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Abstract

A number of studies have found multiple indicators multiple causes (MIMIC) models to
be an effective tool in detecting uniform differential item functioning (DIF) for individual
items and item bundles. A recently developed MIMIC-interaction model is capable of
detecting both uniform and nonuniform DIF in the unidimensional item response theory
(IRT) framework. The goal of the current study is to extend the MIMIC-interaction
model for detecting DIF in the context of multidimensional IRT modelling and examine
the performance of the multidimensional MIMIC-interaction model under various simu-
lation conditions with respect to Type I error and power rates. Simulation conditions
include DIF pattern and magnitude, test length, correlation between latent traits, sample
size, and latent mean differences between focal and reference groups. The results of this
study indicate that power rates of the multidimensional MIMIC-interaction model under
uniform DIF conditions were higher than those of nonuniform DIF conditions. When
anchor item length and sample size increased, power for detecting DIF increased. Also,
the equal latent mean condition tended to produce higher power rates than the differ-
ent mean condition. Although the multidimensional MIMIC-interaction model was found
to be a reasonably useful tool for identifying uniform DIF, the performance of the model
in detecting nonuniform DIF appeared to be questionable.
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Research on item bias and test fairness continues to advance in both applications and

methodologies. Numerous methods have been developed for identifying differential

item functioning (DIF) in test items. There is an increasing interest in the multiple

indicators multiple causes model (MIMIC; Jöreskog & Goldberger, 1975) for asses-

sing test fairness and measurement invariance properties of assessments, which has

resulted in various applications of the MIMIC model to detecting DIF. The MIMIC

model, which integrates causal indicators (i.e., covariates) with confirmatory factor

analysis, can be easily transformed into a common item response theory (IRT) model

(e.g., two-parameter IRT model) with regard to the model parameters (e.g.,

MacIntosh & Hashim, 2003; B. O. Muthén, Kao, & Burstein, 1991). The MIMIC

model uses a single-group structural equation model with covariates; the unique fea-

ture of the MIMIC model is that it predicts a latent variable even when there is one

observed variable, causal indicator (Woods, 2009; Woods & Grimm, 2011). B. O.

Muthén (1988) also observed that the MIMIC model allows not only for detecting

DIF but also for investigating a more comprehensive relationship between back-

ground variables and the latent trait.

There are two types of DIF that can arise in test items, depending on the direction

of bias across the groups. In uniform DIF, the focal group consistently underperforms

or outperforms the reference group, regardless of where individuals are located on

the latent trait continuum. Previous studies on the MIMIC model have focused on

significance tests for identifying uniform DIF because the parameterization of the

MIMIC model was only suitable for detecting uniform DIF (e.g., Cheng, Shao, &

Lathrop, 2016; Finch, 2005, 2012; Jin, Myers, Ahn, & Penfield, 2012; Shih & Wang,

2009; Wang & Shih, 2010; Wang, Shih, & Yang, 2009). The second type of DIF,

known as nonuniform DIF, occurs when the direction of bias changes between the

focal and reference groups along the latent trait continuum. Recently, Woods and

Grimm (2011) established a parameterization of nonuniform DIF within the MIMIC

model by including an interaction term between the latent trait and the categorical

group variable. This model is referred to as the MIMIC-interaction model hereafter.

Woods and Grimm evaluated the performance of the MIMIC-interaction model in

detecting uniform and nonuniform DIF simultaneously within the same model. Based

on their simulation results, the MIMIC-interaction model showed greater power than

the typical MIMIC model without the interaction term in detecting nonuniform DIF.

However, Type I error rates were inflated for the MIMIC-interaction model due to

the violation of the assumption that the variables used for estimating the latent inter-

action are normally distributed.

To date, a number of studies have discussed the capabilities and benefits of the

MIMIC model in detecting uniform and nonuniform DIF in the context of unidimen-

sional test structures where there is a single latent trait that underlies either dichoto-

mously or polytomously scored items (e.g., Finch, 2005, 2012; Jin et al., 2012; Kim,

Yoon, & Lee, 2012; Wang et al., 2009; Wang & Shih, 2010; Wang & Yeh, 2003;

Woods, 2009; Woods & Grimm, 2011). Recently, Cheng et al. (2016) proposed a

multidimensional form of the MIMIC model by including external variables that may
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completely or partially mediate the DIF effect. However, this model also assumes a

unidimensional test structure where items are designed to measure a single latent trait.

A mediator, which can be either a manifest or latent variable, is incorporated into the

model as an additional dimension to understand the relationship between a categori-

cal covariate (e.g., gender) and the flagged DIF items.

This study aims to expand the MIMIC framework to testing DIF in several differ-

ent aspects of the IRT framework. First, a multidimensional form of Woods and

Grimm’s (2011) MIMIC-interaction model is introduced for testing both uniform

and nonuniform DIF simultaneously in multidimensional test items for the first time.

