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Abstract

Critics of null hypothesis significance testing suggest that (a) its basic logic is invalid
and (b) it addresses a question that is of no interest. In contrast to (a), I argue that
the underlying logic of hypothesis testing is actually extremely straightforward and
compelling. To substantiate that, I present examples showing that hypothesis testing
logic is routinely used in everyday life. These same examples also refute (b) by show-
ing circumstances in which the logic of hypothesis testing addresses a question of
prime interest. Null hypothesis significance testing may sometimes be misunderstood
or misapplied, but these problems should be addressed by improved education.
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One important goal of statistical analysis is to find real patterns in data. This is diffi-

cult when the data are subject to random noise, because random noise can produce

illusory patterns ‘‘just by chance.’’ Given the difficulty of separating real patterns

from coincidental ones within noisy data, it is important for researchers to use all of

the appropriate tools and models to make inferences from their data (e.g., Gigerenzer

& Marewski, 2015).

Null hypothesis significance testing (NHST) is one of the most commonly used

types of statistical analysis, but it has been criticized severely (e.g., Kline, 2004;

Ziliak & McCloskey, 2008). According to Cohen (1994), for example, ‘‘NHST has

not only failed to support the advance of psychology as a science but also has seri-

ously impeded it’’ (p. 997). There have been calls for it to be supplemented with other

types of analysis (e.g., Wilkinson & the Task Force on Statistical Inference, 1999),

and at least one journal has banned its use outright (Trafimow & Marks, 2015).
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This note reviews the basic logic of NHST and responds to some criticisms of it. I

argue that the basic logic is straightforward and compelling—so much so that it is

commonly used in everyday reasoning. It is suitable for answering certain types of

research questions, and of course it can be supplemented with additional techniques

to address other questions. Criticisms of NHST’s logic either distort it or implicitly

deny the possibility of ever finding patterns in data. The major problem with NHST

is that some aspects of the method can be misunderstood, but the solution to that

problem is to improve education—not to adopt new methods that address a different

set of questions but are incapable of answering the question addressed by NHST. I

conclude that it would be a mistake to throw out NHST.

The Common Sense Logic of NHST

Critics of NHST assert that it uses arcane, twisted, and ultimately flawed probabilis-

tic logic (e.g., Cohen, 1994; Hubbard & Lindsay, 2008). To the contrary, the heart of

NHST is a simple, intuitive, and familiar ‘‘common sense’’ logic that most people

routinely use when they are trying to decide whether something they observe might

have happened by coincidence (a.k.a., ‘‘randomly,’’ ‘‘by accident,’’ or ‘‘by chance’’).

For example, suppose that you and five colleagues attend a departmental picnic.

An hour after eating, three of you start to feel queasy. It comes out in discussion that

those feeling queasy ate potato salad and that those not feeling queasy did not eat the

potato salad. What could be more natural than to conclude that there was something

wrong with the potato salad?

It is important to realize that this nonstatistical example fully embodies the under-

lying logic of hypothesis testing. First, a pattern is observed. In this example, the pat-

tern is that people who ate potato salad felt queasy. Second, it is acknowledged that

the pattern might have arisen just by chance. In this example, for instance, exactly

those people who ate the potato salad—and no one else—might coincidentally all

have been coming down with the flu, and the flu might have caused their queasiness.

Third, there is reason to believe that the observed coincidence—while possible—

would be very unlikely. In the example, real-world experience suggests that coming

down with flu is a rare event, so it would be quite unlikely for several people to do

so at just the same time, and it would of course be even more unlikely that those were

exactly the people who ate the potato salad. Fourth, it is concluded that the observed

pattern did not arise by chance. In this example, the ‘‘not by chance’’ conclusion sug-

gests that there was something wrong with the potato salad.

To further clarify the analogy between NHST and the potato salad example, con-

sider how a standard coin-flipping ‘‘statistical’’ data analysis situation could be

described in parallel terms. Suppose a coin is flipped 50 times and it comes up heads

48 of them (pattern). This quite strong pattern could happen by coincidence, but ele-

mentary probability theory says that such a coincidence would be extremely unlikely.

It therefore seems reasonable to conclude that the pattern was not just a coincidence;

instead, the coin appears to be biased to come up heads. This is exactly the same line
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of reasoning used in the potato salad example: The observed pattern would be very

unlikely to occur by chance, so it is reasonable to conclude that it arose for some

other reason.

There are many other nonstatistical examples of the reasoning used in NHST. For

instance, if you see an unusually large number of cars parked on the street where you

live (pattern), you will probably conclude that something special is going on nearby.

