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Abstract

Identifying regional effects of interest in MRI datasets usually entails testing a priori hypotheses 

across many thousands of brain voxels, requiring control for false positive findings in these 

multiple hypotheses testing. Recent studies have suggested that parametric statistical methods may 

have incorrectly modeled functional MRI data, thereby leading to higher false positive rates than 

their nominal rates. Nonparametric methods for statistical inference when conducting multiple 

statistical tests, in contrast, are thought to produce false positives at the nominal rate, which has 

thus led to the suggestion that previously reported studies should reanalyze their fMRI data using 

nonparametric tools.

To understand better why parametric methods may yield excessive false positives, we assessed 

their performance when applied both to simulated datasets of 1D, 2D, and 3D Gaussian Random 

Fields (GRFs) and to 710 real-world, resting-state fMRI datasets. We showed that both the 

simulated 2D and 3D GRFs and the real-world data contain a small percentage (< 6%) of very 

large clusters (on average 60 times larger than the average cluster size), which were not present in 

1D GRFs. These unexpectedly large clusters were deemed statistically significant using parametric 

methods, leading to empirical familywise error rates (FWERs) as high as 65%: the high empirical 

FWERs were not a consequence of parametric methods failing to model spatial smoothness 

accurately, but rather of these very large clusters that are inherently present in smooth, high-

dimensional random fields. In fact, when discounting these very large clusters, the empirical 

FWER for parametric methods was 3.24%. Furthermore, even an empirical FWER of 65% would 

yield on average less than one of those very large clusters in each brain-wide analysis. 

Nonparametric methods, in contrast, estimated distributions from those large clusters, and 
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therefore, by construct rejected the large clusters as false positives at the nominal FWERs. Those 

rejected clusters were outlying values in the distribution of cluster size but cannot be distinguished 

from true positive findings without further analyses, including assessing whether fMRI signal in 

those regions correlates with other clinical, behavioral, or cognitive measures. Rejecting the large 

clusters, however, significantly reduced the statistical power of nonparametric methods in 

detecting true findings compared with parametric methods, which would have detected most true 

findings that are essential for making valid biological inferences in MRI data. Parametric analyses, 

in contrast, detected most true findings while generating relatively few false positives: on average, 

less than one of those very large clusters would be deemed a true finding in each brain-wide 

analysis. We therefore recommend the continued use of parametric methods that model 

nonstationary smoothness for cluster-level, familywise control of false positives, particularly when 

using a cluster defining threshold of 2.5 or higher, and subsequently assessing rigorously the 

biological plausibility of the findings, even for large clusters. Finally, because nonparametric 

methods yielded a large reduction in statistical power to detect true positive findings, we conclude 

that the modest reduction in false positive findings that nonparametric analyses afford does not 

warrant a re-analysis of previously published fMRI studies using nonparametric techniques.
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1. Introduction

Magnetic Resonance Imaging (MRI) has provided the opportunity to study the structure, 

function, and metabolism of the living brain[1–3], including its in vivo maturation, sex 

differences[4], illness-related effects[5–14], and the responses to pharmacological or 

behavioral interventions[15–20]. Advanced MRI techniques collect vast amounts of data at 

millimeter-level spatial resolution across many participants. Identifying biologically relevant 

effects in MRI data is challenging because of the presence of both individual variability and 

noise in the data, combined with the sheer number of voxels at which tissue characteristics 

of the brain are sampled. Hypothesis testing is conducted at each voxel to identify brain 

regions where MRI measures significantly associate with a condition or feature of interest. 

Real inter-individual variability or noise in the MRI measures can produce a statistically 

significant effect for that condition of interest, simply on the basis of chance, in the absence 

of a true effect. This is termed a false positive, or Type I, error. The probability of these 

errors increases as the number of statistical tests increases, especially in MRI data, where 

hundreds of thousands of tests are conducted at all voxels of the brain.

A number of statistical procedures have been proposed to reduce the probability of false 

positive findings in MRI datasets, including Bonferroni correction[21, 22], methods based 

on the Random Field Theory (RFT)[23–25] used in Statistical Parametric Mapping (SPM)

[23], False Discovery Rate (FDR)[26, 27], and permutation testing[28, 29] and other 

nonparametric techniques[30, 31]. Bonferroni correction, which assumes the data are 

statistically independent across voxels, divides the nominal significance level by the number 
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of statistical tests to yield the adjusted significance level for assessing significance of each 

individual statistical test. Although this correction reduces the likelihood of false positives, it 

also dramatically reduces statistical power, or the ability to detect a true finding when it is in 

fact present, because the intercorrelated values across voxels in brain images violates the 

Bonferroni assumption that data in neighboring voxels are statistically independent of one 

another. Consequently, methods based on the RFT have been developed that specifically 

model the correlations of values across voxels and that control false positives by minimizing 

the family-wise error rate (FWER) – i.e., the probability that the largest value of the random 

field at any one voxel among all voxels will be larger than a prespecified threshold. SPM, in 

particular, applies general linear model and parametric RFT to control for false positives 

when conducting multiple hypothesis testing. RFT-based methods, however, assume that the 

data vary sufficiently smoothly across voxels, an assumption that is generally satisfied in 

MRI data smoothed using a Gaussian filter. However, failure to accurately model 

heterogeneity in spatial smoothness and greater spatial autocorrelation function (SACF) than 

assumed in theory could possibly lead to greater FWER than those predicted by the 

theory[32]. Nonparametric methods of statistical inference, such as permutation testing, do 

not presuppose a given probability distribution but instead discovers the distribution from 

the data. Therefore, these methods can more accurately assess whether the data sufficiently 

support rejection of a specific null hypothesis, though they may have low statistical power 

(i.e., high Type II error rates), especially when the number of participants is small. 

Sensitivity of nonparametric as well as parametric methods can be improved by applying 

methods for threshold free cluster enhancement[33] of the imaging data. The False 

Discovery Rate (FDR)[27], in contrast, allows a pre-specified proportion of false positive 

findings, but with the aim of improving statistical power. Topological FDR[27] is more 

accurate than voxelwise procedure for FDR when controlling for false positive. The number 

of false positives that FDR permits depends on both the statistical procedure and whether the 

data are distributed as assumed. Assessing whether false positives are present at the nominal 

rate when any one of these statistical procedures is applied to real-world data is essential for 

making valid inferences about the brain from statistically significant findings.

Biologically valid MRI findings typically form clusters of voxels within the brain,[24] 

because the adjoining and interconnected cellular elements in tissues that support a given 

information processing function are considerably larger than a voxel[34, 35]. Their statistical 

significance is most commonly assessed using parametric methods, especially those based 

on GRF theory, as they are incorporated in freely available software packages such as 

SPM[36, 37], FSL[38], and AFNI[39]. Several studies[24, 40–44], especially the study that 

first proposed these methods[24], have assessed the validity of these parametric methods. 