Second, because previous MIMIC studies have not considered multidimensional test

structures, the performance of MIMIC in detecting DIF in nonsimple test structures

is still unknown. In this study, the multidimensional MIMIC-interaction model is

used to investigate DIF in both simple test structures in which each item measures a

single latent trait and nonsimple test structures in which items can be associated with

multiple latent traits. Finally, the performance of the multidimensional MIMIC-inter-

action model is examined under most practical conditions, such as various sample

sizes of the focal and reference groups under both balanced and unbalanced designs

and mean difference in the underlying latent trait conditions via a Monte Carlo simu-

lation study. The following section provides the details of the multidimensional

MIMIC-interaction model for detecting uniform and nonuniform DIF in multidimen-

sional test structures.

MIMIC Models for Detecting DIF

Structural equation modeling (SEM) with latent variables provides a flexible way to

test measurement invariance because it allows the use of continuous or discrete, and

observed or latent covariates as a grouping variable (Barendse, Oort, Werner,

Ligtvoet, & Schermelleh-Engel, 2012; Jak, Oort, & Dolan, 2010). Since Jöreskog

and Goldberger (1975) introduced MIMIC models in the context of SEM, these mod-

els have been used in practice for identifying the presence of DIF for various types

of items (e.g., Gallo, Anthony, & Muthén, 1994). For dichotomous items, testing for

DIF using the MIMIC model is applied with a latent response variable formulation

(B. O. Muthén & Asparouhov, 2002):

yi =
1, if y�i � ti

0, if y�i\ti

� �
, ð1Þ

where y�i is the continuous latent response variable that underlies a dichotomous

response variable (yi), and the threshold parameter is denoted as ti: Based on the con-

tinuous latent response variable y�i , Equation 2 demonstrates Woods and Grimm’s

(2011) MIMIC-interaction model that is capable of testing uniform and nonuniform

DIF simultaneously in a dichotomous item:

y�i = liu + biz + viuz + ei, ð2Þ
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where li is the factor loading of item i on the latent variable u, bi indicates the uni-

form DIF effect or direct effect (when bi 6¼ 0) showing the group difference in the

threshold parameter after controlling for any mean ability difference on u between

groups, z is the categorical covariate (z = 0 for the reference group and z = 1 for the

focal group), vi is the interaction term between the latent trait and the categorical

covariate (i.e., group variable) that represents the nonuniform DIF effect (when

vi 6¼ 0), and ei is the error term that is normally distributed and independent of u and

z. Note that the DIF detection in the MIMIC-interaction model is very similar to the

DIF detection in the logistic regression approach by Swaminathan and Rogers (1990).

Both approaches test the difference in the probability of answering a dichotomous

item correctly due to group membership and the interaction between the group mem-

bership and the latent trait, after controlling for group differences in the latent trait.

Equation 3 demonstrates the multidimensional extension of the MIMIC-interaction

model for a multidimensional test item that measures k latent traits:

y�i = l1iu1 + � � � + lkiuk + biz + v1iu1z + � � � + vkiukz + ei, ð3Þ

where l1i through lki are factor loadings linking item i to the latent traits u1 through

uk , v1i through vki are the interaction terms that represent nonuniform DIF effects for

item i, and the remaining terms are the same as those from Equation 2. Figure 1 dis-

plays a two-dimensional MIMIC-interaction model.

MIMIC models with one latent variable can be parameterized as unidimensional

IRT models (for more details, see B. O. Muthén et al., 1991, and MacIntosh &

Hashim, 2003). In the same vein, the multidimensional extension of the MIMIC-

interaction model in Equation 3 can be presented as a multidimensional IRT (MIRT)

model. For instance, the compensatory multidimensional extension of the 2PL (M-

2PL; Reckase, 1985) model for k latent traits takes the following form in the conven-

tional IRT notation:

P Uij = 1juj, ai, di

� �
=

eaiu
0
j + di

1 + eaiu
0
j + di

, ð4Þ

where uj is a vector of abilities for person j on k latent traits (uj = u1j, . . . , ukj), ai is a

vector of discrimination parameters for item i (ai = a1i, . . . , aki), and di is the item

intercept parameter related to the difficulty for item i. Discrimination parameters, a1i

through aki, in the MIRT model from Equation 4 can be calculated using the values

of l1i through lki derived from the multidimensional MIMIC-interaction model in

Equation 3 as

a1i =
l1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
1i

� � ffiffiffiffiffiffiffi
su1

pq through aki =
lkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2
ki

� � ffiffiffiffiffiffiffi
suk

pq , ð5Þ
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where su1
through suk

are the variances for the k latent variables. The item intercept

parameter in the MIRT model (di) can be calculated using both l and t from the mul-

tidimensional MIMIC-interaction model in Equation 3:

di =
ti � bizð Þl�1

1i � mu1

� �
+ � � � + ti � bizð Þl�1

ki � muk

� �
1ffiffiffiffiffi
su1

p + � � � + 1ffiffiffiffiffi
suk

p
, ð6Þ

where mu1
through muk

are the means of the latent variables u1 through uk . Equations

5 and 6 can be simplified when the latent variables are standardized (i.e.,

mu1
= � � � = muk

= 0 and su1
= � � � = suk

= 1). In the simplified model, bi l�1
1i + � � � +

�
l�1

ki Þ becomes the effect size for uniform DIF.

