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Abstract

Rotavirus (RV) causes significant morbidity and mortality in developing countries, where

children and infants are highly susceptible to severe disease symptoms. While live attenu-

ated vaccines are available, reduced vaccine efficacy in developing countries illustrates the

need for highly immunogenic alternative vaccines. Here, we studied the possible inactiva-

tion of RV using gamma(γ)-irradiation, and assessed the sterility and immunogenicity of γ-
irradiated RV (γ-RV) as a novel vaccine candidate. Interestingly, the inactivation curve of

RV did not show a log-linear regression following exposure to increased doses of γ-rays,

and consequently the radiation dose required to achieve the internationally accepted Steril-

ity Assurance Level could not be calculated. Nonetheless, we performed sterility testing

based on serial passages of γ-RV, and our data clearly illustrate the lack of infectivity of

γ-RV preparations irradiated with 50 kGy. In addition, we tested the immunogenicity of

50 kGy γ-RV in mice and our data illustrate the induction of strong RV-specific neutralising

antibody responses following administration of γ-RV without using adjuvant. Therefore,

whilst γ-RV may not constitute a replacement for current RV vaccines, this study represents

a proof-of-concept that γ-irradiation can be applied to inactivate RV for vaccine purposes.

Further investigation will be required to address whether γ-irradiation can be applied to

improve safety and efficacy of existing live attenuated vaccines.

Introduction

Rotavirus is an enteric pathogen that causes considerable morbidity and mortality, particularly

in infants and children living in poor health conditions. Each year, RV infection causes over

100 million cases of gastroenteritis, and more than 200,000 deaths [1]. Approximately 80% of

these deaths are children living in low-income countries [2]. RV infects mature enterocytes of

villi in the small-intestine [3], causing clinical symptoms of nausea, vomiting, fever and diar-

rhea [4–6]. Severe symptoms of RV infection include malabsorption of nutrients, prolonged
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dehydration, and intussusception (IS), whereby one segment of the intestine becomes invagi-

nated, causing inflammation, loss of blood flow, and significant pain [7].

Currently, there are 2 licensed oral RV vaccines: a single-strain vaccine, Rotarix1 (GlaxoS-

mithKline Biologicals) and a pentavalent vaccine, Rotateq1 (Merck & Co) [8]. Both provide

protection against RV infection and RV-related gastroenteritis, but reduced efficacy has been

reported in developing countries, where the burden of severe rotavirus disease is greatest [9].

Prior studies and clinical trials performed in infants in high-income settings, such as the

United States and Europe, demonstrated RV vaccine efficacy exceeding 90% [10–12]. In con-

trast, reduced vaccine efficacy and protection rates have been reported in low-income settings

such as Asia and sub-Saharan Africa [13–15]. This loss of efficacy may be related to host popu-

lation differences and/or the high incidence of existing infections within the gut at the time of

oral RV vaccination [16], which are thought to interfere with and potentially overwhelm the

immune response to the RV vaccine [17]. Additionally, live attenuated vaccines have been

associated with multiple clinical complications. For example, vaccine (RotaTeq1)-derived

rotavirus has been reported to be transmitted from a vaccinated infant to an older, unvacci-

nated sibling, resulting in symptomatic RV infection with gastroenteritis and requirement for

emergency medical care [18]. Moreover, an increased risk of IS has been associated with live

attenuated RV vaccines, such as the RotaShield1 vaccine, which was licensed in the United

States in 1998 but withdrawn from the market within 9 months [7, 19]. Contemporaneous

introduction of RV1 [Rotarix; GSK] and RV5 [RotaTeq; Merck] vaccines in Australia enabled

a population-based assessment of the risk of IS, and illustrated the increased risk of IS after

administration of both vaccines [20]. Furthermore, in many countries, the first dose of live

attenuated rotavirus vaccine is administered around 2 months of age. This usually occurs

before any possible diagnosis of severe combined immunodeficiency (SCID) disease in infants.

Although it is rare, infection of SCID infants with the RV vaccine strain can lead to severe

complications and hospitalisation due to their inability to generate protective immune

responses [21, 22]. Overall, development of a safer and highly effective RV vaccine is an impor-

tant step to better control RV infection.

Considering these issues, alternative RV vaccine approaches continue to be developed.

