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Abstract

Null hypothesis significance testing (NHST) provides an important statistical toolbox,
but there are a number of ways in which it is often abused and misinterpreted, with
bad consequences for the reliability and progress of science. Parts of contemporary
NHST debate, especially in the psychological sciences, is reviewed, and a suggestion is
made that a new distinction between strongly, weakly, and very weakly anti-NHST posi-
tions is likely to bring added clarity to the debate.

Keywords

statistics, p value, hypothesis testing

Introduction

While the human cognitive machinery is impressive in many ways, it has limitations

and biases that hamper our ability to spontaneously do good science. Examples of

such biases are (a) our tendency in many situations toward overconfidence in our

beliefs and (b) an overly trigger-happy pattern detection mechanism that tends to see

patterns in what is actually just noise; see, for example, Häggström (2013). This

necessitates the use of rigorous statistical methods to circumvent these biases. The

most widely used of these, from the 20th century and onward, is the so-called fre-

quentist statistics, of which null hypothesis significance testing (NHST) forms a cen-

tral part; see Salsburg (2001) for a reasonably balanced history. NHST has, however,

come under some fire in recent years from critics who claim that its practice suffers

from major problems. And indeed, there are problems, but that does not make all
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criticisms correct. In this article, I will try to add some much-needed nuance to the

discussion, to distinguish various strands of the anti-NHST view, and to evaluate

their merits. The main focus will be on the practice of NHST in psychology and

related sciences. My eventual verdict will be that, on one hand, we cannot do without

NHST in our statistical toolbox—a position that implies that the fiercest critics of

NHST who want to abolish the practice altogether go too far—while, on the other

hand, there are features of contemporary NHST practice that need to change.

This article is organized as follows. At the end of this introductory section, I will

recall basic NHST terminology. The second section is a quick tour through some of

the main malpractices that haunts present-day NHST practice. In the third section, I

comment on the positions of a few of the most influential contributors to contempo-

rary NHST debate. The reader will come out of that section with the (correct) impres-

sion that the debate is multifaceted and somewhat chaotic. In the fourth section, I

offer an attempt at providing a least a bit of structure to the debate through a distinc-

tion between different strands of anti-NHST position; I believe that if everyone who

identifies themselves as anti-NHST would make an effort to clarify their own stance

with respect to my classification, then the clarity of the debate as a whole would

improve nontrivially. The reason for this is explained in the fifth section, where I also

offer some further conclusions regarding what ought to be done in order to improve

statistical practice and science as a whole.

There is no need here for a mathematically fully precise treatment of NHST, but

we do need the basic terminology. Statistical hypothesis testing is always relative to

some null hypothesis, which typically states that some effect or some parameter is

zero. Given the data, the p value can loosely be defined as what the probability would

be of getting at least as extreme data as those we actually got, if the null hypothesis

were true. The looseness of this definition comes from the fuzziness of the term

‘‘extreme,’’ which actually needs to be carefully defined before analyzing the data.

The standard so-called Fisherian definition gives much flexibility about defining

‘‘extreme,’’ whereas the other classical approach—that of Neyman and Pearson—

requires the specification of an alternative hypothesis, and defining ‘‘extreme’’ so as

to maximize power (see below) with respect to that alternative hypothesis. See, for

example, Lehmann and Romano (2008) for a more careful discussion.

If the p value ends up below a given threshold—which is called the significance

level and which (mostly for historical reasons) is most commonly taken to be 0.05—

then statistical significance is declared, which is typically considered to provide (at

least some) reason for suspecting that the null hypothesis is false. For a given signifi-

cance level, the power of a testing procedure is a function of the effect size (or, more

generally, of the precise choice of alternative hypothesis), and it is defined as the

probability of obtaining statistical significance under that effect size.

A (Fisherian) 95% confidence interval—or, more generally, confidence set—for a

parameter r is the set of all r such that, with the given data, testing the null hypothesis

r = r would not yield statistical significance at level 1 2 0.95 = 0.05. This guarantees,

regardless of the true value of r (but provided all other model assumptions are true),
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that the probability of getting data that yield a confidence interval that includes the

true r is at least 0.95. The concept generalizes in the obvious way to confidence inter-

vals with confidence levels other than 95%.