According to Woods and Grimm (2011), computations in the MIMIC-interaction

model are complicated because the latent variable cannot be simply multiplied by the

group variable as is done with manifest variables. In the literature, there are various

methods to compute nonlinear interactions of latent variables with categorical covari-

ates, such as product indicator approaches and distribution-analytic approaches

(Klein & Muthén, 2007; Moosbrugger, Schermelleh-Engel, Kelava, & Klein, 2009;

Figure 1. A MIMIC-interaction model for testing uniform and nonuniform DIF with the
interaction between the group and the latent variables.
Note. Items i = 1, 2, . . . , k; r = correlation between u1 and u2; gi = latent mean difference between the

groups; l1i and l2i = factor loadings; ti = thresholds; bi = uniform DIF effect; v1i and v2i = nonuniform

DIF effects.
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Schermelleh-Engel, Werner, Klein, & Moosbrugger, 2010). However, the multivari-

ate normality assumption is likely to be violated in the interaction between latent vari-

ables and categorical observed covariates, which may cause estimation problems for

the maximum likelihood estimator (Barendse et al., 2012; Woods & Grimm, 2011).

The present study applies a convenient estimation option for the MIMIC model using

the ‘‘XWITH’’ command in Mplus (L. K. Muthén & Muthén, 1998-2015). The

XWITH command estimates the interaction between continuous latent variables and

categorical covariates using the latent moderated structural equations (LMS) method

(Klein & Moosbrugger, 2000). The LMS method implements full-information maxi-

mum-likelihood estimation for analyzing nonnormally distributed interaction effects

between a latent variable and an observed categorical variable (Klein & Moosbrugger,

2000). This method eliminates the nonnormality problem by conditioning on the latent

variable and treating the distribution of the observed categorical variable as a mixture

of multiple conditional distributions (Barendse et al., 2012).

The multidimensional MIMIC-interaction model described in this study has some

constraints to ensure model identification. In case of a two-dimensional MIMIC-

interaction model, both latent variables are constrained to have means of 0 and var-

iances of 1, but the correlation between the two latent variables can be freely esti-

mated. The other important assumptions of the MIMIC-interaction model are the

local independence of items, independent observations, independent groups, and a

logistic function to define the probability of obtaining a correct response. Similar

constraints and assumptions were also used in Woods and Grimm’s (2011) MIMIC-

interaction model.

Method

Simulation Design

The simulation design in this study included the following five conditions: (a) DIF

type (non-DIF, uniform DIF, and nonuniform DIF), (b) test length (12 items with 2

DIF items, 14 items with 4 DIF items, and 24 items with 4 DIF items), (c) magni-

tude of DIF parameters (low and medium), (d) sample size differences for the ref-

erence group (R) and the focal group (F) (R500/F100, R1000/F200, R1500/F500,

and R1000/F1000), (e) correlation between the two latent traits (r = 0, 0:3, or 0:5)

for both groups, and (f) the latent trait means for the reference group and the focal

group (mR = mF = 0 or mR = 0, mF = � 0:5). All simulation conditions were fully

crossed except for the latent trait mean difference condition (mR = 0, mF = � 0:5),

which was examined only using two sample sizes (R1500/F500 and R1000/

F1000), two correlations r = 0 and 0:5ð Þ, and two test lengths (14-item and 24-

item). For each simulation condition, 100 replications were generated in R (R

Core Team, 2015). Details on the simulation conditions and data generation are

provided in the following sections.

550 Educational and Psychological Measurement 77(4)



Data Generation

The current study was conducted with two-dimensional dichotomous data. The data

were generated using the M-2PL model shown in Equation 4. Two latent traits, u1j

and u2j, were drawn from a bivariate normal distribution with means and variances

of 0 and 1, respectively.

Table 1. Anchor Item Parameter Values Used in the Two-Dimensional M-2PL Model for
Non-DIF items.

