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Abstract

In brain imaging, accurate alignment of cortical surfaces is fundamental to the statistical 

sensitivity and spatial localisation of group studies; and cortical surface-based alignment has 

generally been accepted to be superior to volume-based approaches at aligning cortical areas. 

However, human subjects have considerable variation in cortical folding, and in the location of 

functional areas relative to these folds. This makes alignment of cortical areas a challenging 

problem. The Multimodal Surface Matching (MSM) tool is a flexible, spherical registration 

approach that enables accurate registration of surfaces based on a variety of different features. 

Using MSM, we have previously shown that driving cross-subject surface alignment, using areal 

features, such as resting state-networks and myelin maps, improves group task fMRI statistics and 

map sharpness. However, the initial implementation of MSM’s regularisation function did not 

penalize all forms of surface distortion evenly. In some cases, this allowed peak distortions to 
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exceed neurobiologically plausible limits, unless regularisation strength was increased to a level 

which prevented the algorithm from fully maximizing surface alignment. Here we propose and 

implement a new regularisation penalty, derived from physically relevant equations of strain 

(deformation) energy, and demonstrate that its use leads to improved and more robust alignment of 

multimodal imaging data. In addition, since spherical warps incorporate projection distortions that 

are unavoidable when mapping from a convoluted cortical surface to the sphere, we also propose 

constraints that enforce smooth deformation of cortical anatomies. We test the impact of this 

approach for longitudinal modelling of cortical development for neonates (born between 31 and 43 

weeks of post-menstrual age) and demonstrate that the proposed method increases the biological 

interpretability of the distortion fields and improves the statistical significance of population-based 

analysis relative to other spherical methods.

Keywords

Surface-based cortical registration; longitudinal registration; neonatal brain development; Discrete 
Optimisation; biomechanical priors

1. Introduction

The cerebral cortex is a highly convoluted sheet, with complex patterns of folding that vary 

considerably across individuals. Accurate cross-subject volumetric registration, in the face of 

folding variability, is far from straightforward as relatively small deformations in three 

dimensions (3D) risk matching opposing banks of cortical folds, or aligning brain tissue 

with cerebrospinal fluid. For this reason surface registration methods have been proposed, 

which constrain alignment to the 2D cortical sheet (Durrleman et al., 2009; Fischl et al., 

1999b; Gu et al., 2004; Lombaert et al., 2013; Lyu et al., 2015; Robinson et al., 2014; Tsui et 

al., 2013; Wright et al., 2015; Yeo et al., 2010; Van Essen, 2005). These are generally 

accepted to have better performance at aligning cortical areas (Glasser et al., 2016b)

Often, surface registration techniques have focused on the alignment of cortical 

convolutions. Examples include, spectral embedding approaches, which learn fast and 

accurate mappings between low-dimensional representations of cortical shapes (Lombaert et 

al., 2013; Orasanu et al., 2016b; Wright et al., 2015); Large Deformation Diffeomorphic 

Metric Mapping (LDDMM) frameworks, which learn vector flows fields between cortical 

geometries (Durrleman et al., 2009), to allow smooth deformation of cortical shapes 

(Durrleman et al., 2013); and spherical projection methods (Fischl et al., 1999b; Lyu et al., 

2015; Van Essen et al., 2012; Yeo et al., 2010), which simplify the problem of cortical 

registration by projecting the convoluted surface to a sphere. All methods demonstrate clear 

advantages in terms of: improving the speed and accuracy of alignment (Lombaert et al., 

2013; Wright et al., 2015; Yeo et al., 2010); increasing the correspondence of important 

features on the cortical surface, such as brain activations (Fischl et al., 2008; Lombaert et al., 

2015; Yeo et al., 2010); and providing a platform through which cortical shapes can be 

statistically compared (Durrleman et al., 2013; Orasanu et al., 2016b).

Ultimately, however, shape based alignment of the brain is limited as cortical folding 

patterns vary considerably across individuals, and correspond poorly with the placement of 
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cortical architecture, function, connectivity, and topographic maps across most parts of the 

cortex (Amunts et al., 2000, 2007; Glasser et al., 2016a). For this reason several papers have 

been proposed to drive cortical alignment using ‘areal’ features (descriptors that correlate 

with the functional organisation of the human brain). These include Conroy et al. (2013); 

Frost and Goebel (2013); Nenning et al. (2017); Sabuncu et al. (2010), which drive spherical 

registration using features derived from functional Magnetic Resonance Imaging (fMRI), 

and Tardif et al. (2015), who register level-set representations of cortical volumes using 

combinations of geometric features and cortical myelin2. Further, in Lombaert et al. (2015) 

and Orasanu et al. (2016a) spectral shape embedding approaches are extended to utilise 

broader feature sets, with Lombaert et al. (2015) adapting spectral alignment of the visual 

cortex to improve transfer of retinotopic maps, and Orasanu et al. (2016a) improving 

correspondence matching between neonatal feature sets by performing multimodal spectral 

embeddings of cortical shape and diffusion MRI (dMRI).