These studies showed that parametric distributions accurately modeled the data and that the 

empirical FWERs were close to their nominal values. These studies, however, assessed the 

validity of their methods using only 1D[40] or 3D data,[24, 32, 42–45] and they typically 

performed the validation using only simulated datasets. Concerns have been raised as to 

whether their simulated data sufficiently modeled the degree of spatial smoothness in real-

world data and whether the failure to model smoothness accurately may yield far more false 

positives than the nominal rate when these parametric procedures are applied to real-world 

data.[32, 43]
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To assess whether the empirical FWERs equaled the nominal FWERs in real-world data, 

both parametric and nonparametric methods were applied[32] in more than 3 million 

statistical analyses applied to real-world fMRI datasets from 499 participants. This widely 

publicized study concluded that when SACF for data has longer tail than Gaussian 

distribution or when SACF is nonstationary across the image domain, parametric methods 

yielded an empirical FWER, or false positive rate, of 0.3 or higher -- much higher than the 

nominal FWER of 0.05.[32] This unacceptably high rate of false positive findings generated 

using parametric methods was suggested to derive from the greater smoothness in real-world 

data that generated clusters of sizes larger than were modeled parametrically under null 

hypothesis, i.e. in the absence of true effects in the data. The same study also reported, in 

contrast, that nonparametric methods generated false findings at exactly the nominal FWER 

of 0.05, presumably because those methods estimated the distributions from data and, 

therefore, accurately modeled smoothness of the data when calculating statistical 

significance of the clusters. The implications of these conclusions, if valid, were staggering, 

as a false positive rate of more than 30% suggested that previously reported findings about 

the brain in health and illness were neither reproducible nor biologically valid, and those 

concerns applied not only to fMRI studies, but to studies using any brain imaging modality 

that employed cluster-level parametric methods when correcting for multiple statistical 

comparisons. The study provocatively concluded that those datasets require reanalysis using 

nonparametric techniques.

Before undertaking that enormous, if not impossible task, it is important first to understand 

more deeply why parametric statistical procedures may have yielded high empirical FWERs, 

why the empirical FWERs varied from small (1%) to very large (70%), why in contrast the 

empirical FWERs for simulated data equaled their nominal FWERs, and how using 

parametric methods may have affected the ability to detect real effects in the data. At the 

same time, it is equally important to understand why nonparametric methods generated false 

positives at the nominal FWER for each and every analysis. Finally, it is important 

understand how the ability to detect real effects (statistical power) is influenced by various 

aspects of data processing and statistical analysis, especially the degree of smoothness these 

procedures introduce into the data, the Cluster Defining Threshold (CDT) employed, and the 

dimensionality of the random fields used for both parametric and nonparametric methods of 

statistical inference.

We therefore conducted experiments using both simulated and real-world datasets to 

understand why controlling for false positives with parametric methods during the testing of 

multiple hypothesis yielded much higher empirical FWERs than nominal values, whereas 

nonparametric methods generated false positives at the nominal FWE rates. The use of 

simulated data allowed us to control the experimental conditions precisely and, therefore, to 

evaluate how the performance of parametric methods varied with varying degrees of 

smoothness or statistical thresholds used to define spatial clusters and with variation in the 

dimensionality of the data. Varying performance across differing dimensionality data will 

allow us to understand better why parametric methods fail in one but not the other 

dimensional data. Simulated data, however, may fail to model adequately certain aspects of 

real-world random fields, particularly their degree of spatial smoothing, which may have 
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produced high FWER when parametric methods are applied to real-world datasets. We 

therefore also assessed performance of both parametric and nonparametric methods when 

applied to a large, real-world resting-state fMRI dataset comprising 710 participants 

combined across 5 independent studies. We assessed whether varying cluster sizes, the mean 

cluster size, and the numbers of clusters affected accuracy when modeling the parametric 

probability distributions, whether parametric methods appropriately and sufficiently 

controlled for FWERs, and whether nonparametric methods generated false positives at the 

nominal FWERs. Our overarching aim was to assess whether nonparametric methods must 

be used to analyze fMRI datasets and whether indeed all previous fMRI studies should be 

reanalyzed using nonparametric techniques.

2. Materials and methods

2.1 Datasets

We assessed parametric and nonparametric methods for cluster-level inference using 

simulated as well as five large, real-world studies comprising resting state fMRI datasets 

from 710 participants.

2.1.1 Simulated Gaussian Random Fields—We simulated 50 realizations each of 1D, 

2D, and 3D GRFs as follows. From a Gaussian distribution with mean zero and unit variance 

N(0,1), we sampled a sequence of 10,000 random numbers for each realization of a 1D GRF, 

a 2D array of 250 × 250 random numbers for each realization of a 2D GRF, and a 3D array 

of 90 × 90 × 90 random numbers for each realization of a 3D GRF. We smoothed each of 

those realizations using a Gaussian smoothing kernel with full width at half maximum 

(FWHM) of either 5, 10, 15, 20, 25, 30, or 35. We wrapped the smoothing kernel around the 

edges of the domain of the random field to ensure stationarity of the smoothed random 

fields. We then subtracted the residual mean and normalized the values, so that each 

smoothed random field had a zero mean and unit variance. We then defined clusters in the 

smoothed random fields by thresholding the smoothed fields at CDTs of Z=1.0, 1.5, 2.0, 2.5, 

3.0, or 3.5 corresponding to uncorrected p-values 0.158, 0.0668, 0.0228, 0.0062, 0.0013, and 

0.0002, respectively; we then computed the numbers and sizes of clusters in each 

thresholded realization of GRF (Figure 1).

2.1.2 Real-World Datasets

Rationale for Use of Resting-State fMRI Datasets: Resting-state fMRI data are usually 

used to study functional brain connectivity[46] by measuring spatio-temporal correlations in 

spontaneously fluctuating fMRI signal[47, 48] across the brain. These data, therefore, 

naturally incorporate into their measures the spatial intercorrelations across voxels that 

derive in part from biologically driven fluctuations in the fMRI time series, in part from the 

point-spread function that inherently accompanies the low spatial resolution of fMRI data, 

and in part from the spatial smoothing of data performed during preprocessing. The 

spontaneous fluctuations in fMRI signal should not correlate with any arbitrary condition 

contrast (i.e., subtraction paradigm) to which the fMRI time series are subjected. We, 

therefore, used resting-state fMRI data to generate statistical contrasts under the null 
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hypothesis -- i.e. for fMRI time series that contained no task-related brain activity but that 

had the spatial smoothness and noise characteristics of real-world fMRI data.