Item a1 a2 d

12-Item and 14-item tests
1 1.04 0.00 20.09
2 1.17 0.02 20.23
3 0.98 0.02 20.12
4 0.09 1.03 0.09
5 0.00 0.96 0.90
6 0.06 1.00 20.88
7 0.80 0.76 0.01
8 0.73 0.68 20.18
9 0.82 0.68 20.16
10 0.64 0.72 0.04
Mean 0.61 0.61 20.06
SD 0.43 0.42 0.43

24-Item test
1 1.04 0.00 20.09
2 0.88 0.13 0.27
3 1.17 0.02 20.23
4 0.97 0.19 20.22
5 0.98 0.02 20.12
6 0.92 0.08 20.77
7 0.09 1.03 0.09
8 0.00 0.96 0.90
9 0.04 0.97 20.58
10 0.06 1.00 20.88
11 0.15 1.13 1.15
12 0.14 0.95 20.38
13 0.74 0.75 0.29
14 0.70 0.73 20.91
15 0.71 0.72 20.47
16 0.80 0.76 0.01
17 0.69 0.69 0.10
18 0.73 0.68 20.18
19 0.67 0.63 20.33
20 0.64 0.72 0.04
Mean 0.61 0.61 20.12
SD 0.38 0.38 0.52
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DIF Pattern and DIF Magnitude. Multidimensional dichotomous item response data

were simulated for three item sets: 12 items, 14 items, and 24 items. For the 12-item

test and the 14-item test, 10 anchor items were used, and for the 24-item test, 20

anchor items were used. Anchor item parameters for the three tests (see Table 1)

were chosen to emulate the values used in a previous analysis (see Reckase, 2009, p.

204) and were used to generate anchor item responses for both reference and focal

groups. Regarding the number of test items, two test lengths (12 and 24 items) were

chosen to be similar to the part of Woods and Grimm’s study (2011), in which 6, 12,

and 24 test items were used. Fourteen items with 4 DIF items were chosen to exam-

ine the effect of shorter anchor items on DIF detection compared to 24 items with 4

DIF items. A short test length such as 10 items appears often especially in psycholo-

gical inventories (e.g., Ware & Sherbourne, 1992). A short test length of 10, 20, and

30 items can be also found in Wang and Shih’s (2010) simulation study.

A nonsimple (i.e., complex) test structure in which test items were associated with

both of the latent traits was considered in this study because few studies have consid-

ered nonsimple test structures in the multidimensional DIF literature. The anchor

items used in the present study were selected to form three clusters of loading pat-

terns. For example, for the 10 anchor items, the first three items were dominantly

loaded on the first latent trait, u1, the second three items were dominantly loaded on

the second latent trait, u2, and the last four items were loaded almost equally on both

latent traits, u1 and u2. For the 20 anchor items, the number of items for each cluster

was doubled. Using the anchor items and DIF items, three types of data sets were

generated: (a) non-DIF condition, (b) uniform DIF condition, and (c) nonuniform

DIF condition. For the structural brevity, items that were tested for DIF were placed

to the end of the test (Items 11 and 12 for the 12-item test, Items 11-14 for the 14-

item test, and Items 21-24 for the 24-item test).

Table 2 shows item parameters used to generate the DIF items. The non-DIF con-

ditions were generated by using the parameters of the reference group for both

groups. For simulating the uniform and nonuniform DIF conditions, various DIF

item patterns were selected for each test length condition. Two DIF items were simu-

lated for the 12-item test and four DIF items were simulated for the 14-item and 24-

item tests: (a) 2 (or 4) uniform DIF items (d-DIF only; hereafter, this condition is

referred to as ‘‘U-A’’), (b) 2 (or 4) nonuniform DIF items (a2-DIF with and without

d-DIF; hereafter, this condition is referred to as ‘‘N-B’’), and (c) 2 (or 4) nonuniform

(both a1- and a1-DIF with and without d-DIF; hereafter, this condition is referred to

as ‘‘N-C’’). For each of the three types of DIF, two levels of DIF magnitude were

introduced: low and medium levels, yielding six DIF conditions in total.

To generate responses for the DIF items in the reference group, the same item

parameters from Table 2 were always used regardless of DIF conditions, whereas the

item parameters for the focal group were manipulated to introduce different levels of

DIF magnitude. As for the level of DIF magnitudes, the d parameters for the studied

items in the focal group were 0.25 higher than those in the reference group, represent-

ing a low1 level of uniform DIF magnitude. The difference of 0.5 in the d parameters
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was used as a medium level of uniform DIF magnitude. The 0.3 and 0.6 differences

in a1 and/or a1 parameters were used to represent low and medium DIF magnitude,

respectively. The differences in the a and d parameters between the focal and the ref-

erence groups were manipulated to reflect previous multidimensional IRT DIF stud-

ies (e.g., Oshima, Raju, & Flowers, 1997; Suh & Cho, 2014).

Sample Design. Three unbalanced sample size conditions and one balanced sample

size condition between the reference and focal groups were implemented in the cur-

rent study: small (R500/F100), medium (R1000/F200), large unbalanced (R1500/

F500), and large balanced (R1000/F1000) sample sizes. The three different sizes of

unbalanced sample design between the focal and reference groups were selected to

reflect operational testing settings. Furthermore, one balanced sample size was

included to compare the sample size effect between balanced and unbalanced sample

designs. The manipulated sample size levels and ratios between groups were also

found in previous simulation studies (e.g., Finch, 2005; Jin et al., 2012).