It is logically possible for all those cars to be there at the same time just by coinci-

dence, but you know from your experience that this would be unlikely, so you reject

the ‘‘just by chance’’ idea. Analogously, if two statistics students make an identical

series of calculation errors on a homework problem (pattern), their instructor might

well conclude that they had not done the homework independently. Although it is

logically possible that the two students made the same errors by chance, that would

seem so unlikely—at least for some types of errors—that the instructor would reject

that explanation. These and many similar examples show that people often use the

logic of hypothesis testing in the real world; essentially, they do so every time they

conclude ‘‘that could not just be a coincidence.’’ Statistical hypothesis testing differs

only in that laws of probability—rather than every-day experiences with various

coincidences—are used to assess the likelihood that an observed pattern would occur

by chance.

Criticisms of NHST’s Logic

According to Berkson (1942), ‘‘There is no logical warrant for considering an event

known to occur in a given hypothesis, even if infrequently, as disproving the hypoth-

esis’’ (p. 326). In terms of our examples, Berkson is saying that it is illogical to con-

sider 3/6 queasy friends as proving that there was something wrong with the potato

salad, because it could be just a coincidence. Taken to its logical extreme, his state-

ment implies that observing 48/50 heads should also not be regarded as disproving

the hypothesis of a fair coin, because that too could happen by chance. To be sure,

Berkson is mathematically correct that the suggested conclusions about the quality of

the potato salad and the fairness of the coin do not follow from the observed patterns

with the same 100% certainty that implications have in propositional logic (e.g.,

modus ponens). On the other hand, it is unrealistic to demand that level of certainty

before reaching conclusions from noisy data, because such data will almost never

support any interesting conclusions with 100% certainty. In practice, 48/50 heads

seems like ample evidence to conclude—with no further assumptions—that a coin

must be biased, and the ‘‘logical’’ objection that this could have happened by chance

seems rather intransigent. Given that logical certainty is unattainable due to the pres-

ence of noise in the data, one can only consider the probabilities of various correct

and incorrect decisions (e.g., Type I error rates, power) under various hypothesized

conditions, which is exactly what NHST does.

Another long-standing objection to NHST is that its conclusions depend on the

probabilities of events that did not actually occur (e.g., Cox, 1958; Wagenmakers,
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2007). For example, in deciding whether 3/6 people feeling queasy was too much of

a coincidence, people might be influenced by how often they had seen 4/6, 5/6, or 6/6

people in a group feel queasy by chance, even though only 3/6 had actually been

observed. It is difficult to see much practical force to this objection, however. In try-

ing to decide whether a particular pattern is too strong to be observed by chance, it

seems quite relevant to consider all of the different patterns that might be observed by

chance—especially the patterns that are even stronger. Proponents of this objection

generally support it with artificial probability distributions in which stronger patterns

are at least as likely to occur by chance as weaker patterns, but such distributions

rarely if ever arise in actual research scenarios.

Critics of NHST sometimes claim that its logical form is parallel to that of the

argument shown in Table 1 (e.g., Cohen, 1994; Pollard & Richardson, 1987). There

is obviously something wrong with the argument in this table, and NHST must be

flawed if it uses the same logic. This criticism is unfounded, however, because the

logic illustrated in Table 1 is not parallel to that of NHST.

The argument given in Table 1 suggests that a null hypothesis—in this case, that

a person is an American—should be rejected whenever the observed results are

unlikely under that hypothesis. NHST requires more than that, however. Implicitly,

in order to reject a null hypothesis, NHST requires that the observed results must be

more likely under an alternative hypothesis than under the null. In the potato salad

example, for instance, rejecting the coincidence explanation requires not only that

the observed pattern is unlikely by chance when the potato salad is good, but also

that this pattern is more likely when the potato salad is bad (i.e., more likely when

the null hypothesis is false than when it is true).

Figure 1 shows how this additional requirement arises within NHST using the Z

test as an example. The null hypothesis predicts that the outcome is a draw from the

depicted standard normal distribution, and Region A (i.e., the cross-hatched tails) of

this distribution represent the Z values for which the null would be rejected at p \
.05. Critically, Region B in the middle of the distribution also depicts an area of 5%.