These include an inactivated vaccine [23, 24], virus-like particle vaccines [25, 26] and recombi-

nant subunit vaccines [27, 28]. In the current study, we tested the possibility of using γ-irradia-

tion to inactivate whole RV for vaccine purposes. This approach allows abrogation of RV

infectivity for enhanced safety, while maintaining immunogenicity to mimic that of live virus.

Gamma-irradiation has been widely used to inactivate highly infectious agents for biochemical

analysis, including Ebola, Marburg and Lassa viruses [29]. In addition, previous studies have

illustrated the high immunogenicity of γ-irradiated vaccines, such as the γ-irradiated influenza

A virus vaccine [30, 31] and the γ-irradiated pneumococcal vaccine [32]. We have previously

proposed that γ-irradiated pathogens may be used to replace present day vaccines, particularly

those associated with complications [33]. Considering the health risks associated with current

RV vaccines and their reduced efficacies in Asia and sub-Sahara Africa, using γ-irradiation to

inactivate RV for vaccine purposes is a promising alternative. Here, we show the inactivation

curve of RV following exposure to increasing doses of γ-irradiation, and demonstrate the abil-

ity of γ-RV to induce strong RV-specific neutralizing Ab responses.

Material and methods

Ethics statement

This study was conducted in strict accordance with Australian Code of Practice for Care and

Use of Animals for Scientific Purposes (7th edition [2004], 8th edition [2013]) and South
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Australian Animal Welfare Act 1985. Experimental protocols approved by Animal Ethics

Committee at The University of Adelaide (Ethics number S/2014/107).

Cells & viruses

African green monkey kidney epithelial cells (Vero and MA104) were grown and maintained

in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco), + 10% FCS, 1% 2mM L-glutamine,

and 1% penicillin/streptomycin. For MA104 cells, 0.5% 200mM sodium pyruvate was also

added. Cells were kept at 37˚C in a humidified atmosphere + 5% CO2. Vero cells were

obtained from Prof Arno Mullbacher (The John Curtin School of Medical Research, ACT/

Australia) and MA104 cells were provided by Dr Carl D. Kirkwood (Murdoch Childrens

Research Institute, VIC/Australia).

Rhesus Rotavirus strain Rh452 (RV) was provided by Dr Carl D. Kirkwood (Murdoch Chil-

drens Research Institute, VIC/Australia) and Semliki Forest Virus (SFV, avirulent A7 strain)

was originally obtained from Prof Arno Mullbacher (The John Curtin School of Medical

Research, ACT/Australia). RV and SFV were grown in vitro by infecting MA104 and Vero

cells, respectively. RV was first activated with 10μg/mL trypsin (Sigma, T0303) at 37˚C for 1

hour. Cells were infected at a multiplicity of infection (MOI) of 0.1, and infected flasks were

incubated for 24 h at 37˚C in a humidified atmosphere with 5% CO2. Culture supernatants

were pooled, and clarified to remove cellular debris by centrifugation at 1500 rpm for 5 min-

utes. Clarified supernatants were stored at -80˚C. RV infectivity was confirmed by fluorescent

focus assay, and stock titre was estimated to be 3.6 × 107 fluorescent focus units (FFU)/mL. In

contrast, SFV infectivity was confirmed by plaque forming assay, and stock titre estimated to

be 3 × 108 plaque forming units (PFU)/mL.

Fluorescent focus assay (FFA)

96-well tissue culture plates were seeded with 6 × 104 MA104 cells/well and incubated for 24h.

RV stock was activated by incubation with 10 μg/mL TPCK-trypsin (Sigma-Aldrich) in

serum-free DMEM at 37˚C for 1 h. Activated RV stock was then 10-fold serially diluted.

100 μL of diluted virus was added to MA104 monolayers. Plates were incubated for 30 minutes

at 37˚C to allow virus attachment to cells. An additional 100 μl of serum-free DMEM + 1μg/

mL TPCK-trypsin was added to all wells, and plates were incubated for 18 h at 37˚C. After

incubation, monolayers were washed, then fixed and permeabilised with ice-cold acetone:

methanol mixture (1:1 ratio) at 4˚C for 15 min. Polyclonal mouse anti-RV sera was added to

all wells and plates were incubated for 1 h at 4˚C. After that, secondary Alexa Fluor1 488 goat

anti-mouse IgG (Life Technologies, USA) was added and plates were incubated for 1 h at 4˚C.