Evaluation Criteria

Tests for detecting uniform and nonuniform DIF simultaneously were conducted for

every studied DIF item in Mplus (L. K. Muthén & Muthén, 1998-2015) using the

Mplus Automation package (Hallquist & Wiley, 2014) in R (R Core Team, 2015).

An example of Mplus codes for estimating the multidimensional MIMIC-interaction

model is provided in the appendix. In operational testing settings, it is often unknown

which items are free of DIF, and thus a scale purification stage may be necessary to

define a set of DIF-free anchor items. However, in this study, it is assumed that

anchor items have already been identified. Type I error rates and power rates of the

MIMIC-interaction model for identifying uniform DIF and nonuniform DIF were

examined as the evaluation criteria.

Type I error rate indicates the probability of detecting DIF when there is in fact

no DIF in the studied item (i.e., false positive rates), while power represents the

probability of detecting DIF when there is DIF in the studied item (i.e., true posi-

tive rates). Therefore, for each non-DIF condition, Type I error rates were com-

puted as the proportion of significant MIMIC-interaction models at the nominal

alpha level (at a = :05) out of 100 replications. Based on a preliminary analysis,

somewhat inflated Type I error rates were observed. Therefore, the Benjamini-

Hochberg procedure (BH; Benjamini & Hochberg, 1995; Thissen, Steinberg, &

Kuang, 2002) was used to control Type I error rates by sequentially comparing the

observed p value for each studied DIF item against to critical BH values that were

computed based on the number DIF tests used for the same data set (see Raykov,

Marcoulides, Lee, & Chang, 2013, for details of the BH procedure in the context

of latent variable modeling). For each DIF condition, power rates were calculated

as the proportion of significant MIMIC-interaction models in the same manner.

The simulation results are summarized separately for the BH adjusted Type I error
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rates and average power rates from the multidimensional MIMIC-interaction in

the following section. In addition, the recovery of correlation between two latent

traits for the M-2PL was reported.

Table 3. The BH-Adjusted Type I Error Rates of the MIMIC-Interaction Model in the Non-
DIF Conditions.

Test
length r

DIF
item R500/F100 R1000/F200 R1500/F500 R1000/F1000 Average

12
0.0

11 .01 .04 .04 .08 .04
12 .02 .02 .05 .04 .03

Average .02 .03 .05 .06

0.3
11 .04 .04 .02 .06 .04
12 .03 .02 .02 .01 .02

Average .04 .03 .02 .04

0.5
11 .05 .05 .05 .09 .06
12 .01 .01 .02 .02 .02

Average .03 .03 .04 .06
14

0.0

11 .08 .06 .07 .07 .07
12 .04 .04 .05 .05 .05
13 .04 .02 .05 .08 .05
14 .02 .04 .03 .01 .03

Average .05 .04 .05 .05

0.3

11 .08 .07 .07 .08 .08
12 .08 .06 .04 .04 .06
13 .06 .02 .08 .07 .06
14 .02 .00 .02 .04 .02

Average .06 .04 .05 .06

0.5

11 .05 .06 .06 .05 .06
12 .02 .04 .05 .06 .04
13 .03 .04 .09 .04 .05
14 .00 .03 .05 .03 .03

Average .03 .04 .06 .05
24

0.0

21 .05 .06 .08 .08 .07
22 .05 .03 .04 .08 .05
23 .05 .07 .07 .07 .07
24 .00 .02 .06 .01 .02

Average .04 .05 .06 .06

0.3

21 .05 .05 .04 .03 .04
22 .05 .02 .06 .09 .06
23 .06 .09 .11 .11 .09
24 .00 .01 .03 .03 .02

Average .04 .04 .06 .07

0.5

21 .07 .10 .04 .05 .07
22 .06 .03 .04 .10 .06
23 .02 .07 .01 .03 .03
24 .00 .01 .03 .01 .01

Average .04 .05 .03 .05
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Results

Effects of DIF Type and DIF Magnitude
Non-DIF. Table 3 shows the BH-adjusted Type I error rates for the MIMIC-interac-

tion model under the non-DIF conditions. Type I error rates for the 14-item test were

relatively larger compared to those from the 12-item test in the item level, although

Type I error rates for the 12-item test ranged from .01 up to and .09, whereas those

for the 14-item test ranged from 0 up to .08. In the 14-item test, Item 11 produced

the highest Type I error rates on average, and Item 14 showed the lowest Type I error

rates. Item-level Type I error rates for the 24-item test ranged from 0 and .11, show-

ing somewhat inflated Type I error rates for a couple of items in certain conditions

(e.g., Item 23 under R1000/F200, R1500/F500, and R1000/F1000 with r = :3, and

Item 22 under R1000/F1000 with r = :5).