Not All Is Well

It is hard to imagine how 20th and early 21st century science could have done without

the NHST machinery, and I will argue later in this article that we still need it. It must,

however, be admitted that current NHST practice suffers from a number of endemic

problems. The following are among the most detrimental:

(a) Any Statistics 101 class teaches that obtaining statistical significance does not

constitute disproof of the null hypothesis, and likewise that failure to obtain

statistical significance does not constitute proof of the null hypothesis.

Nevertheless misconceptions to the contrary are often implicit, and sometimes

even quite explicit, in statements made by highly qualified researchers, includ-

ing Harvard professors such as Mitchell (2014) who believes that p \ 0.05

does the same thing to his null hypothesis that an observation of a black swan

does to the all-swans-are-white hypothesis; see also Häggström (2014b).

(b) The fallacy of the transposed conditional. Despite widespread claims to the

contrary, a p value cannot be interpreted as the probability that the null

hypothesis is true. To do so is an example of mistaking a statement about the

probability of certain kinds of data given the null hypothesis for a statement

about the probability of the null hypothesis given the data, which in turn is an

example of the fallacy of the transposed conditional: confusing P(A|B) with

P(B|A), which can lead to arbitrarily misleading conclusions.

Likewise, in a situation where a 95% confidence interval has been calculated, it may

be tempting to conclude that the true parameter value sits in that interval with prob-

ability 0.95, but again this would be to commit the fallacy of the transposed condi-

tional; see Morey, Hoekstra, Rouder, Lee, and Wagenmakers (2016) for extensive

discussion of this instance of the fallacy.

There is a much-employed but highly unfortunate terminological convention in

the use of the word ‘‘likely,’’ which I believe contributes to the confusion. Consider

the case of statistician Yudi Pawitan’s influential book In All Likelihood. Discussing

an experiment where a coin with unknown heads-probability u is tossed 10 times,

resulting in 8 heads, he writes that we are in a position to conclude that u ‘‘is very

unlikely to be very small,’’ and that in contrast ‘‘u = 0.6 or u = 0.7 is likely’’

(Pawitan, 2001, p. 21). Since, in ordinary English, ‘‘likely’’ is synonymous to ‘‘hav-

ing high probability,’’ this very much looks like a case of the fallacy of the trans-

posed conditional. Pawitan, however, is much too sophisticated a statistical thinker

to make that mistake; what he does is that he implicitly defines the statement ‘‘u =

0.7 is likely’’ to mean that the likelihood function L(u)—defined as the probability
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of the obtained data provided the parameter value is u—takes a large value for u =

0.7. For another example, we may note that the same language appears in a recent

column by the president of the Association for Psychological Science:

The information that the binomial likelihood function conveys is extremely intuitive. It says

that given that we have observed 7 successes in 10 tries, the probability parameter of the

binomial distribution from which we are drawing [ . . . ] is very unlikely to be 0.1; it is much

more likely to be 0.7, but a value of 0.5 is by no means unlikely. (Gallistel, 2015)

It is difficult or impossible for the reader, confronted with a passage like this one, to

judge whether the author is under the spell of the fallacy of the transposed condi-

tional, or if he is merely adhering to the same unfortunate terminological convention

as Pawitan. In any case, the chosen language invites confusion and almost begs sta-

tistically unsophisticated readers to commit the fallacy of the transposed conditional.

(c) If a study shows a statistically significant effect of, say, a medical treatment

compared to placebo, on one group such as men, but no statistically significant

effect on another group, such as women, then it may be tempting to conclude

that the data exhibit a statistically significant difference between the treat-

ment’s effects on the two groups. However, such a conclusion is unwarranted;

a separate test of the difference is needed. A study by Nieuwenhuis,

Forstmann, and Wagenmakers (2011), scrutinizing the statistical analyses in

neurobiology articles in a range of top journals, found that in 79 of the articles,

precisely this mistake was made—while in 78 of them the correct procedure

was carried out.