To generate these null hypothesis contrast maps, we preprocessed and modeled in the resting 

state data an event related design that alternated the falsely hypothesized activity (the ‘on’ 

condition) with rest (the ‘off’ condition) on consecutive epochs of twenty fMRI volumes 

throughout each run. We then performed a first-level statistical contrast across those 

conditions with a design matrix having 2 columns for each run of the resting state data: the 

first column incorporating 1’s for the ‘on’ condition and 0’s for ‘off’ condition, and the 

second column incorporating a constant term representing average fMRI signal intensity in 

the time series. The design matrix was convolved with hemodynamic response function of 

length 32.03 seconds. We computed the contrast for the first column in the design matrix. 

We visually assessed whether the contrast had large regions of similar values due to inherent 

correlations in resting state data. The statistical parametric map for the t-statistic of the 

contrast was used for the subsequent analyses. Because the falsely hypothesized task-related 

activity would correlate only with noise in the resting state fMRI signal, the estimated 

regression coefficient (i.e., beta value) and corresponding statistic at each voxel within each 

participant would represent only statistical noise within the fMRI signal. From these 

coefficients we then constructed a normalized z-statistic map across the entire brain for each 

participant that represented the null hypothesis of no task-related brain activity while at the 

same time containing the spatial correlations inherent in real-world fMRI data (Figure 2).

Participants: We assessed the parametric and nonparametric approaches for their FWER 

using 710 resting state fMRI datasets acquired in 5 independent studies: (1) One of 61 

autistic and 81 typically developing children and adults in the Autism Spectrum Disorder 

(ASD) study[49] (“Autism”); (2) Another of 123 children and young adults who were at 

either a low or high familial risk for depression[5, 50] (“High Risk”). (3) Another acquired 

116 fMRI data longitudinally at three time points (pretreatment baseline, 10, and 12 weeks) 

during a clinical trial assessing the efficacy of an antidepressant medication in treating 40 

participants with depressive disorder[51, 52] (“Depression”). Although within-subject, 

resting state fMRI data will be correlated across the 3 time points, maps for the test statistic 

under the null hypothesis derived from these data will be statistically independent. (4) 

Another acquired fMRI data at one time point in 39 children and adolescents with stuttering 

disorder and 30 age- and sex-matched healthy controls[53] (“Stuttering”). (5) Finally, one 

acquired cross-sectional fMRI data for assessing the effects of air pollution on the brains of 

260 healthy children[54–56] (“Toxins”) who at the time of scan did not have any 

neuropsychiatric disorder even though they showed symptoms of anxiety, depression, or 

inattention[57] and had reduced full-scale and verbal IQ.[58] All resting state fMRI data 

were acquired in two runs, each comprising 140 images. Data for each study were processed 

and assessed independently; however, some of the statistics were averaged across all studies 

as indicated. All adult participants provided written informed consent. Child participants 

provided informed assent, and their legal guardian provided written informed consent. Study 

procedures were approved by the Institutional Review Board of the New York State 

Psychiatric Institute.
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MRI Pulse Sequences: All MRI data were acquired on a 3T GE Signa whole body scanner 

using 8 channel head coil at New York State Psychiatric Institute.

a. Anatomical MRI: We acquired high resolution, T1-weighed anatomical MRI 

data using a 3D spoiled gradient recall (SPGR) sequence with spatial resolution 

= 0.98 × 0.98 × 1.0 mm3, repetition time (TR) =4.7 ms, echo time (TE) = 1.3 ms, 

inversion time (TI) = 500 ms, flip angle (FA) = 11°, matrix size = 256 × 256, 

field of view (FOV) = 25 × 25 cm2, slice thickness = 1.0 mm. Anatomical MRI 

data were used to spatially normalize all participant images into a common 

template space.

b. Resting-State fMRI: Resting state blood oxygen level dependent (BOLD) fMRI 

data were acquired using an axial echoplanar imaging sequence with TR = 2200 

ms, TE = 30 ms, FA = 90°, receiver bandwidth = 62.5 kHz, single excitation per 

image, slice thickness = 3.5 mm, slice gap = 0 mm, FOV = 24 × 24 cm2, matrix 

size = 64 × 64. During image acquisition, participants were instructed to remain 

still with their eyes closed and to let their minds wander freely. Two 5 minutes 21 

seconds resting-state scans with 140 volumes in each run were obtained for every 

participant.

Processing of the fMRI Data: All fMRI data were processed using the typical 

preprocessing methods in SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/) as follows[59]: 

slice-time correction using the middle slice as the reference; motion correction by realigning 

functional volumes to the middle volume in each run; temporal smoothing using a Gaussian 

kernel; coregisterating to each participant’s anatomical scan; spatially normalizing 

coregistered fMRI data into the Montreal Neurological Institute (MNI) space; resampling a 

spatial resolution of 2mm3; and spatial smoothing using a Gaussian kernel with FWHM of 

6mm.[60] A run with motion greater than one voxel between consecutive functional 

volumes were excluded from further analyses[59].

2.2 Empirical Mean Number of Clusters

We thresholded each realization of our simulated and real-world datasets at varying CDT 

(u). Thresholding generated a binary field with values equal to either 0 or 1 at locations 

where the smoothed field had values smaller or larger, respectively, than the threshold value. 

Thus, contiguous regions with a value of 1 defined clusters in which the smoothed random 

field had values greater than the CDT. We then counted the number m and the size n of 

clusters within each binary field. We also computed the empirical mean number of clusters 

by averaging the number of clusters across all random field realizations. We generated the 

histogram of cluster size for clusters in all random field realizations and then normalized the 

histogram such that weights of the bar in the histogram summed to 1.0.

2.3 Expected Euler Characteristic

For a D-dimensional, real-valued function F(t):ℝD . ℝ1, an excursion set Au(F, S) on any 

volume S ⊂ ℝD for a fixed number u is defined as the set of all locations t where the 

function F(t) is greater than u, i.e., Au(F, S) = {t ∈ S:F(t) ≥ u}. The Euler characteristic 

χ(Au) of an excursion set Au(F, S) equals the number of up-crossings (i.e. the number of 
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clusters) of the function above a specified CDT u[61, 62]. The expected Euler characteristic 

E(χ) for a D-dimensional random field equals the expected number of up-crossings above a 

specified threshold. For a smooth random field X(t) with variance σ2 defined over a D-

dimensional volume S, the E(χ) at a threshold u is defined as[61–65]

E(χ) = L(S)·(2π)−(D + 1)/2·σ−(2D − 1)|A|1/2·P(u)·e−u2/2σ2
,

where L(S) is the Lebesgue measure of the volume S, A is the determinant of the covariance 

matrix for the first order partial derivatives of the random field X(t), and P(u) is the Hermite 

polynomial[63] defined as P(u) = ∑ j = 0
[(D − 1)/2] ( − 1) j (2 j)!

j!2 j
D − 1

2 j
σ2 ju(D − 1 − 2 j). The E(χu) 

simplifies to E(χu) = L(S)·(2π)−1·|A|1/2·e−u2/2 for a 1D random field with unit variance, 

E(χu) = L(S)·(2π)−3/2·|A|1/2·u·e−u2/2 for a 2D random field with unit variance, and E(χu) = 

L(S)·(2π)−2·|A|1/2·(u2 − 1)·e−u2/2 for a 3D random field with unit variance.