Average Type I error rates ranged from .02 to .06 for the 12-item test, from .02 to

.08 for the 14-item test, and from .01 to .09 for the 24-item test. It appeared that

Type I error was controlled better in shorter test length conditions. The two smaller

sample sizes (R500/F100 and R1000/F200) tended to produce Type I error rates

closer to the BH adjusted nominal levels than the two larger sample sizes (R1500/

F500 and R1000/F1000), although this pattern was not consistent.

Uniform and Nonuniform DIF. Figures 2 through 4 show the average power rates of

the MIMIC-interaction model for detecting uniform and nonuniform DIF in the 12-

item, 14-item, and 24-item tests at a = :05. The multidimensional MIMIC-interaction

model produced higher average power rates under the uniform DIF conditions (LU-

A and MU-A) than the nonuniform DIF conditions (LN-B, LN-C, MN-B, and MN-

C). For example, as shown in Figure 2, the average power rates of uniform DIF con-

ditions (Figure 2a and b) were higher than those of nonuniform DIF (N-B and N-C)

conditions (Figure 2c, d, and f), with an exception of the LN-C conditions (Figure

2e) which showed higher power than the uniform DIF conditions.

In general, the average power rates of the LN-C and MN-C conditions (e.g.,

Figure 2e and f) were higher than those of the LN-B and MN-B conditions (e.g.,

Figure 2c and d). This is primarily because DIF was introduced in more parameters

for the LN-C and MN-C conditions than for the LN-B and MN-B conditions. Both

nonuniform DIF conditions (i.e., N-B and N-C) showed smaller power rates than the

uniform DIF conditions. Especially in the low DIF conditions, power rates of uni-

form DIF conditions were much higher than those of nonuniform DIF conditions.

Figures 3 and 4 show the average power rates in the 14-item and 24-item tests,

respectively. These two figures showed similar patterns to those from Figure 2 with

no exception.

Low DIF Versus Medium DIF. As shown in Figures 2 through 4, a clear pattern was

found in terms of DIF magnitude. Regardless of all other simulation conditions, the

average power rates of medium DIF magnitude (e.g., Figure 2b, d, and f) were sub-

stantially higher than the average power rates of low DIF magnitude (e.g., Figure 2a,

Lee et al. 557



c, and e) for the 12-item test. The 14-item test and 24-item test conditions in Figures

3 and 4 showed the same pattern with the 12-item test. This pattern seemed more

evident under the uniform DIF conditions (U-A) and large sample conditions (i.e.,

R1500/F500 and R1000/F1000).

Sample Size Effect

Regarding small, medium, and large sample sizes within unbalanced sample design,

the average power rates increased as the sample size increased, because the power of

Figure 2. Average power rates for the MIMIC-interaction model using the 12-item test with
uniform and nonuniform DIF across sample sizes and correlations between latent traits.
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a test statistic is substantially affected by sample size. This general pattern was also

observed in Woods and Grimm (2011); however, the average power rates in this

study appeared to be lower than those reported in their study based on the unidimen-

sional MIMIC-interaction model. For example, compared to their results of R1000/

F200 with the 24-item test in which the average power rate was around .82 in nonu-

niform conditions, the average power rate of the same condition in this study was

substantially low (.42) in the medium nonuniform DIF conditions with no correlation

(e.g., Figure 4f). In addition, Figures 2, 3, and 4 also show a comparison of average

Figure 3. Average power rates for the MIMIC-interaction model using the 14-item test with
uniform and nonuniform DIF across sample sizes and correlations between latent traits.
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power rates for the unbalanced sample design of R1500/F500 and the balanced sam-

ple design of R1000/F1000. The power rates of the balanced sample condition were

higher than those of the unbalanced sample conditions across all DIF conditions

regardless of DIF type and DIF magnitude.

Correlation Effect

Correlation effects on the average power rates for the multidimensional MIMIC-

interaction model can also be seen in Figures 2 through 4. The average power rates

Figure 4. Average power rates for the MIMIC-interaction model using the 24-item test with
uniform and nonuniform DIF across sample sizes and correlations between latent traits.
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for correlation conditions of 0, 0.3, and 0.5 were close to each other in the uniform

DIF conditions (U-A) across three test lengths and in the first nonuniform DIF condi-

tions (N-B) of the 12-item and 24-item tests. For other conditions, the average power

rates increased as the correlation between latent traits increased. There were excep-

tions for this pattern; MN-C conditions in the 12-item (Figure 2f) and 24-item tests

(Figure 4f). In these cases, the patterns across different correlations varied depending

on sample size. Average power rates increased as the correlation increased for the

two small sample size conditions (i.e., R500/F100 and R1000/F200), whereas the

pattern was reversed for the two large sample size conditions (i.e., R1500/F500 and

R1000/F1000). Additionally, the recovery of correlation for the M-2PL using the

MIMIC-interaction model was examined.2 Overall, correlation parameters were

somewhat overestimated across all DIF conditions. For example, the average esti-

mates for the 0, 0.3, and 0.5 correlation conditions were 0.168, 0.437, and 0.619 for

the U-A conditions, 0.174, 0.425, and 0.622 for the N-B conditions, and 0.180,

0.447, and 0.626 for the N-C conditions in the 24-item test.