(d) Sizeless science. Consider a clinical trial comparing a new treatment to pla-

cebo, and suppose that the true fact of the matter is that the treatment does

have a positive effect compared to placebo, but that the effect is too small to

be of any practical relevance to patients’ health or well-being. If the sample

size of the study is sufficiently large, it is nevertheless likely that statistical

significance will be obtained. This illustrates the need for considering not only

statistical significance, but also what we might call subject-matter signifi-

cance, meaning that the observed effect is large enough to be of subject-

matter interest. Ziliak and McCloskey (2008) scrutinized 369 articles involv-

ing regression analysis in the prestigious journal American Economic Review,

and they found that 276 of them committed sizeless science—that is, nearly

three quarters of the articles.

(e) Failure to account for multiple testing. Consider the case of Bygren et al.

(2014), who reported that (quoting the title of their article) ‘‘change in pater-

nal grandmothers’ early food supply influenced cardiovascular mortality of

the female grandchildren,’’ which sounds like a rather sensational result in

epigenetics. The reported p value is 0.016, but a closer look at the article

reveals that the authors tested a total of 24 combinations of food supply pat-

tern, maternal versus paternal grandmothers and grandparents, and sex of
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grandchildren. Under the null hypothesis of no influence or correlation of the

kind looked for, this would on average (i.e., in the long run, with repeated

experiments) produce 24 * 0.05 = 1.2 statistically significant outcomes at

level 0.05, and 24 * 0.016 = 0.384 outcomes with p value at most 0.016.

Getting one such p value is not much of a surprise under the null hypothesis,

and thus cannot count as much evidence against the null hypothesis. What the

authors of the study failed to do was to account for the multiple testing using

some of the standard statistical procedure for that purpose (see, e.g., Bretz,

Hothorn, & Westfall, 2011). The simplest method (so-called Bonferroni cor-

rection) is just to multiply the smallest p value by the number of tests, giving

a corrected p value of 0.384—nothing to write home about, and none of the

fancier procedures will change that. There is nothing unique or uncommon

about the Bygren et al. (2014) failure to account for multiple testing, but it is

bad practice nevertheless, and a case that, due to the naı̈ve press coverage it

received, happened to attract my attention (Häggström, 2014a).

A very common special case of failure to account for multiple testing arises when

both positive and negative values of a parameter r are possible, and the null hypoth-

esis is that r = 0. Unless there is good reason to expect a nonzero parameter to be in

a certain direction (positive or negative) one should normally carry out a so-called

two-sided test, which takes the possibilities of both r \ 0 and r . 0 equally into

account. If there is good reason to expect r \ 0 rather than r . 0, a one-sided test

can be decided on beforehand, but the cheap trick to first look at the data and then

decide on the direction of the one-sided test to get the best p value is incorrect; in

effect, such a procedure is two-sided but produces a better (half as large) p value than

the correct two-sided procedure. Ruthless (or naı̈ve) researchers can do this and then

produce an ad hoc explanation for why the chosen direction was to be expected

before the data were collected and analyzed. Doing so can be seen as a special case

of the next malpractice.

(f) Publication bias. A variant of the multiple testing malpractice (e) is the phe-

nomenon that statistically significant outcomes are more likely to be published

than those that are not. This produces a bias in the literature in favor of statisti-

cally significant results. Evidence suggest that the effect is substantial; see, for

example, Decullier, Lhértier, and Chapuis (2005) and Fanelli (2010, 2012).

This is arguably an even worse phenomenon than (e), where the tests that are

unaccounted for in the final statistical analysis are at least reported, making it

possible for other researchers to do a more careful analysis. This is not so

readily done when the statistically nonsignificant results do not even appear in

the literature, and this causes severe difficulties in, for example, doing meta-

studies to evaluate the totality of evidence on some scientific problem.