For similar reasons, in Robinson et al. (2014) we proposed Multimodal Surface Matching 

(MSM), a spherical deformation approach that enables flexible alignment of any type or 

combination of features that can be mapped to the cortical surface. MSM is inspired by 

DROP (Glocker et al., 2008) a discrete optimisation approach for non-rigid registration of 

3D volumes. Like DROP, MSM has advantages in terms of reduced sensitivity to local 

minima (Glocker et al., 2011), and a modular optimisation framework. Further, by allowing 

any combination of similarity and regularisation terms, this framework can be used to align 

any type or combination of features, provided that an appropriate similarity cost can be 

found. Accordingly, MSM has been used to drive alignment of a wide variety of different 

feature sets, including cortical folding, cortical myelination, resting-state network maps, and 

multimodal combinations of folding and myelin (Božek et al., 2016; Glasser et al., 2016a,b; 

Harrison et al., 2015; Robinson et al., 2014). Experiments show that this also leads to 

improvements in correspondence of unrelated areal features including retinotopic maps 

(Abdollahi et al., 2014) and task fMRI (Glasser et al., 2016a; Robinson et al., 2014; Tavor et 

al., 2016).

However, one limitation of the original MSM implementation has been that it only offered a 

first-order (pairwise) cost function to penalize against large distortions. Unfortunately, this is 

suboptimal, as the penalty for doubling the size of a region equals that of reducing the area 

to zero. Further, it is not possible to adjust the weight between isotropic (size-changing) and 

anisotropic (shape-changing) distortions.

We therefore required a method for considering higher-order interactions, where changes in 

both size and shape could be measured through triplets (triangles) of control-points. This 

was implemented in our discrete optimisation framework using clique reduction (Ishikawa, 

2009, 2014), which has already been successfully applied to 2D registration in Glocker et al. 

(2010).

2note that we refer to all of the in vivo MR-based estimates of myelin such as T1w/T2w or quantitative T1 as myelin maps in this 
study. For further discussion, see Glasser et al 2014 Neuroimage, Glasser et al 2016a, and Glasser et al 2016b
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A prototype of this framework proved fundamental to development of the HCP’s multimodal 

parcellation (Glasser et al., 2016b,a). For Glasser et al. (2016a), we used a triplet-based 

Angular Deviation Penalty (ADP) that penalised change in angles for each triangular mesh 

face. Unfortunately, this new regularization penalty measure also had drawbacks. In 

particular, it did not have any direct penalty for increasing or decreasing the area of a 

feature. With careful tuning of the regularization strength, based on elimination of 

neurobiologically implausible individual subject peak distortions, we were able to produce 

the publicly released HCP results and the HCP’s multimodal parcellation (Glasser et al., 

2016b,a). However, the need to eliminate neurobiologically implausible peak distortions 

limited the registration’s ability to maximize functional alignment. In particular, the method 

struggled to sufficiently penalize excessive distortion in regions where the individual 

topological layout of cortical areas deviated from the group (described in detail in Glasser et 

al. (2016a) Supplementary Methods sec 6.4). Similar evidence of topological variation has 

been reported in several other studies (Amunts et al., 2000; Gordon et al., 2017; Glasser et 

al., 2016a; Haxby et al., 2011; Wang et al., 2015).

For these reasons, in this paper we present higher-order MSM with a new penalty inspired 

by the hyperelastic properties of brain tissue. This mechanically-inspired penalty minimises 

surface deformations in a physically plausible way (Knutsen et al., 2010), fully controlling 

both size and shape distortions. We test this new strain-based regularization by re-optimizing 

the alignment of data from the adult Human Connectome Project (HCP), for both folding 

alignment (MSMSulc) and the multimodal alignment protocol (MSMAll) described in 

Glasser et al. (2016a) (sec 6.4). This uses myelin maps, resting state network maps, and 

resting state visuotopic maps to align cortical areas.