Test Length Effect

Regarding the test length effect, the 12-item test and 24-item test conditions were

first compared, because the 14-item test condition had a different proportion of DIF

items (40%) compared to the 12-item and 24-item test conditions (20%). The effect

of test length seemed to vary depending on other simulation conditions. As test

length increased from 12 items to 24 items, regardless of DIF magnitude, sample size,

and the correlation between the latent traits, the power of uniform DIF conditions

tended to decrease slightly. Unlike for the uniform DIF conditions, the effect of test

length was more erratic for the nonuniform DIF conditions. In general, the 12-item test

demonstrated better power rates than the 24-item test. Especially when the sample size

was large and the correlation between the dimensions was moderate (r = 0:5), average

power rates from the 12-item test were much higher than those from the 24-item test.

Both the 12-item test and the 24-item test performed better in detecting uniform and

nonuniform DIF, when sample size became larger. Regarding the effect of having dif-

ferent proportions of anchor items in a test, the results in the 14-item test with 4 DIF

items and 24-item test with 4 DIF items were compared. The average power rates in

the 14-item test were always smaller than those in the 24-item test, implying that hav-

ing a longer anchor item set may lead to produce higher power rates in detecting uni-

form and nonuniform DIF with the multidimensional MIMIC-interaction model.

Latent Mean Difference Effect

Figures 5 and 6 show the average power rates in detecting low and medium DIF

when the means of latent traits are equal and unequal between the focal and refer-

ence groups. When the latent means were the same for the both groups, average

power rates were either equal to or higher (the difference ranging from 0 to 0.11)
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than power rates when the latent means were different between the focal and refer-

ence groups. This pattern occurred across most correlation conditions (r = 0 and

r = 0:5), test length conditions (14-item and 24-item), and DIF magnitude (low and

medium). However, some exceptions were found in the low uniform condition (see

Figure 6a) and in the low nonuniform condition (see Figure 5c and Figure 6c). For

the medium DIF conditions, the results in Figure 5 (r = 0) and Figure 6 (r = 0:5) were

almost identical regardless of test length, sample size, and DIF type.

Figure 5. Average power rates for the MIMIC-interaction model with and without latent
mean differences between the groups.
Note. r = 0 between the latent traits.
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Discussion

The goal of this study was to demonstrate the utility of the multidimensional MIMIC-

interaction model in detecting uniform and nonuniform DIF and to assess its perfor-

mance under various testing conditions in terms of Type I error rates and power rates

via a Monte Carlo study. This study evaluated the multidimensional MIMIC-interac-

tion model implemented in Mplus like the previous study of Woods and Grimm

Figure 6. Average power rates for the MIMIC-interaction model with and without latent
mean differences between the groups.
Note. r = 0:5 between the latent traits.
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(2011), in which the unidimensional MIMIC-interaction model was considered to

study uniform and nonuniform DIF.

The results of this study provide an important contribution to the development of

new multidimensional DIF methods, given a few DIF studies are available in the con-

text of multidimensional IRT models (e.g., Oshima et al., 1997; Suh & Cho, 2014).

In general, Type I error rates of the MIMIC-interaction model were close to or below

the expected alpha value of .05 on average across all non-DIF conditions. Our results

do not concur with Woods and Grimm (2011), who found unacceptably high Type I

error rates with MIMIC-interaction models due to the violation of normality assump-

tion in the interaction between continuous latent variables and the categorical covari-

ate. Another potential reason for this difference is that Woods and Grimm’s (2011)

study did not implement any adjustment (e.g., Bonferroni or the BH procedure) on p

values, whereas this study used the BH procedure when testing DIF under the non-

DIF conditions.

The average power rates from the large sample size conditions of R1500/F500 and

R1000/F1000 were high (over .90) in the medium uniform DIF (MU-A) condition.

The corresponding average power rates with the medium nonuniform DIF (MN-C)

were relatively lower (over .60). In general, the two nonuniform conditions (N-B and

N-C) showed significantly lower power rates than the uniform DIF conditions. The

power rates of the N-C conditions were higher than those of the N-B conditions. The

reason for the difference between the N-B condition and N-C condition is that DIF

was introduced in a2 parameter in the N-B condition, whereas DIF was introduced in

both a1 and a2 parameters in the N-C condition. Therefore, a larger DIF effect was

expected in the latter condition.