(g) Replication crisis. As a consequence of many or perhaps all of the aforemen-

tioned misconceptions and malpractices (a-f), much of science seems to be in a
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situation that has been described as a replication crisis: A large proportion of

published statistically significant findings resist replication. Ioannidis (2005)

gave an influential study of this phenomenon, and the problem has also

received attention in popular press (Lehrer, 2010). Recently, the severity of the

phenomenon in the psychology literature was demonstrated in an ambitious

collaborative effort emphasizing effect sizes: In 100 replicated studies, the

mean effect size in the replications was just under half of that in the original

studies, and only 39% of the replications gave confidence intervals containing

the estimated effect size of the original study (Open Science Collaboration,

2015).

Some Highlights From the Debate

During large parts of the 20th century, intense debate took place within the statistics

community between on one hand defenders of NHST and other methods in frequen-

tist statistics, and on the other hand advocates of Bayesian statistics. I shall refrain

from discussing this history (but see Salsburg, 2001) and instead focus on how

researchers in a wide range of applied fields have increasingly begun to highlight

their dissatisfaction with NHST practice. Researchers in psychology and related

sciences have been especially active in this discourse. Carver (1978) and Cohen

(1994) are two relatively early examples, both of them pointing out several of the

misconceptions and malpractices discussed in the previous section, plus a few others.

Cumming

Particularly influential in the NHST debate among psychologists today is Geoff

Cumming, who advocates, in papers, op-eds, instructional videos, and a textbook,

that reporting p values and statistical significance should be abolished in favor of

reporting confidence intervals, which he argues to be much more informative; see,

for example, Cumming (2009, 2012a, 2012b, 2014). For concreteness, let me zoom

in on his 2009 YouTube video, which is a bit of a pedagogical masterpiece, using a

simple computer simulation experiment to demonstrate beautifully the superiority, in

a particular setting, of representing the results in terms of confidence intervals as

opposed to p values. The chosen setting is a comparison of a single trait between two

groups, with sample size 32 in each group. Within each group, the trait is normally

distributed with the same variance but possibly different means, and the task is to say

something interesting and informative about the difference. Cumming demonstrates

that if the true difference between the means is exactly half of the within-group stan-

dard deviation (i.e., the standardized effect size known as Cohen’s d equals 0.5), then

p values give very little interesting information about this true difference, while con-

fidence intervals perform better in this respect. I am reasonably convinced that this is

so in the chosen setting, but I believe the generalizability to other settings is rather

less than the video might lead one to think, in at least three ways.
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First, in his example, Cumming chose to pick a combination of sample size and

effect size in such a way as to make the power, with respect to significance level

0.05, close to one half (0.52). This maximizes, in a sense, the noise level of the

sequence of statistical significances and nonsignificances in repeated replications of

experiments (in more precise mathematical language, it maximizes the entropy of the

distribution of the indicator function of statistical significance). With either a much

smaller (or zero) effect size, or a much larger one, ‘‘replicability’’ (in Cumming’s

somewhat inept terminology) of statistical significance becomes much better. It is

mathematically obvious that an effect size can be chosen that produces a borderline

case as to whether the experiment tends to produce statistical significance or non-

significance. With this in mind, the take-home message from Cumming’s video is

not so much that p values and statistical significance are useless concepts, but more

that power 0.52 at the effect sizes one is looking for (i.e., effect sizes large enough to

be of subject-matter interest, yet small enough that one can plausibly hope that they

exist) is a way too modest level of power, so a larger sample size ought to be used.

Of course, I realize that there are costs to increasing sample size, and Cumming

describes his chosen combination of sample size and effect size to be typical of

experimental studies in psychology, but if this is the case, then it is probably a good

idea that researchers in psychology reconsider their priorities and aim for fewer stud-

ies but with larger sample size.

Second, Cumming argues that the confidence intervals in his simulation are intui-

tively self-explanatory in the sense of having the property that the width of the inter-

vals provide a good indication of how much their location is likely to vary from one

replication to another. This is true, but it is an artefact of choosing the confidence

level equal or close to 1 2 0.05 = 0.95. With a higher confidence level, the same

heuristic will overestimate the variation in location, while with a lower confidence

level it yields an underestimate; this is because the centers of the intervals (and hence

the amount of variation in their location) are independent of the confidence level,

whereas the interval width increases with increasing confidence level. So for

Cumming’s argument here to serve as a guide to statistical practice, it will have to

involve a continued or increased focus on the particular confidence level 0.95, which

is tantamount to significance level 0.05. In the fifth section, I will argue that the

widespread obsession today with significance level 0.05 is a bad thing.