2.4 Parametric Distributions and Cluster Level Inference

The number of clusters m is assumed, asymptotically for a large CDT u, to be Poisson 

distributed[24, 66] as P(m = k) = 1
k! ·λk·e−λ, where λ = E(χ) is the mean and variance of the 

number of clusters. Although a Poisson distribution is satisfying because, for λ > 5, it tends 

to a Gaussian distribution with mean and variance λ, the distribution is not validated using 

either simulated or real-world data. The distribution P(n = k) of the cluster size n is 

assumed[24, 67] to be P(n = k) = 2β
D ·k

2
D − 1

·exp( − βk2/D), where 

β = Γ D
2 + 1 ·E(χ)/E(N)

2/D
, and N is the number of locations with values greater than the 

threshold u. For cluster-level inference while controlling for multiple statistical tests, the 

FWERs, or the probability of at least one cluster having size greater than k, is computed as 

P(nmax ≥ k) = ∑i = 1
∞ p(m = i)·[1 − P(n < k)i] = 1 − exp − E(χ)·exp − β·k

( 2
D )

≈ E(χ)·exp

− β·k
( 2
D )

= E(χ)·P(n ≥ k)

. 

That is, for a large CDT u, cluster-level inference is equivalent to Bonferroni correction[68, 

69], because the clusters likely are distributed independently in the volume S for large values 

of u.

2.5 Nonparametric Methods for Familywise Control of False Positives

Nonparametric methods, such as permutation testing, do not a priori assume a particular 

model for the distributions of either data or test statistics, but instead discover the 

distribution for the test statistic from the data. Nonparametric methods therefore require 

fewer untested assumptions of the data and can be applied to any test statistic. These 

methods all calculate a test statistic from the data, estimate the probability distribution of the 

test statistic under the assumption that the data satisfy the null hypothesis, and then use the 
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estimated distribution to evaluate the probability value for the computed test statistic. 

Permutation testing, when applied to data from a single group of participants, specifically 

assumes that the data are distributed symmetrically around a mean value,[32, 70] and then 

flips the data about the mean for randomly selected participants to estimate the probability 

distribution of the test statistic under the null hypothesis. When applied to data from two 

groups of participants, permutation testing reassigns participants to one of the two groups by 

permuting their group labels. The nonparametric procedure that controls for false positive 

findings across multiple statistical tests of the null hypothesis (i.e. familywise control of 

false positives) calculates the size of the largest cluster for each of these permutations, and 

then forms a histogram of those cluster sizes across all of the permutations[32, 71]. The 

histogram is normalized so that it sums to 1.0 and thereby estimates the probability 

distribution for the size of the largest cluster under the null hypothesis. The P-value for any 

given cluster in the dataset (i.e. the probability of finding a cluster as large or larger) with 

true participant assignments, while controlling for multiple statistical tests, is calculated as 

the fraction of cluster with sizes greater than the size of that given cluster.

2.6 Experiments

We computed empirical FWERs for parametric method as the fraction of analyses with at 

least one cluster of size greater than the cluster size at its nominal FWER[32]. We conducted 

the following experiments to assess how well empirical FWERs for either parametric or 

nonparametric methods approximated their nominal values, and if they differed from those 

values then what the source of difference was likely to be.

a. Using the smoothed 1D, 2D, and 3D random fields as well as the real-world data, 

we computed E(χ) and assessed whether it differed significantly from the 

empirically identified average number of clusters Em. The number and size of 

clusters in simulated and real-world random fields were calculated by accounting 

for the wraping of clusters around the boundaries of random fields.

The smoothness of real-world random fields was estimated from the covariance 

matrix for the first order partial derivatives of a random field. We hypothesized 

that E(χ) would not differ from Em.

b. We generated histograms of the cluster sizes for varying CDTs and varying 

amounts of smoothness in both the simulated GRFs and real-world data, and then 

fitted an appropriate parametric distribution to the histogram. In the histogram 

we also plotted the distribution of the theoretically predicted cluster size P(n = 

k). We used the Kolmogorov-Smirnov statistic to compare the differences 

between the two distributions. The null hypothesis was that the fitted distribution 

would not differ from the theoretical one.

c. We also assessed whether the number of clusters was distributed according to the 

theoretically assumed Poisson distribution, and whether use of a delta 

distribution affected the calculated FWER for clusters. Using a narrower 

distribution for the number of clusters would allow us to assess sensitivity of the 

parametric methods to the assumed form of the distribution.
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d. We derived an expression for the FWER P(nmax ≥ k) using E(χ) and Em as the 

mean number of clusters, and then, using these two different parametric 

formulations, calculated the cluster sizes kp
c  and k p

c  where the FWER equaled the 

nominal value of 0.05 using E(χ) and Em, respectively.

e. We also generated the histogram for the size of the largest cluster in each 

realization of the random fields, which we used for nonparametric inferences on 

cluster size. Using this histogram we calculated the cluster size knp
c  such that a 

fraction of 0.05 largest clusters had a size greater than knp
c . We then numerically 

compared the cluster sizes kp
c , k p

c , and knp
c  as well as used them to assess 

statistical power for the parametric and nonparametric methods.

f. We assumed that in the presence of true effects, i.e. under an alternate 

hypothesis, cluster size was Gaussian distributed with varying mean μ and 

standard deviation σ. We systematically varied the mean from small to large 

values and then calculated statistical power for the cluster sizes k p
c  (for 

parametric inference) and knp
c  (for nonparametric inference) estimated at a 

FWER of 0.05. We expected that parametric methods would provide greater 

statistical power than would nonparametric methods.

3. Results

In our simulated GRFs the median size of clusters defined at CDT = 2.5 varied smoothly 

with varying amounts of smoothness: as the FWHM of the smoothing Gaussian kernel 

increased from 5 to 35 voxels, the median size of clusters first increased and then decreased 

to the smallest value for FWHM of 15 voxels (Figure 3). That is, FWHM = 15 voxels 

reduced the false positives clusters in simulated 3D GRFs and was nearly optimal in 

simulated 2D GRFs. We therefore presented our findings for simulated GRFs that were 

smoothed with a Gaussian kernel of FWHM = 15 voxels.