Following incubation, plates were washed and cells were stained with DAPI (1 μg/mL, Sigma)

for 30 min at RT. Images were acquired using a Nikon TiE inverted fluorescence microscope,

and analysed using NIS elements software (Tokyo, Japan).

Plaque forming assay (PFA)

SFV titres were estimated by plaque formation on semi-confluent monolayers of Vero cells as

previously described [34, 35]. Samples were serially diluted on ice in PBS, and cells inoculated

in duplicate with 0.1 mL aliquots of the diluted samples. Adsorption was for 1 h at 37˚C fol-

lowed by the addition of an agar overlay medium (0.9%). After 72 h incubation at 37˚C, cells

were fixed with 5% paraformaldehyde (BDH chemicals, Aust.) for 1 h. Overlays were removed,

and fixed cells were stained with 0.2% crystal violet in ddH2O. The stain was washed and pla-

ques enumerated using a light microscope.
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Vaccine preparations

RV and SFV samples were exposed to γ-irradiation (5–50 kGy) from a 60Co source at Austra-

lian Nuclear Science and Technology Organisation (ANSTO), NSW. Virus stocks were kept

frozen on dry ice during transportation and irradiation. Irradiated samples were tested for

reduction in titre using FFA for RV and PFA for SFV. In addition, the sterility of 50 kGy-irra-

diated RV was tested using 3 passages in MA104 cells. Cell monolayers were treated with

trypsin-activated live RV or γ-RV using 4 x 105 FFU-equivalent/well. Monolayers were incu-

bated for 24 h, and culture supernatants were collected and used to infect new MA104 cell

monolayers. Previously infected monolayers were stained for RV infection as per FFA. Lack of

detectable FFU for all 3 passages in cells treated with γ-RV would indicate complete loss of

infectivity following exposure to γ-irradiation. In addition, to illustrate the sensitivity of the 3

passages-based sterility testing, cell monolayers were infected with serially diluted trypsin-acti-

vated live RV (0.2 to 2000 FFU/well). Monolayers were incubated for 24 h, and culture super-

natants were collected and used to infect new MA104 cell monolayers. Monolayers for all 3

passages were stained for RV infection as per FFA.

Mice & treatment

Six to eight week old female C57BL/6 mice were supplied by Laboratory Animal Services, Uni-

versity of Adelaide, Australia. Using 3 mice/group, mice were primed twice intravenously (i.v.)

on Days 0 and 14 with live or γ-irradiated RV (2 x 106 FFU equivalent/mouse). Blood samples

collected from all mice via submandibular bleeding 21 days post 2nd vaccination.

Measurement of RV-specific antibody responses

Levels of RV-specific total IgG, IgG1, and IgG2c in serum samples from immunised and con-

trol mice were determined by direct ELISA as described previously [36]. In brief, maxisorp

plates were coated with Rh452 viral antigen diluted in bicarbonate coating buffer (Na2CO3,

NaHCO3, in water, pH 9.6) and incubated overnight at room temperature. Non-specific pro-

tein binding sites were then blocked with PBS containing 2% skim milk powder for 2 h at

room temperature. 50μL of serially diluted serum samples were added to the appropriate wells

for 2 h at room temperature, followed by the addition of horseradish peroxidase conjugated

goat anti-mouse IgG (Thermo Scientific), rabbit anti-mouse IgG1 (Invitrogen USA), or goat

anti-mouse IgG2c (Southern Biotech USA). Plates were then incubated at room temperature

for 2 h, and developed using TMB peroxidase substrate in the dark for 30 mins. The reaction

was stopped with 2 mol H2SO4, and absorbance measured at 450/620 nm using a Microplate

ELISA reader (Biotrack II plate reader). End-point titres expressed as the reciprocal of the last

dilution where OD value� cut-off value. Cut-off determined as mean + (3 × S.D.) of OD val-

ues of samples from control mice.

In vitro neutralisation assay

96-well tissue-culture plates were seeded with 6 × 104 MA104 cells/well. RV was activated by

treatment with 10 μg/mL TPCK-trypsin (Sigma-Aldrich). Heat-inactivated (56˚C, 30 min)

serum samples were serially diluted, mixed with activated RV at a ratio of 1:1, and incubated

for 1 h at 37˚C to allow binding. 100 μL of each mixture was then added to MA104 cell mono-

layers at MOI of 0.005 and incubated for 18 h at 37˚C. Cells were fixed, stained and visualised

as described for FFA.