Third, in the simple situation described by Cumming, calculating confidence inter-

vals is just about as straightforward as obtaining p values, but in general this is not

the case. Computing a confidence interval, or more generally a confidence set, impli-

citly involves calculating p values of all of the (typically infinitely many) possible

null hypotheses corresponding to different effect sizes. Sometimes, as in Cumming’s

situation, this is doable in a single sweep, but in more complicated situations it can

be intractable. And even in cases where it is computationally doable, the confidence

set may turn out more complicated and less easy to interpret (or even to represent

graphically) than just an interval, especially if we are dealing with not just a single

effect parameter but with multiple parameters. So even if Cumming’s
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recommendation to abandon p values in favor of confidence intervals can be fol-

lowed in a range of more-or-less standard situations, it seems infeasible to implement

it across all statistical analyses in all sciences.

The BASP Declaration

Perhaps the most dramatic event so far in the NHST debate is the recent declaration

by David Trafimov and Michael Marks, in an editorial in their journal Basic and

Applied Social Psychology (BASP), that NHST methods, including confidence inter-

vals, are ‘‘invalid’’ and therefore banned from the journal (Trafimow & Marks,

2015). As an explanation for the judgement ‘‘invalid,’’ they offer the following:

Confidence intervals suffer from an inverse inference problem that is not very different

from that suffered by the NHSTP [i.e., NHST procedure]. In the NHSTP, the problem is in

traversing the distance from the probability of the finding, given the null hypothesis, to the

probability of the null hypothesis, given the finding. Regarding confidence intervals, the

problem is that, for example, a 95% confidence interval does not indicate that the para-

meter of interest has a 95% probability of being within the interval. Rather, it means

merely that if an infinite number of samples were taken and confidence intervals computed,

95% of the confidence intervals would capture the population parameter. Analogous to

how the NHSTP fails to provide the probability of the null hypothesis, which is needed to

provide a strong case for rejecting it, confidence intervals do not provide a strong case for

concluding that the population parameter of interest is likely to be within the stated inter-

val. (p. 1)

In short, they mean to say that use of NHST is tantamount to committing the fallacy

of the transposed conditional (Item (b) in the second section). But, as all statistics

professors teaching frequentist methods take great pains to explain, in lectures and in

textbooks, the logic behind NHST is not the (faulty) logic of the fallacy of the trans-

posed conditional, but instead the following, where I quote one of the pioneers of

20th century statistics, in a context where he has obtained, in an applied problem, a

fairly low p value of about 0.00003:

The probability [ . . . ] is amply low enough to exclude at a high level of significance any

theory involving [the null hypothesis]. The force with which such a conclusion is supported

is logically that of the simple disjunction: Either an exceptionally rare chance has occurred,

or [the null hypothesis] is not true. (Fisher 1956, p 39)

In other words, the lower the obtained p value is, the greater a coincidence we need

to accept in order to explain away the data and hold on to the null hypothesis; even-

tually, as the evidence accumulates, doing so becomes untenable. In my view, this

captures well the process of how science marches forward, and the logic is sound.

Trafimow and Marks’ verdict, declaring NHST methods to be ‘‘invalid,’’ is based on

a straw man argument, pretending that its logic is based on committing the fallacy of
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the transposed conditional. I will try to dig deeper into the Trafimow-Marks position

in the fourth section.