3.1 Euler Characteristics and Average Number of Clusters

The E(χ) did not differ significantly from the empirically identified average number of 

clusters at any CDT in simulated 1D GRFs that were smoothed by Gaussian kernels of 

varying FWHMs (Table 1). For 2D GRFs, however, the empirically identified average 

number of clusters was significantly higher than the E(χ) (p < 0.0001, df = 49, one sample t 

test) (Table 1). Similar to the 2D GRFs, the number of clusters for the simulated 3D GRFs 

(Table 1) and for the real-world data (Table 2) was significantly higher than the E(χ) (p < 

0.0001, df = 49, one sample t test). At a CDT of 3.0 or higher for the real-world data but not 

for the simulated 3D GRF, however, the number of clusters was significantly higher than the 

E(χ) (Table 1), suggesting greater excursions of random field values in real-world data than 

in the simulated random fields.
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3.2 Distribution of the Number of Clusters

The empirically computed variance for the number of clusters was significantly smaller 

(p<0.005, χ2 test for one population variance; Table 1) than the variance of the theoretical 

Poisson distribution for the number of clusters for 1D GRFs, and for 2D and 3D GRFs 

smoothed by Gaussian kernels of FWHM = 5. In other words, the number of clusters across 

all realizations of the smoothed GRFs was distributed closer to the average number than 

assumed in the theoretical distribution. The distribution for the number of clusters 

determines the probability distribution for the size of the largest cluster, and therefore the 

distribution also determines the FWER corrected p-values for the clusters. Thus, we next 

assessed how a narrower distribution for the number of clusters may affect the FWER 

correction. We assumed that the number of clusters is a delta distribution – i.e., that the 

distribution has nonzero support only at the average number x0 and is zero at all other cluster 

sizes. Therefore, for P(m = x) = δx0 the probability P(nmax ≥ k) that the size of the largest 

cluster is greater than k is evaluated as

P(nmax ≥ k)|
δ

= ∑x = 1
∞ P(m = x)·[1 − P(n < k)x] = [1 − P(n < k)

x0] = [1 − {1 − P(n ≥ k)}
x0] .

The plots of P(nmax ≥ k) and P(nmax ≥ k)|δ show that the two probabilities matched closely 

for varying values of x0 and P(n < k) (Figure 4), thereby indicating that the probability 

P(nmax ≥ k) is not sensitive to the analytic form of the parametric distribution for the number 

of clusters.

3.3 Empirical and Parametric Distributions for Cluster Size

We generated histograms of cluster sizes and superimposed the parametric distribution 

predicted by theory, as well as the parametric distribution fitted to the histogram that 

maximized the likelihood of the observed data (Figures 5 & 6). The theoretical distribution 

did not differ significantly from the histogram of cluster sizes as assessed using the 

Kolmogorov-Smirnov test[72, 73] (Table 3), providing strong statistical evidence that cluster 

sizes in the simulated random fields are distributed according to the theoretical distribution 

predicted using E(χ), even though E(χ) differed significantly from the average number of 

clusters in the random fields. Although the random fields were distributed according to the 

null hypothesis and the empirical distributions for the cluster size matched closely the 

predicted and fitted parametric distributions, histograms showed that, on average, 

approximately 6% of the clusters were 60 times larger than the average cluster size (Table 

4). These large clusters were not distributed according to P(n = k), as those clusters were in 

regions that constituted only 0.2% of the probability mass in P(n = k). For the parametric 

method, the presence of these large clusters raised the empirical FWER to 64% at CDT = 

2.5, which decreased to 40% at a very high CDT = 3.5 (Table 4). When ignoring those large 

clusters, however, the empirical FWER was only 3.24% when using k p
c  to calculate the 

parametric statistics (Table 4).
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3.4 Parametric Distribution for FWER Inference

Although the average number of clusters (Em) were significantly higher than the (Eχ), the 

theoretical parametric distribution accurately modeled the empirical distribution of cluster 

sizes. We therefore propose using the Poisson distribution (m = k) = 1
k! ·λk·e−λ , where λ̂ = 

Em is the average number of clusters, to model the distribution of the number of clusters in 

random fields. Using the parametric distribution P(n = k) predicted by theory for E(χ), the 

probability P(nmax ≥ k) that the largest cluster size will be ≥ k can be written as 

P(nmax ≥ k) = 1 − exp − λ ·exp − β·k
( 2
D )

. We therefore calculated the corrected cluster sizes 

kp
c  and k p

c  at a FWER of 0.05 using P(nmax ≥ k) and P̂(nmax ≥ k), respectively, and the 

uncorrected cluster size knp
uc at p-value = 0.05 using the empirical histogram of the cluster 

sizes (Figures 5 & 6). We located these cluster sizes using vertical lines in the histograms 

(Figure 5) and computed their p-values using the theoretical distribution P(n = k). The P-

values indicated the fraction of clusters with size ≥ kp
c , k p

c , or knp
uc (Tables 5 & 6). For 1D 

GRFs the kp
c  equaled k p

c  and, as expected, for 2D and 3D GRFs the k p
c  was larger than kp

c . 

The P-values for k p
c  are 4 to 5 times smaller than those for kp

c  and therefore 4 to 5 times 

fewer clusters will be considered statistically significant when FWER is computed using 

P̂(nmax ≥ k) than when using P(nmax ≥ k).

3.5 Nonparametric Distribution for Size of the Largest Cluster

We generated histogram for the sizes of the largest cluster in each realization of 1D, 2D, and 

3D GRFs and in the real-world data. We normalized the histogram such that the bins 

summed to 1.0, thereby generating the nonparametric distribution for the size of the largest 

cluster (Figures 6 & 7). We then computed the cluster size knp
c  such that 5% of the largest 

clusters had size greater than knp
c . In other words, the probability of finding a cluster larger 

than knp
c  across the entire family of random variables equaled 0.05. We located these cluster 

sizes by plotting vertical lines on the histograms, and we computed the p-value for this 

cluster size using the parametric distribution P(n = k) (Tables 5 & 6). The p-values we 

calculated for knp
c  were up to 1000 times smaller than the p-values for k p

c , thus demonstrating 

that nonparametric methods yield far fewer false positives than do parametric methods when 

controlling for multiple comparisons. At a CDT = 2.5 simulated GRFs had very few clusters, 

leading to cluster size knp
c  in 1D GRF approximately equal to, but in 3D GRF smaller than, 

the cluster sizes k p
c  and kp

c . Therefore, in simulated GRFs, FWERs for the parametric 

methods will be smaller than that for the nonparametric methods at CDT of 2.5 or higher. 