Immunogenicity of γ-RV vaccine

PLOS ONE | https://doi.org/10.1371/journal.pone.0198182 June 7, 2018 4 / 15

https://doi.org/10.1371/journal.pone.0198182


Statistical analysis

Quantitative results expressed as mean ± SEM. Unpaired Student’s t-test used for comparison

of data from two separate groups, and One-way ANOVA used for comparison of data from 3

or more groups. Statistical analysis performed using GraphPad Prism 6, version 6.0d (Graph-

Pad Software, La Jolla, CA, USA). P values <0.05 (95% confidence) considered statistically

significant.

Results

Inactivation curve of RV

To determine whether γ-irradiation can be used to inactivate RV for vaccine purposes despite

the complex genome structure, we compared the inactivation curves of RV (11 segments of

dsRNA genome) and SFV (single linear ssRNA genome). SFV and RV samples were exposed

to increasing doses of γ-irradiation (5–50 kGy), and the effect of irradiation on virus infectivity

was determined using FFA for RV and PFA for SFV. In general, inactivation curves can be

used to estimate the D10 value and the Sterility Assurance Level (SAL) for a given pathogen.

The D10 value indicates the radiation dose required to reduce viable virus tire by 90% (1-log

reduction), whilst the SAL refers to the total dose required to achieve a theoretical titre of 10−3

or 10−6 units/mL. As shown in Fig 1A, no virus infectivity was detected in SFV samples

exposed to irradiation doses above 30 kGy. In addition, the inactivation curve of SFV showed

a distinct log-linear relationship between the increase in γ-irradiation dose and the associated

loss of virus titre. In contrast, we did not detect a linear inactivation curve for RV (Fig 1B), and

consequently the D10 value and SAL for γ-irradiated RV preparations could not be calculated.

Nonetheless, we did not detect any infectivity by FFA for RV samples exposed to irradiation

doses of 45 and 50 kGy.

Sterility testing of 50 kGy γ-RV

An irradiation dose of 50 kGy has been widely considered as a mandatory exposure required

for the sterilisation of pathogenic agents [37]. Considering that no RV infectivity was detected

in samples irradiated with 45 and 50 kGy by FFA, we performed in vitro sterility testing to

ensure complete virus inactivation. To achieve this, we developed an in vitro sterility testing

protocol based on serial passages of γ-RV using monolayers of MA104 cells. For this purpose,

MA104 monolayers were treated with 4 x 105 FFU-equivalent/well of γ-RV or live RV. Follow-

ing a 24h incubation period, culture supernatants were collected and used to infect new

MA104 cell monolayers. This process was repeated two times, and all previously infected

monolayers were stained for RV infection as per standard FFA. As illustrated in Fig 2, in

contrast to cell monolayers treated with live RV, monolayers treated with γ-RV preparations

irradiated with 50 kGy showed complete lack of detectable infection for all three passages. Fur-

thermore, cell monolayers treated with live RV show considerable cytopathic effect by the

third passage, whereas passaging of γ-RV had no negative impact on cell monolayers. In order

to demonstrate the sensitivity of the sterility testing and the ability to detect low infectivity lev-

els, MA104 monolayers were treated with serially diluted live RV (2000–0.2 FFU/well) and cul-

ture supernatants were collected after an overnight incubation (for 24 h) and used to infect

new MA104 cell monolayers. Infection of cell monolayers was clearly detected in monolayers

treated with 2000 FFU and the cytopathic effect was evident in passage 3 (Fig 3). Importantly,

we detected RV infection in monolayers treated with 2 FFU/well, which illustrate the sensitiv-

ity of our sterility testing. Overall, lack of detectable infectivity in monolayers treated with 4 x

105 FFU-equivalent/well of γ-RV illustrates the successful virus inactivation following an
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exposure to 50 kGy of γ-rays. In addition, materials irradiated with 45 kGy were also consid-

ered sterile as no infectivity was detected for all 3 passages (data not shown). Therefore, we

proceeded to test the immunogenicity of 50 kGy treated γ-RV preparations in mouse models.