A further limitation of the original MSM framework has been that use of spherical alignment 

complicates the neurobiological interpretation of deformation fields. Specifically, spherical 

projection distorts the relative separation of vertices between the 3D anatomical surface 

(‘cortical anatomy’) and the sphere, such that spherical regularisation has a varying 

influence on different parts of the cortical anatomy (Fig. 1). These effects may vary across 

individuals or time points and depend on the projection algorithm used. Therefore, we 

propose an extension to the spherical alignment method, adapted from Knutsen et al. (2010), 

to deform points on the sphere but regularise displacements on the real anatomical surface 

mesh. This novel method retains the flexibility of the spherical framework (which allows 

registration of any type of feature that can be mapped to the cortical surface), while 

harnessing spatial information from the anatomical surface to produce physically appropriate 

warps.

We test the approach on alignment of 10 longitudinally-acquired neonatal cortical surface 

data sets imaged twice between 31 and 43 weeks postmenstrual age. By comparing the 

proposed method to other spherical alignment approaches, we explore whether the resulting 

deformation fields offer improved correspondence with expected growth trajectories over 

this developmental period.

The rest of paper is organised as follows: we first give an overview of the original spherical 

MSM method (sMSM), proposed in (Robinson et al., 2014) (sec. 2), and discuss the 
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extension to higher-order regularisation penalty terms (sec. 3). Methods for approximating 

and regularising anatomical warps (aMSM) are then presented (sec. 4). Finally, experiments 

and results are presented on a feature sets derived from adult and developing Human 

Connectome Project (sec. 6). Code and configuration files for running these experiments are 

available (https://www.doc.ic.ac.uk/~ecr05/MSM_HOCR_v2/). Preliminary dHCP data can 

be found from https://data.developingconnectome.org (version 1.1), and HCP data can be 

downloaded from https://db.humanconnectome.org. 3

2. Multimodal Surface Matching

We begin with an overview of the original MSM method, first proposed in Robinson et al. 

(2014). In this framework, we seek alignment between two anatomical surfaces, each 

projected to a sphere, through the procedures outlined in Fischl et al. (1999a). Here, 

anatomical surfaces represent tessellated meshes fit to the outer boundary of a white matter 

tissue segmentation (i.e. the gray/white surface). These are expanded outwards to the outer 

grey matter (or pial) boundary, and a midthickness surface is generated half way between 

white and pial boundaries. Separately, white matter surfaces are expanded to generate a 

smooth inflated cortical surface, from which points are then projected to a sphere. This is 

done in such a way as to minimise areal distortions i.e. minimise the overall change in area 

of triangular mesh faces during the transformation, (Fischl et al., 1999a). Further, during 

inflation, indexed vertices (or points) in each surface space retain one-to-one 

correspondence, such that each index represents the same cortical location across white, 

midthickness, pial, inflated and spherical surfaces.

The goal of MSM registration is to identify spatial correspondences between two spheres so 

as to improve the overlap of the surface geometry and/or functional properties of the cortical 

sheet from which the spheres were derived. Spheres may represent corresponding 

hemispheres (left or right) from: two different subjects, one subject and a population average 

template, or the same subject imaged at two different ages. During registration, vertex points 

on one (source) sphere are moved until the surface properties on that sphere better agree 

with those of the second (target) sphere. Due to the vertex correspondence between sphere 

and surface anatomy, this also implicitly derives correspondences for the cortical anatomy.

The registration process and surfaces involved are illustrated in Fig. 2. Let SSS be the source 

spherical surface with initial coordinates x, and TSS be the target spherical surface with 

coordinates X, where x, X ∈ 2. Let SAS be the anatomical (white/midthickness/pial) 

surface representation of SSS with coordinate y and TAS be the fixed anatomical surface 

representation of TSS with coordinates Y, where y, Y ∈ ℝ3. Let the moving source spherical 

surface be represented as MSS with coordinates x′, and the resulting deformed anatomical 

configuration as (DAS) with coordinates y′(x′ ∈ 2, y′ ∈ ℝ3). Anatomical surfaces may be 

white, midthickness, pial or inflated surfaces, and each surface is associated with 

multimodal feature sets M (fixed) and m (moving M, m ∈ ℝN). These represent any 

3note, that the released HCP MSMAll data used the ADP version of MSMAll, however the MSMSulc and MSMAll pipelines based 
on strain-based regularisation are publicly available (https://github.com/Washington-University/Pipelines) and will be used in follow 
up HCP projects on development, ageing and human disease;
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combination of N features describing cortical folding, brain function (such as resting state 

networks), cortical architecture, or structural connectivity.