However, in real-world data, even at CDT = 2.5, knp
c  was 30 times smaller than k p

c  and kp
c

(Table 6 & Figure 6) because of a few very large clusters in the data.
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3.6 Statistical Power

We compared statistical power when using parametric methods, parametric methods with an 

expected number of clusters, and nonparametric methods at cluster sizes kp
c , k p

c , and knp
c , for 

the alternate hypothesis in which cluster sizes of true effects were Gaussian distributed with 

varying means and variances. These plots (Figure 8) show that in general the parametric 

method (red curve) provides the greatest statistical power, the parametric method with the 

expected number of clusters is intermediate (green curve), and the nonparametric method 

provides the lowest power (blue curve) across all random fields. In simulated GRFs, the 

nonparametric method provided similar power as parametric methods for 1D GRFs but 

greater power than parametric methods for 3D GRFs at a CDT = 2.5 because simulated 

random fields at CDT = 2.5 or higher had only a few clusters most of which comprised of 1 

voxel (Tables 3 & 7). That is, a CDT = 2.5 was a very high threshold for defining clusters in 

simulated GRFs. In contrast, although the number of clusters were small even in the real-

world data at CDT = 2.5 or higher, the cluster sizes were large (Figure 8), thereby leading to 

much larger kp
c  than kp

c  and k p
c  and significantly lower statistical power for nonparametric 

methods than that for parametric methods.

4. Discussion

We have shown, using both our simulated and real-world resting state fMRI data, that 

random fields under the null hypothesis have a small fraction (< 6%) of clusters with a very 

large spatial extent. Parametric methods will deem these large clusters to be statistically 

significant, which cannot be distinguished from true positive, biologically valid clusters 

under the alternative hypothesis. The presence of these unpredictable, large clusters yields 

empirical FWERs as high as 70%, as reported previously[32].

We have also shown that although the Expected Euler characteristic, E(χ), did not differ 

significantly from the empirically identified expected (mean) number of clusters, Em, for 1D 

random fields, E(χ) was significantly smaller than Em for both 2D and 3D GRFs and in real-

world data. In other words, the empirically observed numbers of positive findings for 

cluster-based statistical inference equaled the theoretical number for 1D fields, but were far 

greater for 2D and 3D fields than predicted by the theoretical distributions. The practical 

consequence of this finding is that an increasing number of statistical tests in imaging data 

will generate increasing number of false positive findings. More stringent control than 

predicted by theory therefore is necessary when conducting multiple statistical tests based 

on cluster-level inference. Theory predicts[24] that the parametric FWER P(nmax ≥ k) (the 

probability of finding a cluster size nmax greater than k across the entire family of random 

variables) approximately equals the product of E(χ) and the probability P(n ≥ k). Under the 

null hypothesis and at higher CDTs (≥2.5), cluster location and size are independently 

distributed, and therefore the parametric FWER approximates Bonferroni correction in 

controlling false positive rates across E(χ) clusters. Because Em is significantly larger than 

E(χ) for 2D and 3D random fields, however, the FWER P(nmax ≥ k) should account for an 

Em rather than for an E(χ) number of clusters in the data.
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The probability P(m = x) for the number of clusters m, therefore, should be a Poisson 

distribution[74] P(m = x) = 1
k! ·λk·e−λ, with mean λ = Em, and variance Em. However, our 

simulated 1D GRFs showed that the variance of m was significantly smaller than Em, (p < 

0.005, Table 1), suggesting the presence of a narrower spread of the distribution around the 

mean Em than assumed in the Poisson distribution. We assessed whether a smaller spread in 

the distribution P(m = x) affected the empirical FWER by assuming a delta distribution for 

m around its mean, i.e. P(m = x) = δεm, which has nonzero support only at the mean Em. 

Our results showed that the FWERs computed under assumption of a delta distribution 

closely matched those calculated when assuming a Poisson distribution for P(m = x), thus 

suggesting that the FWERs were robust to the parametric form assumed for the probability 

P(m = x). Furthermore, the probability P(n = k) of the cluster size n predicted by theory did 

not differ significantly from the empirical distribution when tested using the Kolmogorov-

Smirnov statistic[73, 75]. Thus, we suggest a modified FWER 

P(nmax ≥ k) = 1 − exp − Em·exp − β·k
( 2
D )

≈ Em·exp − β·k
( 2
D )

= Em·P(n ≥ k) to control for 

multiple statistical tests when using cluster-level inference, which will increase P(nmax ≥ k) 

for each k, increase the cluster size for a FWER of 0.05, and consequently reduce the 

number of false positives. Although use of this empirically derived distribution will likely 

reduce the number of false positive findings, it will also likely reduce the statistical power to 

detect true findings in the data.

The Presence of Large Clusters in High Dimensional Random Fields

Our data, simulated under the null hypothesis, showed that each realization of the smoothed 

2D and 3D GRFs thresholded at CDT = 2.5 or 3.0 had a small fraction (< 6%) of clusters 

that were 2–3 times larger than the cluster sizes kp
c  and k p

c  for a FWER = 0.05 when 

calculated using E(χ) and Em, respectively. Because these large clusters were present in all 

realizations of simulated GRFs, an empirical FWER would equal 1.0 if it were calculated as 

a fraction of all brain-wide analyses that yielded false positive findings. In other words, 

parametric methods for cluster-level inference yield at least one false positive finding in 

every brain-wide analysis. These large clusters in simulated random fields smoothed with a 

Gaussian kernel of specified FWHM and thresholded at CDT = 2.5 or 3.0 show that large 

clusters are inherent property of smoothed random fields rather than due to a larger SACF 

than that of a Gaussian distribution. This was true not only for simulated data, but equally so 

in our 710 real-world, resting-state fMRI datasets as well as in a subset of 81 healthy 

participants from the Autism study (Table 4).

Several published studies using real-world datasets under the null hypothesis also reported 

clusters as large as 55,000 voxels (supplementary Tables 3, 4, & 5)[32] or more (Figures 6 & 

7)[32, 43]. A practical consequence of having large clusters under the null hypothesis was 

that when controlling for familywise false positives at a nominal FWER of 0.05, 

nonparametric methods estimated that a cluster should be larger than 12,000 contiguous 

voxels to considered statistically significant, whereas for the same dataset, parametric 

methods estimated that clusters should be larger than 3,000 (Supplementary figure 16)[32]. 
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These extremely large clusters were an inherent property of the random fields because these 

large clusters were present in our simulated datasets that we smoothed only by an a priori 
specified kernel. Therefore, the previously reported[32] high empirical FWERs associated 

with parametric methods were not a consequence of the failure to model sufficiently the 

amount of spatial smoothness (SACF) in the data[32], but instead derived from an inherent 

property of smoothed random fields that generates a small fraction of very large clusters. 