Ziliak and McCloskey

As to contributions to the NHST debate from empirical sciences other than psychol-

ogy and related fields, I think one of the most important is the book The Cult of

Statistical Significance by economists Stephen Ziliak and Deirdre McCloskey

(2008). With particular emphasis on sizeless science (Item (d) in the second section),

they paint an ambitious and alarming image of the quality of statistical practice,

mainly in their own discipline economics, while not entirely neglecting other disci-

plines such as psychology and medicine. The book is very strong on describing the

problem, that is, the prevalence of statistical malpractice, but it is distinctly weaker

on suggesting a solution, and as I say in my review of the book in the Notices of the

American Mathematical Society (Häggström, 2010):

Sometimes the authors push their position a bit far, such as when they ask themselves: ‘‘If

null-hypothesis significance testing is as idiotic as we and its other critics have so long

believed, how on earth has it survived?’’ Granted, the single-minded focus on statistical

significance that they label sizeless science is bad practice. Still, to throw out the use of sig-

nificance tests would be a mistake, considering how often it is a crucial tool for concluding

with confidence that what we see really is a pattern, as opposed to just noise. For a data set

to provide reasonable evidence of an important deviation from the null hypothesis, we typi-

cally need both statistical and subject-matter significance. (p. 1130)

It is somewhat odd, but actually quite illustrative of the overly broad strokes that are

characteristic not only of Ziliak’s and McCloskey’s writings but of much of the

NHST debate more generally, that in a later contribution (Ziliak & McCloskey,

2010), they point specifically to my review as an example in support of their claim

that ‘‘in several dozen journal reviews and in comments we have received, [no one]

has tried to defend null hypothesis significance testing’’ (p. 98)—a statement that is

obviously falsified by the above passage from the review.

A Taxonomy of Anti-NHST Positions

I wish that participants of the NHST debate expressing anti-NHST sentiments

(including those cited in the third section) would clearly state whether they wish to

rule out as unscientific all arguments involving or building on calculation of p values,

or whether they merely want to ban explicit reference to such calculation in scientific

papers. In other words, they ought to declare whether their position is strongly or

weakly anti-NHST, in the terminology that I hereby propose.

The strongly anti-NHST position: To calculate a p value (i.e., the probability of

getting data at least as extreme as those we actually got, under some well-

624 Educational and Psychological Measurement 77(4)



specified statistical model) is a conceptual error and can never form part of a

valid scientific argument.

The weakly anti-NHST position: To calculate a p value can sometimes form

part of a valid scientific argument, but when that is the case it should be done

in secrecy: scientific papers should never make explicit reference to p values

or to the derived notion of statistical significance.

Of course, it is conceivable that someone who identifies herself as anti-NHST

might find that neither strongly nor weakly anti-NHST accurately captures her posi-

tion, but in such cases, it is likely to be illuminating if she went on to explain wherein

the mismatch lies.

Cumming (2009, 2012a, 2012b, 2014) advocates the use of confidence intervals,

as do (albeit to a lesser extent) Ziliak and McCloskey (2008), and since confidence

intervals are derived from p value calculations, these authors’ views do not match the

strongly anti-NHST position. So their respective positions are at most weakly anti-

NHST, but it remains to be heard whether they find the weakly anti-NHST position

to be an accurate description of their respective views.

The case of Trafimow and Marks (2015) is more difficult to interpret. While some

of their rhetoric suggests the strongly anti-NHST position, the following passage is

more suggestive of the weakly anti-NHST position:

Will manuscripts with p-values be desk rejected automatically? [ . . . ] No. If manuscripts

pass the preliminary inspection, they will be sent out for review. But prior to publication,

authors will have to remove all vestiges of the NHSTP (p-values, t-values, F-values, state-

ments about ‘‘significant’’ differences or lack thereof, and so on). (p. 1)

It may also be noted that as one of their preferred alternatives to NHST, they

‘‘encourage the use of larger sample sizes than is typical in much psychology

research, because as the sample size increases, descriptive statistics become increas-

ingly stable and sampling error is less of a problem’’ (Trafimow & Marks, 2015, p.

1). This is noteworthy, because while their statement about the advantage of larger

sample sizes is correct, calculation of hypothetical p values is necessary in order to

derive this monotonicity property and to work out how large a sample size will be

needed to attain a desired level of precision.