MSM employs a multi-resolution approach. In this, a sequence of spherical, regularly-

sampled, control-point grids (GD)D∈ℕ are used to constrain the deformation of MSS (Fig. 

2b). These are formed from regular subdivisions of icospheric, triangulated meshes, where 

the granularity of the Dth control-point grid increases at each resolution, allowing features of 

the data to be matched in a coarse-to-fine fashion. Typically, at each resolution, the features 

from MSS and FSS are downsampled onto regular data grids MSSD and FSSD. Resampling 

the data in this way, increases the speed of optimisation, and may also reduce any impact 

that the meshing structures of MSS and FSS might have on the deformation. Final 

upsampling of the control-point warp to MSS is performed using barycentric interpolation.

At each resolution level, registration proceeds as a series of discrete displacement choices. 

At each iteration, points p ∈ GD, are given a finite choice of possible locations on the 

surface to which they can move. The end points of each displacement are determined from a 

set of L vertex points defined on a regular sampling grid (Fig. 2c, purple crosses, see also 

Robinson et al. (2014)). Displacements are then defined in terms of a set of L rotation 

matrices Sp = {R1, R2..RL}, specified separately for each control-point p. These rotate p to 

the sample vertex points by angles expressed relative to the centre of the sphere.

The optimal rotation for each control-point Rp ∈ Sp is found using discrete optimisation 

(Robinson et al., 2014; Glocker et al., 2008). This balances a unary data similarity term 

c(Rp) with a pairwise penalty term V (Rp, Rq), which encourages a smooth warp. The 

search for the optimal rotations can be defined as cost function (C) over all unary and 

pairwise terms as:

min C = ∑
p ∈ GD

c(Rp) + λ ∑
p ∈ GD

∑
q ∈ N(p)

V(Rp, Rq) (1)

Here q ∈ N(p) represents all control-points that are neighbours of p, and λ is a weighting 

term that balances the trade off between accuracy and smoothness of the warp.

One advantage of the discrete framework is that cost functions do not need to be 

differentiable, and thus there are no constraints on the choice of data similarity term c(Rp), 

for example: correlation, Normalised Mutual Information (NMI), Sum of Square Differences 

(SSD), and alpha-Mutual Information (α-MI, useful for multimodal alignments) 

(Neemuchwala, 2005; Robinson et al., 2014) can all be applied.

In this original framework, smoothness constraints are imposed through pairwise 

regularisation terms, implemented by penalising differences between proposed rotation 

matrices for neighbouring control-points:

V(Rp, Rq): = ‖ log ((RpRp′ )T(RqRq′ ))‖
F
2

(2)

Robinson et al. Page 6

Neuroimage. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here ||.||F represents the Frobenius norm, and Rp′  represents the full rotation of the control-

point p, accumulated over previous labelling iterations. In what follows we refer to this 

regularisation framework as sMSMPAIR.

3. Higher-order Smoothness Constraints and Strain-based Regularization

A limitation of the original discrete optimisation framework (Robinson et al., 2014) has been 

that it limited regularisation and matching to first-order terms. In this paper, we compute 

both similarity and regularisation using whole triangles, rather than pairs of vertices, to 

obtain smoother, more accurate solutions. To accomplish this in a discrete framework, we 

apply recent advances in discrete optimisation (Ishikawa, 2009, 2014) that allow adoption of 

higher-order smoothness constraints.

This necessitates generalisation of the original cost function (equation 1) to allow for terms 

(formally known as cliques) to vary in size:

min C = ∑
c1 ∈ CD

c(Rc1
) + λ ∑

c2 ∈ CR

V(Rc2
) (3)

Here CD represents cliques used for estimation of the data similarity term, CR represents 

regularisation cliques, and Rc1, Rc2 represent the subset of rotations estimated for each 

clique. This represents a highly modular framework where any combination of similarity 

metric and smoothness penalty can be used, provided they can be discretised as a sum over 

clusters of nodes in the graph. In this paper we focus on two new triplet terms:

• Triplet Regularisation V (Rc2): We propose a new regularisation term derived 

from biomechanical models of tissue deformation. This term is inspired by the 

strain energy minimization approach used in Knutsen et al. (2010), which 

constrains the strain energy density (Wpqr) of locally affine warps Fpqr, defined 

between the control-point mesh faces  = {p, q, r}.