Because the numbers of these clusters is small, the number and size of these large clusters 

are unpredictable and cannot be modeled using parametric or nonparametric distributions. 

Even if their distributions could be learned from data, these large clusters under null 

hypothesis cannot be distinguished from clusters that form true positive findings. Moreover, 

the large variability in the empirical FWERs reported in previous studies[32, 43–45] likely 

derives from the presence of the unpredictable numbers and sizes of these large clusters. 

This unpredictability likely in turn derives from differences in how the data were acquired 

and processed -- including differences in MRI scanner performance, differences in the 

imaging pulse sequences employed, differences in the degree of motion artifact and other 

structured noise present in the data that increases correlations among neighboring voxels,

[76] and differences in image processing methods employed -- with the empirical FWERs 

being closer to the nominal value of 0.05 for some platforms and datasets but not for others.

[32]

The permutation-based, nonparametric method for cluster-level inference first estimated the 

distribution of the sizes of the largest cluster and then used that distribution to compute the 

cluster size knp
c  at a FWER = 0.05, such that the probability of the largest cluster having a 

size greater than knp
c  equaled 0.05. Because the nonparametric distribution for the largest 

cluster was estimated from the largest clusters in the data under the null hypothesis, 

empirical FWER equaled the nominal FWER, irrespective of the software platform or how 

the data were acquired and processed[32]. The cluster size knp
c  estimated from the largest 

clusters in the dataset was much larger than the cluster sizes kp
c  and k p

c  calculated using 

parametric methods. Because of these large, unpredictable clusters, the empirical FWERs for 

parametric methods varied from as small as 1% to as large as 80%, whereas the empirical 

FWERs for nonparametric methods were always close to the nominal FWER of 5%. The 

nonparametric methods are more influenced by these large clusters whose numbers and sizes 

cannot be modelled: nonparametric methods learn the distribution of the largest clusters 

empirically from the clusters in the data; because the distributions of the large clusters are 

unpredictable, so too are the performances of the nonparametric techniques that depends on 

them. The performance of parametric methods, however, are generally robust to the presence 

or absence of these large clusters in the random fields, because these large clusters constitute 

only a small fraction (< 6%) of all clusters in the dataset, and parametric distributions model 

well the other 94% of clusters. The use of nonparametric methods that are robust to small 

perturbations in the probability distributions[77] possibly can reduce the influence of these 

large clusters on statistical inference.
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Statistical Power

Statistical power (detecting real effect or sensitivity) is generally equal in importance to 

specificity (rejecting false positive findings) when testing hypotheses. Optimizing these two 

capabilities typically involves a trade-off in which improving one necessarily compromises 

the other. Prior studies of cluster-based statistical inference were concerned primarily with 

the specificity of parametric methods -- whether those analyses rejected false positives at the 

nominal FWER. Although these studies found that empirical FWERs for parametric, but not 

nonparametric, methods were much higher than the nominal FWERs, they did not assess the 

relative statistical power of these two general statistical approaches when applied to real-

world datasets. The inherent trade-off in sensitivity and specificity necessitates that a method 

for statistical inference that yields low rates of false positives will also inherently tend to 

have low statistical power. When undertaking cluster-level inference, false positive rates can 

be made arbitrarily small by requiring clusters to be of sufficiently large size or by 

increasing the Z-score of the Cluster Defining Threshold (CDT). Those practices, however, 

will also increasingly reject true positive findings and therefore will have low statistical 

power. Ideally, a statistical procedure would permit only a few false positives while still 

detecting most or all real effects in the data. Use of the False Discovery Rate (FDR)[26, 78], 

for example, permits false positives at a pre-specified rate so as to detect most true findings 

while trying to contain the rate of false positive findings to an acceptable level. In most 

neuroimaging studies, detecting most of the true findings at the cost of a few false positives 

is preferable to overly conservative control of false positives that miss true effects; moreover, 

false positives are unlikely to replicate across independent studies[79] and therefore will be 

rejected as false in meta-analyses of those studies. For example, a meta-analysis[80] of 13 

task-based fMRI studies showed that although findings varied across studies possibly due to 

several factors, including presence of false positives, their findings when combined across 

all studies showed that ADHD participants had reduced activity across several regions of the 

brain. That is, meta analysis may lead to accurate understanding of the pathophysiology 

provided statistical procedures detect most true findings even in the presence of few false 

positives.

Parametric and nonparametric methods have similar statistical power when the data are well 

behaved and are available from a sufficient number of participants.[81] If the distributions of 

data cannot be modeled accurately, then nonparametric methods may be more accurate -- i.e. 

they may have both greater sensitivity and specificity -- than parametric approaches to 

cluster-based statistical inference. In our simulated 1D random fields, distributions were well 

behaved because of the absence of very large clusters, meaning that those distributions could 

be modeled accurately using a priori specified parametric models. Therefore, parametric and 

nonparametric methods provided similar statistical power and similar cluster size thresholds 

for rejecting clusters as false positives. For 2D and 3D random fields, however, the 

distributions of cluster sizes were not as well behaved, as approximately 6% of the clusters 

in those distributions were very large. Consequently, the empirical FWERs for parametric 

methods were as high as 70%, in contrast to nonparametric methods, where the empirical 

FWERs equaled the nominal FWERs. Statistical power, however, was generally 

substantially lower for nonparametric than for parametric methods; nonparametric methods 

will risk failing to detect real effects when in fact they are present.
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Practical Implications and Recommendations

Statistical analyses of imaging data must first carefully evaluate whether the data and test 

statistics follow assumed distributions and, in particular, are devoid of outlying values. 

Evaluating the validity of these assumptions is especially critical for parametric techniques, 

as they employ a presupposed parametric function to model the distributions of data. 

Deviations in the distributions of real data from the assumed models can have drastic 

consequences that range from, most commonly, allowing too many false positive findings, to 

failing to detect real effects. For example, SACF for real-world data is nonstationary and 

have longer tail than Gaussian distribution over the domain of the data. Recently proposed 

methods[82] minimize the effects of these deviations on statistical parametric mapping, 

thereby controlling for their effects on the false positive findings in the analyses. 

Nonparametric methods overcome this limitation by learning distributions from the data, and 

therefore they can be applied to any data that meets exchangeability criteria[83, 84], without 

specifying an a priori model and when evaluating the significance of any test statistic. 

Consequently, nonparametric methods are generalizable, easy to implement in diverse 

situations, and can be as statistically powerful as parametric methods when sufficient data 

are available. Nonparametric methods, however, may have lower statistical power to detect 

real effects when assumptions in parametric methods are valid.[85] Even when using 

nonparametric methods, however, one must still carefully evaluate distributions of data for 

outlying values in order to avoid making incorrect inferences from those distributions.

