).

https://doi.org/10.1371/journal.pone.0198445.g001

Fig 2. Zsummary-based preservation and disruption of GC modules. A. The Zsummary preservation statistics (y-axis) of

the GC modules compared with Rep group. The dashed blue and green lines (Zsummary = 2 and 10) indicate moderate

and strong preservation thresholds, respectively. B. The Zsummary disruption statistics (y-axis) of the GC modules

compared with Norm group. Modules with a negative Zsummary value are considered as activated modules.

https://doi.org/10.1371/journal.pone.0198445.g002
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members (Fig 5B, S5 Table). We found that the combination of miR-451 and miR-185

reached an even higher AUC value of 0.904 (Youden’s index = 0.782) at the cut-off value of

0.26, with a sensitivity of 0.811 and a specificity of 0.971.

Target genes and biological functions of the miRNA module biomarker

The target genes of the biomarker Mod_14 were predicted based on three databases. As men-

tioned in the Methods section, only those that were predicted by all of the three databases were

considered as target genes. A total of 24 target genes of Mod_14 were obtained, of which 4, 1, 6

and 13 genes belonged to miR-486, miR-151, miR-600 and miR-185, respectively. The network

of Mod_14 miRNAs and their target genes are shown in Fig 6.

To characterize the biological functions of the identified biomarker module Mod_14, we

obtained its GO functions and pathways through the target gene enrichment analysis. The

Fig 3. The representative modules with major variations of the Zsummary values. A-C. The preserved modules Mod_2,

Mod_5, and Mod_7. D. The activated module (biomarker module) Mod_14; the two red nodes miR_486 and miR_451 are

included in the list of the top 20 up-regulated miRNAs.

https://doi.org/10.1371/journal.pone.0198445.g003
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Table 1. The top 20 miRNAs and their attributed modules based on the NetSVM weights.

Up-regulated miRNAs SVM weights Attributed modules Down-regulated miRNAs SVM weights Attributed modulse

hsa-miR-424 0.2001 Mod_2 hsa-miR-146a -0.2201 Mod_1

hsa-miR-503 0.1984 Mod_2 hsa-miR-376a -0.2149 Mod_3

hsa-miR-224 0.1888 Mod_1 hsa-miR-647 -0.1615 /

hsa-miR-342 0.1794 Mod_11 hsa-miR-650 -0.1605 Mod_1

hsa-miR-767-5p 0.1586 Mod_11 hsa-miR-375 -0.1514 Mod_8

hsa-miR-577 0.1575 / hsa-miR-504 -0.1491 /

hsa-miR-486 0.1570 Mod_14 hsa-miR-514 -0.1467 /

hsa-miR-10a 0.1545 Mod_1 hsa-miR-625 -0.1430 Mod_1

hsa-miR-545 0.1542 / hsa-miR-642 -0.1392 /

hsa-miR-548d 0.1531 Mod_16 hsa-miR-517 -0.1335 /

hsa-miR-208 0.1529 / hsa-miR-660 -0.1277 Mod_2

hsa-miR-223 0.1519 Mod_1 hsa-miR-365 -0.1250 Mod_1

hsa-miR-579 0.1485 / hsa-miR-203 -0.1231 Mod_8

hsa-miR-635 0.1445 Mod_1 hsa-miR-133a -0.1231 Mod_13

hsa-miR-320 0.1439 / hsa-miR-299-5p -0.1225 Mod_3

hsa-let-7i 0.1433 Mod_1 hsa-miR-661 -0.1223 /

hsa-miR-582 0.1383 Mod_3 hsa-miR-95 -0.1213 Mod_1

hsa-miR-326 0.1359 / hsa-miR-629 -0.1197 Mod_7

hsa-miR-484 0.1353 Mod_4 hsa-miR-155 -0.1146 Mod_1

hsa-miR-451 0.1296 Mod_14 hsa-miR-551b -0.1143 /

The bold letters represent the top 20 miRNAs when both up- and down-regulated miRNAs are taken together.

https://doi.org/10.1371/journal.pone.0198445.t001

Fig 4. The sub-network comprised of the top 20 up- and down-regulated miRNAs. The node color (red denotes up-

regulation and green denotes down-regulation) is set based on the log2 fold change of expression between GC and Norm

groups.

https://doi.org/10.1371/journal.pone.0198445.g004
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significantly enriched GO terms and pathways with their p values are listed in Fig 6. As shown

in Fig 6, the most significantly enriched pathway and Go term were focal adhesion and cyto-

plasm, and pathways directly related to cancer were also found, such as the viral carcinogenesis

pathway.