Fig 1. Inactivation curves of RV and SFV following exposure to γ-irradiation. SFV and RV samples were exposed to

increased doses of γ-irradiation on dry-ice, and the reduction in virus titre was determined by (A) plaque forming

assay for SFV, or (B) fluorescent focus assay for RV. All samples tested in triplicate and data presented as mean ± SEM.

https://doi.org/10.1371/journal.pone.0198182.g001
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Immunogenicity of γ-RV

To test proof-of-principle, 8-week-old C57BL/6 mice were injected twice intravenously, with

either live RV or γ-RV. PBS-mock treated mice were used as controls. Immune sera was col-

lected 21 days post second injection and tested for RV-specific antibody responses. As shown

in Fig 4A, both γ-RV and live RV were able to induce significantly elevated levels of RV-spe-

cific IgG in serum compared to PBS-treated controls. End-point titres were also calculated rel-

ative to sera from control mice, and we did not detect a statistically significant difference in

total IgG induced by live or γ-RV (Fig 4B). Similarly, we detected comparable levels of RV-

specific IgG2c in immune sera from both γ-RV and live RV primed mice, with both groups

showing a significant increase compared to controls (Fig 4C). Interestingly, we detected a sig-

nificant increase in IgG1 antibodies in serum samples from γ-RV primed mice compared to

sera from mice primed with live RV.

Neutralising antibody responses induced by γ-RV

The ability to induce neutralising antibody responses is an essential requirement for highly

effective vaccines. Therefore, serum samples from γ-RV vaccinated mice, live RV primed

Fig 2. Sterility testing of 50 kGy γ-irradiated RV. Monolayers of MA104 cells were incubated for 24h with live RV or

γ-RV at 4 x 105 FFU-equivalent/well. Culture supernatant was harvested and used to infect new MA104 cell

monolayers, and previously infected monolayers stained for RV infection by FFA. DAPI channel (blue) indicates cell

nuclei, and FITC channel (green) indicates RV infection. Stained monolayers visualised using Nikon TiE inverted

fluorescence microscope. Scale bar = 100 μm. Images representative of 5 replicates per sample for each passage.

https://doi.org/10.1371/journal.pone.0198182.g002
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mice, and PBS-treated mice were tested for their ability to neutralise live RV using an in vitro
neutralisation assay. Heat-inactivated sera samples were serially diluted and mixed with live

RV. PBS-treated RV was used as a virus-only control. Monolayers of MA104 cells were then

infected with control or sera-treated RV at MOI of 0.005 and quantification of infected cells

(FFU/well) following incubation was used to indicate the degree of virus neutralisation. Sera

from PBS-treated control mice (naïve control) had no impact on virus infectivity as all tested

dilutions show similar FFU counts to that detected for the virus only control. In contrast,

Fig 3. The ability to detect very low FFU of live RV. Monolayers of MA104 cells were incubated for 24h with 0.2 to 2000 FFU live RV.

Uninfected MA104 cells were used as a negative control. Culture supernatant was used to infect new MA104 monolayers, and previously

infected monolayers were visualised by FFA. DAPI (blue) indicates cell nuclei and FITC (green) indicates RV infection. Stained monolayers

were visualised using Nikon TiE inverted fluorescent microscope. Scale bar = 100μm. Images representative of 3 replicates per MOI for each

passage.

https://doi.org/10.1371/journal.pone.0198182.g003

Fig 4. RV-specific antibody responses. Mice were primed twice with live RV or γ-RV, 2 weeks apart. Serum samples

harvested on Day 14 post-2nd priming and analysed for RV-specific IgG using ELISA. (A) Serial dilutions of serum

samples and absorbance readings at 450/620 nm for total IgG. (B) IgG titres in primed groups calculated relative to

cut-off value (dotted line), determined using OD values of serum from control mice. Data presented as mean ± SEM

(n = 6), and analysed by unpaired t-test (n.s., not significant) (C) Absorbance at 450/620nm for total IgG, IgG1, and

IgG2c in serum at 1:200 dilution by ELISA. Data presented as mean ± SEM (n = 4), analysed by One-Way ANOVA

(����, p< 0.0001).

https://doi.org/10.1371/journal.pone.0198182.g004
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treatment of RV with sera from mice primed with either live RV or γ-RV resulted in compara-

ble levels of virus neutralisation across all tested serum dilutions as measured by the significant

reduction in detectable FFU/well (Fig 5A). Interestingly, there was also a small difference in

the neutralising ability of immune sera from mice primed with live RV versus sera from mice

vaccinated with γ-RV. However, this difference was not significant and was only observed

with very high dilution factors (1:640 and above). Representative images of infected cells fol-

lowing incubation for 24h with 1:1280 diluted sera-treated RV were also acquired (Fig 5B).