In my opinion, this last observation demonstrates the untenability of the strongly

anti-NHST position. Apparently even Trafimow and Marks recognize that instability

of statistical estimates and sampling error are a problem, but to embrace the strongly

anti-NHST position would be to deprive ourselves of the ability to calculate how

much of a problem it is, and how large a sample size we would need to bring the

problem down to an acceptable level. (One of the referees suggested that one might

be able to judge the sample size needed while remaining strongly anti-NHST by cal-

culating standard deviations rather than p values. But this overlooks the underlying

reason why standard deviations are relevant for this. To go from a small standard

deviation to a small probability of a highly misleading statistical estimate one needs
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to apply Chebyshev’s inequality. That step, which is so standard that it is usually left

implicit, is precisely the bounding of a p value.)

On the other hand, the weakly anti-NHST position strikes me as unacceptable for

other reasons. To accept a scientific methodology, but to require that it is kept secret,

banning any mention of it in scientific publications, flies straight in the face of the

transparency that is a cornerstone of good scientific method.

To summarize, it seems that neither the strongly nor the weakly anti-NHST posi-

tion is acceptable. Well then, might there be some third strand of anti-NHST that

makes better sense—perhaps one that accepts the need to calculate p values as well

as the principle of openness about the scientific arguments that are used, at the same

time as it recognizes the need to act in ways to keep in check the various misuses

and misinterpretations of NHST discussed in the second section? Let me propose the

following.

The very weakly anti-NHST position: Giving only p values and declarations of

statistical significance, without further elaboration and explanation, is not an

acceptable way to present the results of a scientific study.

This is in fact a strand of anti-NHST sentiment that I can embrace. I do not claim

any originality in taking on this position. On the contrary, I daresay it is held by vir-

tually all professional statisticians. Note that not holding the very weakly anti-NHST

position is tantamount to accepting the practice of sizeless science (Item (d) in the

second section). Since accepting that practice means accepting the scientific litera-

ture to be filled with reports of statistically significant findings without mentioning

whether the observed effect sizes are large enough to matter, the very weakly anti-

NHST position becomes pretty much obligatory for anyone with a reasonable sense

of good scientific practice.

What Needs To Be Done

That practitioners of statistical methods in a variety of applied disciplines have taken

over much of the initiative from statisticians in the debate on how to do statistics is in

my opinion a welcome development; a broad interest in these matters is likely to help

the scientific community move forward on them. I only wish that fewer of these parti-

cipants took on poorly grounded anti-NHST positions.

In my humble opinion, statisticians still have a lot to contribute to these discus-

sions, and it is therefore important that they take part. Without their participation,

much of the body of knowledge of statistical inference accumulated during the 20th

century and onward risks getting lost. For instance, if the editors of BASP had had

contact with professional statisticians, they would probably have been spared the

embarrassment of banning NHST methods on the confused grounds that they did.

Another case in point—less dramatic but nonetheless interesting—is the article by
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cognitive scientist John Kruschke (2010), who advocates the abandonment of NHST

methods, arguing that their violation of the so-called strong likelihood principle

(SLP) is unacceptable. He does not use that terminology, however, being apparently

unaware both of SLP being known at least since Savage (1962), and of the long con-

troversy over SLP since then (see, e.g., Barndorff-Nielsen, 1985; Cox & Hinkley,

1974; Pawitan, 2001). I am sure his article would have been much more interesting

and useful to the scientific community if there had been statisticians around to inform

him of this discourse so that he could have taken into account the arguments for and

against SLP that have accumulated over the years, rather than trying to reinvent the

discussion from scratch.

One of the referees for this article asked what role I hope the distinction proposed

in the fourth section between strongly and weakly anti-NHST positions will play in

the debate. I am a bit reluctant to give away my answer to this question, for reasons

analogous to why one might not want to ruin a joke by explaining it, but all right,

here it is: none. I do not expect or even hope to encounter future debates whose con-

testants have, for clarity, signed up for the strongly versus and weakly anti-NHST

camp, respectively. Rather, my ambition is that anyone with an anti-NHST sentiment

reading the fourth section, will, faced with the strongly versus weakly anti-NHST

distinction, realize that both positions are untenable, and therefore give up being

anti-NHST altogether (or switch to the third option of being very weakly anti-NHST,

which actually is not an anti-NHST position at all, but rather one about what consti-

tutes good NHST practice). Once that is accomplished, there is no further need for

the distinction.