If NHST really only required that the rejection region had a probability of 5% under

the null hypothesis, as implied by the argument in Table 1, then rejecting the null for

an observation in Region B would be just as appropriate as rejecting it for an observa-

tion in Region A. This is not all that NHST requires, however, and in fact outcomes

in Region B would not be considered evidence against the null hypothesis. The null

hypothesis is rejected for outcomes in A but not for those in B, because of the require-

ment that an outcome in the rejection region must have higher probability when the

Table 1. A Misleading Caricature of Null Hypothesis Significance Testing’s Logical Form.

1. If a person is an American, then he is probably not a member of Congress.
2. This person is a member of Congress.
3. Therefore, he is probably not an American.
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null hypothesis is false than when it is true. Region B of Figure 1 clearly does not sat-

isfy this additional requirement, because this area will have a higher probability when

the null hypothesis is true than when it is not.

Likewise, the example of Table 1 clearly does not satisfy the additional require-

ment that the observed results should be more likely under some alternative to the

null hypothesis. The probability that a person is a member of Congress is lower—not

higher—if the person is not an American. In fact, the logic of NHST actually requires

a first premise of the form:

1#. If a person is an American, then he is probably not a member of Congress; on

the other hand, if he is not an American, then he is more likely to be a member

of Congress.

Premise 1# is obviously false, so the conclusion (3) is obviously not supported within

NHST.

Finally, critics of NHST often complain that its conclusions can depend on the

sampling methods used to collect the data as well as on the data themselves (e.g.,

Wagenmakers, 2007). This dependence arises because NHST’s assessment of ‘‘how

Figure 1. A standard normal (Z) distribution of observed scores under the null hypothesis.
Note. Region A: The two cross-hatched areas indicate the standard two-tailed rejection region—that is,

the 5% of the distribution most discrepant from the mean. Region B: The dark shaded area in the middle

of the distribution also represents an area of 5%. Under NHST, only observations in the tails are taken as

evidence that the null hypothesis should be rejected, even though the probability of an observation in

Region B is just as low (i.e., 5%).
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likely is such an extreme pattern by chance’’ depends on the exact probabilities of

various outcomes, and these in turn depend on the details of how the sampling was

carried out. This is thought to be a problem for NHST, because—according to

critics—the conclusion from a data set should depend only on what the data are, but

not on the sampling plan used to collect them. This argument begs the question,

however. Of course, the assessment of what will happen ‘‘by chance’’ can only be

done within a well-defined set of possible outcomes. These outcomes are necessarily

determined by the sampling plan, so the plan must influence the assessment of the

various patterns’ probabilities. Viewed in this manner, it seems quite reasonable that

any conclusion about the presence of an unusual pattern would depend on the sam-

pling plan as well as on the observations themselves.

Ancillary Criticisms of NHST

Additional criticisms have been directed at aspects of NHST other than its logic. For

example, it is sometimes claimed that NHST does not address the question of main

interest. Critics often assert that researchers ‘‘really’’ want to know the probability

that a pattern is coincidental given the data (e.g., Berger & Berry, 1988; Cohen,

1994; Kline, 2004). Within the current examples, then, the claim is that people really

want to know ‘‘the probability that these 3/6 picnic-goers feel sick by coincidence’’

or ‘‘the probability that the coin is biased towards heads.’’

It is clear that NHST does not provide such probabilities, but it is not so clear that

everyone always wants them. In many cases, people simply want to decide whether

the pure chance explanation is tenable; for example, it is difficult to imagine a picnic-

goer asking for a precise probability that the potato salad was bad. In any case, to

obtain such probabilities requires knowing all of the other possible explanations, plus

their prior probabilities (e.g., Efron, 2013). In many situations where NHST is used,

the complete set of other possible explanations and their probabilities are simply

unknown. In these situations, no statistical method can compute the probability that

researchers supposedly want, and it seems unfair to criticize NHST for failing to pro-

vide something that cannot be determined with any other technique either.

Surely the most frequent and justified criticisms of NHST revolve around the idea

that researchers do not completely understand it (e.g., Batanero, 2000; Wainer &

Robinson, 2003). A number of findings suggest that one aspect of NHST in

particular—the so-called ‘‘p value’’—is widely misunderstood (e.g., Gelman, 2013;

Haller & Kraus, 2002; Hubbard & Lindsay, 2008; Kline, 2004). Explicitly or impli-

citly, such findings are taken as evidence that NHST should be abandoned because it

is too difficult to use properly (e.g., Cohen, 1994).