Therefore, the ability of immune sera from γ-RV vaccinated mice to neutralise the infectivity

of live RV is comparable to that observed for sera from mice primed with live RV.

Discussion

Despite the high protection rates of live attenuated RV vaccines in developed countries,

reduced efficacy has been reported for children living in poor-health conditions [38]. While

factors such as malnutrition and diarrhoea may affect the efficacy of oral vaccines in general,

the environmental enteropathy, i.e. presence of existing enteric infections, has been reported

to be directly associated with reduced efficacy of live attenuated RV vaccines [38, 39]. This has

Fig 5. Neutralising antibody responses induced by γ-RV. Mice were primed with live RV or γ-RV twice, 2 weeks

apart. Serum samples harvested on Day 21 post-2nd priming, and neutralising ability of immune serum determined by

in vitro neutralisation assay. (A) FFU/well determined following incubation of MA104 cells with sera treated-RV at

MOI 0.005. RV treated with serial dilutions of HI control or immune sera. PBS-treated RV used to indicate the

baseline level of infection. Data presented as mean ± SEM (n = 2), and analysed by One-Way ANOVA (����,

p< 0.0001 compared to naïve control sera for each dilution. #, p< 0.05, when directly comparing immune sera

groups). (B) Representative fluorescence images of RV infection after treatment with live or γ-RV sera at 1:1280

dilution. DAPI channel (blue) indicates cell nuclei, and FITC channel (green) indicates RV infection. Scale

bar = 100 μm.

https://doi.org/10.1371/journal.pone.0198182.g005
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also been observed following oral administration of live attenuated polio vaccine (OPV) [40,

41]. In addition, in vitro mixed infection models of RV with astrovirus and enterovirus have

been reported to reduce RV replication [42]. While these studies provide possible explanations

for the reduced RV vaccine efficacy in developing countries, there is still a clear need for a

safer and more effective vaccine strategy for children living in poor-health conditions. We

have previously proposed that γ-irradiated pathogens may be used to replace present day vac-

cines, particularly those associated with complications [33]. In the case of RV, the use of γ-irra-

diation would negate the risks associated with administration of live virus, whilst retaining

high immunogenicity. Additionally, administration of killed virus would overcome the adverse

effects of non-related enteric infections on the immunogenicity of current live attenuated

vaccines. Therefore, the concept of Sterility Assurance Level (SAL) [43], should be carefully

considered. Estimating the radiation dose required to achieve SAL can mathematically be cal-

culated based on the D10 value.

Previous studies investigating the possible inactivation of RV using γ-rays have focused on

food sterilisation. Consequently, the D10 values reported by these studies were calculated for

irradiating RV-contaminated food at room temperature [44]. These studies did not address

the effect of the complex RV genome structure of RV on the inactivation curve of highly con-

centrated materials. Importantly, the D10 value can be influenced by both the irradiation tem-

perature and media constituents [45]. Therefore, in order to establish the inactivation curve of

our RV vaccine, and to illustrate the effect of genome structure on D10 value, we prepared RV

and SFV (possessing a simple non-segmented ssRNA genome) under similar conditions and

tested their sensitivity to γ-radiation. For vaccine purposes however we utilised dry-ice irradia-

tion, as this condition better maintains antigenic epitopes and virus structures even at high

irradiation dose [46]. Our data illustrate a log-linear inactivation curve for SFV (Fig 1A),

which follows the expected ‘one-hit’ kinetics, indicating that a single virus particle can be inac-

tivated by a single ‘hit’ to the genome. In contrast, we observed a sigmoidal inactivation curve

for RV (Fig 1B). It has been reported previously that the presence of alcohols, glycerol, protein

and carbohydrates can increase the required γ-irradiation dose for sterilization of virus sus-

pensions [45]. However, both RV and SFV preparations were prepared and inactivated under

very similar conditions. Thus, the sigmoidal nature of the RV inactivation curve is not likely to