Besides the much-needed presence of statisticians in the debate over what consti-

tutes good statistical practice, their presence is even more badly needed in the direct

workings of applied sciences—in the actual research projects. Because, as I have

argued in the fourth section, NHST cannot be abandoned without seriously hurting

science, and therefore the competence level among practitioners of statistical meth-

ods needs to improve, so as to avoid statistical pitfalls and malpractices such as those

discussed in the second section. This, I believe, requires both a better (qualitatively

as well as quantitatively) statistics part of the undergraduate and graduate training in

other disciplines, and an increased presence of statisticians in research projects in

these disciplines.

A particular point where I think an improved understanding among scientists

would greatly benefit science itself is the interpretation of a statement like ‘‘p \
0.05.’’ Suppose everyone understood that statistical significance on level 0.05 on its

own is no more than (at most) the observation that data suggest that an effect may

well be present, an observation that can be taken to warrant further study of the possi-

ble presence of the effect. If scientists in general understood this, then the low success

rate of replication studies (Item (g) in the second section) might no longer deserve the

term ‘‘replication crisis,’’ but would instead represent a reasonably healthy state of

science. As things are today, ‘‘p \ 0.05’’ is way too often taken to mean something

like ‘‘beyond reasonable doubt,’’ or to serve as an excuse for cocksure statements
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such as the title of the Bygren et al. (2014) article that I quoted in Item (e) of the sec-

ond section. For that kind of interpretation of statistical significance, way lower sig-

nificance levels are needed—although at this point I am reluctant to give a number,

because how low it is reasonable to go depends very much on the particulars of the

problem, including how a priori plausible the existence of the searched-for effect

seems to be. The p value alluded to by Fisher (1956) in the passage quoted in the sec-

tion ‘‘The BASP Declaration’’ is about 0.00003—which in some contexts I might

consider small enough to state with a high degree of confidence that the null hypoth-

esis is probably false, but certainly not in all. For instance, the Big Data revolution in

areas like bioinformatics (see, e.g., Efron 2012) has led to routine experiments involv-

ing thousands or even millions of hypotheses to be tested simultaneously; in such

situations, a raw p value of 0.00003, untouched by multiple inference analysis, does

not even warrant a raised eyebrow.

A more well-calibrated and realistic interpretation of the evidential value of state-

ments like ‘‘p \ 0.05’’ would likely (or at least should) come hand in hand with pla-

cing a higher value on replication studies. Unfortunately, today such studies are

generally not held in high regard. The view of Mitchell (2014) is extreme (and utterly

confused due to committing fallacy (a) of the second section), but the dominant view

in most empirical sciences today is depressingly similar to the one expressed by the

anonymous professor in following anecdote, told by Richard Feynman in a com-

mencement speech at Caltech in 1974:

When I was at Cornell, I often talked to the people in the psychology department. One of

the students told me she wanted to do an experiment. [ . . . ] It had been found by others that

under certain circumstances, X, rats did something, A. She was curious as to whether, if she

changed the circumstances to Y, they would still do A. So her proposal was to do the experi-

ment under circumstances Y and see if they still did A.

I explained to her that it was necessary first to repeat in her laboratory the experiment of

the other person—to do it under condition X to see if she could also get result A, and then

change to Y and see if A changed. Then she would know that the real difference was the

thing she thought she had under control.

She was very delighted with this new idea, and went to her professor. And his reply was,

no, you cannot do that, because the experiment has already been done and you would be

wasting time. This was in about 1947 or so, and it seems to have been the general policy

then to not try to repeat psychological experiments, but only to change the conditions and

see what happens. (Feynman, 1985, p 344)

That was in the 1940s, but the same contemptuous view of replication studies is still

dominant. It is time we overcome it.
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