Regardless of the DIF type, average power rates increased as sample size and DIF

magnitude increased, as expected. Also, power increased when the anchor item length

increased and when the latent means were equal between the focal and reference

groups. Test length and correlation effects were less apparent and varied depending

on other simulation conditions. One interesting finding regarding test length was that

when nonuniform DIF was present with small and medium sample sizes, power rates

increased as test length increased. This implies that the performance of the MIMIC-

interaction model in detecting nonuniform DIF can be improved by using longer tests

as opposed to shorter tests, especially when sample sizes are small. In other words,

the effects of test length and sample size may compensate for each other in terms of

power rates in detecting nonuniform DIF. With respect to this observation, further

investigation including more comprehensive simulation conditions is needed.

In the future, we would like to extend our study using the mediated MIMIC model

that showed improvement in detecting the mediation effect that fully or partially

explained DIF. The mediated MIMIC model allows revealing what causes of DIF

(Cheng et al., 2016; Yao & Li, 2010). However, there are few clear distinctions

between the mediated MIMIC model and our MIMIC-interaction model. First, our

MIMIC-interaction model is the multidimensional generalization of the traditional

MIMIC model and closer to the MIRT framework, whereas the mediated MIMIC
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model focuses on the mediation effect on an auxiliary (or nuisance) dimension. In

other words, the mediated MIMIC model assumes the unidimensionality of the test,

but there is also an auxiliary latent trait that should not be measured by the test but it

exists and helps understand the relationship between the categorical covariate and

the latent trait. In contrast, the multidimensional MIMIC-interaction model assumes

that the test is multidimensional and multidimensionality is intentional. That is, there

are two or more latent traits underlying the item response data because the test is

designed in this way. However, a mediator can be still incorporated into the multidi-

mensional MIMIC-interaction model to investigate potential reasons for DIF in a

multidimensional test structure.

Future DIF research should also consider other traditional approaches, such as

multidimensional simultaneous item bias test (MULTISIB; Stout, Li, Nandakumar, &

Bolt, 1997) or likelihood ratio test using item response theory (IRT-LR). Especially,

comparing the MIMIC and MIMIC-interaction models with the IRT-LR test can provide

interesting findings, because both approaches have been commonly used in the latent

variable modeling and IRT modeling approaches, respectively. Previous studies com-

pared the performances of unidimensional MIMIC and IRT-LR approaches under vari-

ous conditions. For example, Woods and Grimm (2011) found that the recovery of the

discrimination and difficulty parameter of the IRT-LR-DIF (Thissen, Steinberg, &,

Wainer, 1988) was better than that of the MIMIC-interaction models in nonuniform DIF

conditions with ordinal responses. Furthermore, Woods (2009) showed that MIMIC

models with small samples (N = 50) of focal group in uniform DIF conditions with

dichotomous or ordinal responses produced more accurate parameter estimates than the

IRT-LR-DIF. Future studies can investigate the performances of the multidimensional

MIMIC and IRT-LR approaches under similar conditions.

Finally, this study did not consider any scale purification process to select DIF-

free anchor items because the main focus of the study was to examine the perfor-

mance of the multidimensional MIMIC model for the selected DIF items. However,

especially in operational testing settings, assessments may contain several DIF items,

and it may not be possible to determine DIF-free items without a scale purification

process. Future studies can focus on scale purification methods for determining DIF-

free anchor items in the context of the multidimensional MIMIC-interaction model.

Appendix

Mplus Code for the Multidimensional MIMIC-Interaction Model

TITLE: Detecting DIF with Multidimensional MIMIC-Interaction Model

DATA:
FILE IS data.dat;
FORMAT IS FREE;
TYPE IS INDIVIDUAL;
NGROUPS=1;
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VARIABLE:
!12 dichotomous items and one group variable
NAMES ARE item1-item12 z;
CATEGORICAL ARE item1-item12;

MODEL:
!LATENT TRAIT 1;
[theta1@0];
[item1$1-item12$1];

theta1 BY item11* item1-item3 item7-item10;
theta1@1;

theta1 on z;

!UNIFORM DIF;
item11 on z;

!NONUNIFORM DIF;
zxtheta1 | z XWITH theta1;
item11 ON zxtheta1;

!LATENT TRAIT 2;
[theta2@0];

theta2 BY item12* item4-item10;
theta2@1;

theta2 on z;

ANALYSIS:
ESTIMATOR = MLR;
TYPE = RANDOM;
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Notes

1. ‘‘Low’’ does not represent an absolute size of DIF such as small effect size of DIF magni-

tude. It may indicate a medium size of DIF in practice. Therefore, low and medium DIF

simulated in this study should be interpreted relatively, not absolutely.

2. The result table can be obtained from the corresponding author on request.
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