Unfortunately, similar data suggest that many other concepts in probability and

statistics are also poorly understood (e.g., Campbell, 1974). If we abandon all meth-

ods based on misunderstood statistical concepts, then almost all statistically based

methods will have to go, including some apparently quite practical and important

ones (e.g., diagnostic testing in medicine; Gigerenzer, Gaissmaier, Kurz-Milcke,
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Schwartz, & Woloshin, 2008). Within this difficult context, there seems to be no rea-

son to abandon NHST selectively, because there is ‘‘no evidence that NHST is mis-

used any more often than any other procedure’’ (Wainer & Robinson, 2003, p. 22).

Moreover, if one accepted the argument that all poorly understood methods should

be abandoned, then some useful but poorly understood nonstatistical methods would

presumably also have to go (e.g., propositional logic; Rips & Marcus, 1977; Wason,

1968). Surely it would be a mistake to abandon a valuable tool or technique simply

because considerable training and effort are required to use it correctly.

The current discussion of frequent false positives and low replicability in research

areas using NHST (e.g., Francis, 2012; Nosek, Spies, & Motyl, 2012; Simmons,

Nelson, & Simonsohn, 2011) also suggests that there are misunderstandings and mis-

use of this technique. Specifically, there is evidence that researchers capitalize on

flexibility in the selection of their data and in the application of their analyses (i.e.,

‘‘p-hacking’’) in order to obtain statistically significant and therefore publishable

results (e.g., Bakker, Van Dijk, & Wicherts, 2012; John, Loewenstein, & Prelec,

2012; Tsilidis et al., 2013). Such practices are a misuse of NHST, and they inflate

positive rates, especially in combination with existing biases toward publication of

surprising new findings and with the relative scarcity of such findings within well-

studied areas (e.g., Ferguson & Heene, 2012; Ioannidis, 2005). The false positive

problem is not specific to NHST, however; it would arise analogously within any sta-

tistical framework. Whatever statistical methods are used to detect new patterns in

noisy data, the rate of reporting imaginary patterns (i.e., false positives) will be

inflated by flexibility in the selection of the data, flexibility in the application of the

methods, and flexibility in the choice of what findings are reported.

To the extent that misunderstanding of NHST presents a problem, better educa-

tion of researchers seems like the best path toward a solution (e.g., Holland, 2007;

Kalinowski, Fidler, & Cumming, 2008; Leek & Peng, 2015). Although the underly-

ing logic of NHST has considerable common sense appeal—as shown by the real-

world examples described earlier—this logic is often obscured when the methods are

taught to beginners. This is partly because of the specialized and unintuitive termi-

nology that has been developed for NHST (e.g., ‘‘null hypothesis,’’ ‘‘Type I error,’’

‘‘Type II error,’’ ‘‘power’’). Another problem is that introductions to NHST nearly

always focus primarily on the mathematical formulas used to compute the probabil-

ities of observing various patterns by chance (i.e., ‘‘distributions under the null

hypothesis’’). Students can easily be so confused about the workings of these formu-

las that they fail to appreciate the simplicity of the underlying logic.

Conclusions

NHST is a useful heuristic for detecting nonrandom patterns, and abandoning it

would be counterproductive. Its underlying logic—both in scientific research and in

everyday life—is that chance can be rejected as an explanation of observed patterns

that would rarely occur by coincidence. It is true that the conclusion of a biased coin
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does not follow with 100% certainty, and it will be wrong when an unlikely pattern

really does occur by chance. Researchers should certainly keep this possibility in

mind and resist the tendency to believe that every pattern documented statistically—

whether by NHST or any other technique—necessarily reflects the true state of the

world. As a practical strategy for detecting non-random patterns in a noisy world,

however, it seems quite a reasonable heuristic to conclude tentatively that something

other than chance is responsible for systematic observed patterns.

While NHST is extremely useful for deciding whether patterns might have arisen

by chance, it is, of course, not the only useful statistical technique. In fact, when

NHST is employed, ‘‘the answer to the significance test is rarely the only thing we

should consider’’ (Cox, 1958, p. 367), so it is not sufficient for researchers to try to

answer all research questions entirely within the NHST framework. For example,

NHST is not appropriate for evaluating how strongly a data set supports a null

hypothesis (e.g., Grant, 1962). For that purpose, it is better to use confidence inter-

vals or Bayesian techniques (e.g., Cumming & Fidler, 2009; Rouder, Speckman,

Sun, Morey, & Iverson, 2009; Wainer & Robinson, 2003; Wetzels, Raaijmakers,

Jakab, & Wagenmakers, 2009). Fortunately, there is no fundamental limit on the

number of statistical tools that researchers can use. Researchers should always use

the set of tools most suitable for the questions under consideration. In many cases,

that set will include NHST.
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