Discussion

There is increasing evidence that the occurrence of complex diseases, including cancers, may

be attributed to the perturbation of complex molecular networks, and both diseases and drug

actions have a modular basis [26–27]. Module-based methods have promoted the discovery of

cancer biomarkers and drug targets [28–29]. In this study, with the use of a Zsummary-based

Fig 5. The diagnostic performance of the biomarker module Mod_14 and its individual miRNAs or combinations

based on the ROC curves. A. ROC curves of Mod_14 and its individual miRNAs. Red line, Mod_14 (AUC = 0.838,

sensitivity = 68.9%, specificity = 94.1%); Blue line, miR_486 (AUC = 0.747, sensitivity = 82.2%, specificity = 58.8%);

Green line, miR_451 (AUC = 0.819, sensitivity = 72.2%, specificity = 91.2%); Orange line, miR_185 (AUC = 0.751,

sensitivity = 76.7%, specificity = 67.6%); Greenyellow line, miR_600 (AUC = 0.487, sensitivity = 18.9%,

specificity = 85.3%). B. ROC curves of miRNA combinations in Mod_14. Red line, combination of miR_451 and

miR_185 (AUC = 0.904, sensitivity = 81.1%, specificity = 97.1%); Blue line, combination of miR_451, miR_486 and

miR_185 (AUC = 0.838, sensitivity = 67.8%, specificity = 94.1%); Green line, combination of miR_451 and miR_486

(AUC = 0.550, sensitivity = 85.6%, specificity = 26.5%); Orange line, combination of miR_486 and miR_185

(AUC = 0.811, sensitivity = 68.9%, specificity = 91.2%).

https://doi.org/10.1371/journal.pone.0198445.g005

Fig 6. The target gene network and biological functions of the biomarker module Mod_14. The triangular labels represent miRNAs, and the elliptic labels

represent target genes. The significantly enriched GO terms and pathways are listed with p values.

https://doi.org/10.1371/journal.pone.0198445.g006
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method, a GC miRNA module biomarker was identified from the miRNA co-expression net-

work, and the hub miRNAs and sub-network related to GC patients were also determined by

the NetSVM algorithm. The target genes of the GC miRNA module biomarker and its func-

tions were predicted based on multiple databases. By way of the modular analysis of GC

miRNA and their targeted genes, we may light the further insight of GC diagnostics and ther-

apy at multi-target level.

Within the identified miRNA module biomarker Mod_14 (consisting of miR-486, miR-

451, miR-185, and miR-600), three of its miRNA members were over-expressed in GC patients

[19], and thus this module was an up-regulated module for GC. Previous miRNA microarray

studies revealed that miR-486 could regulate tumor progression and the OLFM4 antiapoptotic

factor in GC [30]. Several studies indicated that miR-486 and miR-451 might act as novel prog-

nostic biomarkers and potential therapeutic targets in human GC [31–32]. Moreover, a prior

study reported that miR-451 and miR-486 showed consistently elevated levels in the plasma of

GC patients as compared with controls [33]. As for miR-185, it has been shown that it may

suppress tumor metastasis, regulate chemotherapeutic sensitivity, and serve as an independent

prognostic factor for GC [34–35]. Therefore, three out of the four miRNA nodes in this mod-

ule have been reported to have close relationship with GC, and these findings were largely con-

sistent with our results. In terms of the biological functions, pathways and GO terms directly

related to cancer were significantly enriched in this module, such as the viral carcinogenesis

pathway.

In addition to the activated module biomarker, the hub miRNAs and sub-network for GC

were also determined based on the NetSVM algorithm. The activated module nodes miR-486

and miR-451 were both included in the list of the top 20 up-regulated miRNAs. MiR-424

which had the largest weight in the up-regulated miRNAs was reported to promote the prolif-

eration of gastric cancer by targeting Smad3 via TGF-u signaling pathway [36]. MiR-146a that

had the largest weight in the down-regulated miRNAs may acts as a metastasis suppressor in

GC by targeting WASF2 [37]. Besides, most of the top ranked miRNAs were members of a spe-

cific module, indicating that these miRNAs not only have great weights for GC, but also have

close interactions with one another. Thus, this integrated network analysis may be effective in

screening cancer-related miRNAs or sub-networks.

In conclusion, based on integrated network analysis, this study identified an activated

miRNA module biomarker of GC, which was composed of miR-486, miR-451, miR-185, and

miR-600. The hub miRNAs and sub-network of GC were also detected by a NetSVM-based

method. These identified hub miRNAs and modules have the potential to become robust bio-

markers for the diagnosis of early stage GC, although further validations are still required.

Moreover, such a modular analysis of miRNA networks may offer valuable insights into multi-

target approaches to cancer diagnosis and treatment.
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S1 Fig. The scale-free topology model and mean connectivity of GC group datasets.
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