It is important to emphasize that a FWER as high as 70% in parametric methods should not 

be interpreted as meaning that 70% of all findings in a given statistical analysis are false 

positives, but rather as meaning that 70% of independent analyses each likely will have one 

false positive cluster. That is, on average each analysis will have fewer than one false 

positive finding. In our real-world data, for example, the empirical FWER for parametric 

methods was 65% because of the presence of a few very large clusters: on average there 

were 1.3 very large clusters in each analysis (Table 4). If those large clusters were 

discounted, the empirical FWER was only 3.24% when average across all studies (Table 4) – 

i.e., only 3% of all independent analyses would contain at least one false positive finding. 

Although it is comforting to know that these FWERs will yield very few false positive 

clusters, it is at the same time disconcerting to know that a large cluster that otherwise 

appears convincing by virtue of its very size could in fact be a false positive finding. In real-

world settings where the data are generated under an alternative hypothesis, these false 

positive findings cannot be distinguished on any statistical basis from true positive findings, 

although perhaps they can be distinguished in individual studies on the basis of their location 

and biological plausibility if fMRI signal significantly correlates with other measures of 

interest. It is also important to emphasize that parametric methods for cluster-based 

inference that allow less than one false positive finding per study will be far more 

conservative, as well as lower statistical power, than an FDR-based analysis that by fiat 

permits up to 5% of false positive findings. Thus, even at an empirical FWER of 70%, 

parametric methods for cluster-based inference likely permit less than one false positive 

finding on average in each analysis, while at the same time having much higher statistical 

power than nonparametric methods for discovering most of the true positive effects. These 

considerations strongly suggest that reanalysis of data in the previously published fMRI 
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studies is unwarranted as nonparametric methods would have reduced statistical power to 

detect true findings. We therefore recommend using parametric techniques for cluster-level 

statistical inference with CDT of 2.5 or higher, thereby minimizing false positives while 

providing better statistical power than nonparametric methods.

Future Directions

Our simulated data showed that, on average, the number of clusters Em in random fields is 

significantly higher than predicted by E(χ). We also showed that the FWER for parametric 

methods can be approximated as a product of the number of clusters and the probability P(n 
≥ k), thus approximating Bonferroni correction for multiple statistical comparisons. Because 

the number of clusters in real-world data is higher than predicted by theory, we suggest 

using the average number of clusters Em rather than E(χ) to reduce the number of false 

positive findings. However, unlike E(χ), which can be computed using a simple formula, Em 

is not known a priori and must be estimated from the data under the null hypothesis. The 

average number of clusters Em could possibly be estimated from the data using procedures 

similar to Monte Carlo[86, 87] or permutation testing, in which all data are assumed to be 

distributed according to the null hypothesis; then maps for the test statistic could be 

computed and thresholded at a specified CDT, and the number of clusters in the thresholded 

map counted. Repeating this procedure for several permutations and averaging the number 

of clusters across those permutations would generate an estimate for Em that could be used 

subsequently within parametric methods for statistical inference. This hybrid approach, 

whose validity needs to be established in independent studies, to cluster-based statistical 

inference would first apply a nonparametric tool to estimate Em and then use that estimate 

within a parametric framework to estimate the probability P(n ≥ k). Although 

computationally more expensive, our results suggest strongly that this approach would yield 

lower false positive rates than would a purely parametric approach, but it would provide 

much greater statistical power than would a purely nonparametric approach.
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Figure 2. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Table 2

Comparing Expected Euler Characteristic (EC) and Average Number of Clusters in real-world, resting-

state fMRI studies from a total of 710 participants across 5 independent studies. We thresholded the smoothed 

fields at increasing Cluster Defining Thresholds (CDTs) and averaged the number of clusters across all 

participants in each study. The average numbers of clusters were significantly higher than the expected ECs 

shown in the brackets (P value < 0.0001, one sample t test, df=differed across studies).

Study Cluster Defining Threshold
Average Number of Clusters (and Expected ECs)

1.5 2.0 2.5 3.0

Autism (N = 142) 45.4±1.67 (12.6) 34.8±1.37 (12.6) 22.5±1.11 (7.2) 12.8±0.92 (2.8)

High Risk (N = 123) 51.2±1.81 (8.7) 31±1.44 (8.7) 15.8±1.23 (4.9) 7.7±0.98 (1.9)

Depression (N = 116) 44.9±1.69 (15.9) 34.3±1.61 (15.9) 22.8±1.27 (9.0) 12.9±0.96 (3.5)

Stuttering (N =69) 61.7±2.58 (13) 42.9±2.1 (13) 22.5±1.44 (7.4) 11.6±1.25 (2.6)

Toxins (N=260) 51.6±1.17 (10.9) 38±0.99 (10.9) 23.4±0.82 (6.2) 12.4±0.63 (2.4)
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Table 3

Kolmogorov-Smirnov Statistic Comparing the Theoretical Parametric Distribution to the histogram of 

cluster sizes. The KS statistic was computed from the histogram of cluster sizes and from the values of the 

parametric distribution at the centers of the bins in the histogram. The cluster size histograms were formed 

with 20 bins for 1D GRFs, 45 bins for 2D GRFs, and 200 bins for 3D GRFs. For computing p-value we 

selected degree of freedom equal to the number of bins.

Dataset Cluster Defining Threshold

1.5 2.0 2.5

1D GRFs 0.025 0.081 0.125

2D GRFs 0.247 0.187 0.280

3D GRFs 0.36* 0.264 0.711*

Toxins 0.368* 0.128 0.082

Depression 0.329* 0.085 0.098

The star (*) denotes that the two distributions are significantly (p<0.05) different. The simulated GRFs were smoothed with a Gaussian kernel of 
FWHM = 15. For simulated 3D GRFs, the distributions differed because most (> 80%) of the clusters were of sizes 1 or 2 voxels, thereby deviating 
empirical distribution from theoretical distributions. In contrast, for the real-world data, the theoretical distributions did not differ from the 
histogram of cluster sizes for CDT > 1.5.
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Table 7

Empirical FWER for Parametric Methods for Increasing CDT for real-world data.

Studies
# of Analyses with Clusters of Size > kp

c  at

increasing CDT

2.5 3.0 3.5

Autism (142) 100 (70%) 88 (62%) 67 (47%)

High Risk (123) 48 (39%) 40 (33%) 33 (27%)

Depression (116) 88 (76%) 72 (62%) 58 (50%)

Stuttering (69) 46 (67%) 31 (45%) 22 (32%)

Toxins (260) 174 (67%) 145 (56%) 118 (45%)

Empirical FWER 64% 52% 40%

CDT = Cluster Defining Threshold
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