be caused by differences in media components or irradiation conditions. It could however be

related to differences in genome structure. The RV genome consists of 11 individual segments

of dsRNA. While one hit may destroy one strand of one segment of the genome, the comple-

mentary strand remains intact, and could be used for genome replication. In this case, steri-

lization of a single RV virion requires sufficient damage to both strands of a given genome

segment. Thus, data presented in Fig 1B illustrate the effect of genome structure on the suscep-

tibility to inactivation by γ-irradiation. Exposure to 0–30 kGy of γ-rays was associated with a

limited drop in virus infectivity, with an exposure to ~15 kGy being required to induce a single

log10 reduction in virus titre. Following an exposure to 30 kGy however, the RV genome

would have been subjected to multiple hits, rendering the preparation more susceptible to an

extensive drop in virus titre despite the smaller increases in radiation dose.

Furthermore, the non-linear nature of the inactivation curve meant the D10 and SAL values

could not be accurately calculated. However, considering that an irradiation dose of 50 kGy

has been widely used to inactivate highly infectious materials, we addressed the sterility of 50

kGy irradiated RV using an in vitro assay based on serial passages of irradiated materials. Our

data clearly illustrate the sterility of 50 kGy γ-RV despite the use of an irradiation dose below

the expected SAL, which would exceed 60 kGy based on the inactivation curve and conven-

tional SAL calculations. For clinical applications however, irradiating RV to achieve a SAL

(10−6 infectious units /mL) suitable for vaccine purposes may not be feasible due to the
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complicated nature of the RV genome. Instead, it may be possible to use γ-irradiation to inacti-

vate current live attenuated viruses to avoid the need to use an irradiation dose above 50kGy.

Achieving SAL for attenuated viruses would not be necessary given that they are currently

approved for clinical application. Considering the clinical complications associated with live

attenuated RV vaccines, inactivation by irradiation would enhance safety and ensure vaccine

efficacy. Therefore, we tested the immunogenicity of 50 kGy γ-RV in mice. Our data clearly

illustrate the ability of γ-RV to trigger strong RV-specific humoral immune responses compa-

rable to those induced by live RV, particularly the induction of high levels of IgG2c. Previous

studies have illustrated the ability of heat inactivated RV to induce neutralising Ab responses

in animals [47, 48]. In contrast to these studies, our data show high immunogenicity of γ-RV

without using adjuvant. It has been reported previously that analysis of the ratio of IgG2c:

IgG1 isotypes can indicate the induction of Th1 or Th2 type immune responses [49]. Measure-

ment of antibody isotypes in immune sera from primed mice showed that γ-RV induced

higher IgG2c levels compared to IgG1, suggesting a bias towards a type-1 immune response.

This is consistent with higher IgG2c levels than IgG1 detected following vaccination with

other γ-irradiated viruses, such as γ-SFV [36]. This outcome is commonly desired within vac-

cine development due to the competent functions of IgG2c during antigen clearance [50, 51].

Interestingly, despite the higher IgG2c levels compared to IgG1 detected following priming

with γ-RV and live RV, our data show higher level of IgG1 in serum samples from γ-RV vacci-

nated mice, in comparison to sera from mice priming with live RV. This may be related to dif-

ferences in cytokines induced in response to killed versus live RV, which would require further

investigations. Nonetheless, both live and γ-RV induced comparable levels of total IgG and

IgG2c. In addition, our data regarding virus neutralization illustrate that γ-RV elicits humoral

responses of comparable strength to those induced by live RV. This highlights the potency of

γ-RV in inducing antibody responses without using adjuvant.

Overall, we investigated the possibility of using γ-irradiation to inactivate RV for vaccine

purposes. While our data indicate that a dose considerably higher than 50 kGy would be

required to achieve the internationally accepted SAL for irradiated RV, in vitro testing con-

firmed the sterility of 50 kGy γ-RV. In addition, we have illustrated that γ-RV induces strong

neutralising humoral immune responses comparable to those induced by live RV. Gamma-

irradiated preparations can be administered in considerably higher doses than their live viral

counterparts, allowing for a dramatic increase in the total antigen dose without causing infec-

tion or the associated clinical complications. Therefore, γ-irradiation of current live attenuated

RV vaccines could be utilised to overcome their reduced efficacy, and enhance safety without

comprising immunogenicity.
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