Specifically, Fpqr represents the 2D transformation matrix, or deformation 

gradient, for  = {p, q, r} after projection into the tangent plane, fully 

describing deformations on the surface. The eigenvalues of F represent principal 

in-plane stretches, λ1 and λ2, such that relative change in area may be described 

by J = λ1λ2 and relative change in shape (aspect ratio) may be described by R = 

λ1/λ2. Areal distortion is traditionally defined as log2(Area1/Area2) = log2 J. 

Here we introduce a similar term, “shape distortion”, defined as log2 R. To 

penalize against both types of deformations, we define strain energy density 

using the following form:

W pqr = μ
2 (Rk + R−k − 2) + κ

2(Jk + J−k − 2) (4)
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where k is defined as any integer greater than or equal to 1. This proposed form 

meets the criteria of a hyperelastic material (a class often used to characterize 

biological soft tissues including brain). As described for other hyperelastic 

materials, shear modulus, μ, penalizes changes in shape, while bulk modulus, κ, 

penalises changes in size (volume for traditional 3D forms, area for 2D forms). 

Our chosen form ensures that expansion (J > 1) and shrinkage (J < 1) are 

penalised equally in log space (doubling area is penalised the same as shrinking 

area by half). Furthermore, changes in shape (R) or area (J) are penalised by the 

same function to allow optimization of the trade off between areal distortion and 

shape distortion. Note, for the case of k = 1, it can be shown that this form is 

equivalent to a modified, compressible Neo hookean material, similar to the 

original form used in Knutsen et al. (2010, 2012). See Supplementary Material 

for more details and formal justification of the proposed strain energy form. The 

strain energy penalty is implemented as:

VSTR(Rp, Rq, Rr): = W pqr
2 (5)

• Triplet Likelihood V (Rc2): First proposed for registration in Glocker et al. 

(2010), triplet likelihoods were introduced as a means of setting up a well-posed 

image matching problem, since (for spherical registration) a two-dimensional 

displacement must be recovered from a one-dimensional similarity function. As 

in Glocker et al. (2010) we implement triplet likelihood terms as correlations 

(CC) between patches of data: defined as all data points which overlap with each 

control-point mesh face triplet:

ψ(Rp, Rq, Rr) = CC(mpqr, Mpqr) = 1 −
cov((mpqr, Mpqr))

σmpqr
σMpqr

(6)

Here, mpqr is the sub-matrix of features from m, which correspond to points 

from the moving mesh MSS that move with the control-point triplet  = {p, q, 

r}. Mpqr represent the overlapping patch in the fixed mesh space TSS. Features 

Mpqr are resampled onto MSS using adaptive barycentric resampling (Glasser et 

al., 2013), and σmpqr and σMpqr represent the variances of each patch.

4. Anatomical Regularisation (aMSM)

4.1. Inferring Anatomical Correspondences

Using the known vertex correspondence between the fixed sphere (TSS) and its anatomical 

representation (TAS, Fig. 2e) a deformed anatomical surface configuration (DAS) can be 

found for the moving surface in the following steps:

1. The coordinates (x′) of the moving source sphere (MSS) are found by 

interpolating coordinates from the control-point grid triplet x = {p, q, r} that 

overlaps with x, such that :
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x′ = η(x, p; q, r)RpRp′ p + η(x, q; r, p)RqRq′ q + η(x, r; p, q)RrRr′r (7)

Here, RpRp′  represents the combined rotation of the control-point over all 

iterations, and η(.) is a barycentric interpolation function:

η(x, p; q, r) = [xqr]
[pqr] (8)

where […] represents triangle area.

2. Barycentric correspondences are found between the moving spherical surface 

configuration (MSS) and the fixed sphere (TSS). These are used to define a set of 

vertex indices, and corresponding weights, sufficient for resampling coordinates 

from the fixed mesh topology onto the moving mesh topology

ηM F(x′, Xi; X j, Xk) =
[x′X jXk]
[XiX jXk] (9)

For x′ = {Xi, Xj, Xk}, where x′ is a triplet of points on the fixed surface 

(FSS) that overlaps x′.

3. The indices and weights found in Eq. 9 are used to project the moving surface 

mesh topology onto the fixed anatomical surface. We call this the deformed 

anatomical surface (DAS) as this implements the warp that is implied through 

the allocation of point-wise correspondences during the spherical warp:

y′ = ηM F(x′, Xi; X j, Xk)Yi + ηM F(x′, X j; Xk, Xi)Y j +
ηM F(x′, Xk; Xi, X j)Yk

(10)

4.2. Implementing aMSM Regularisation

Using the higher-order constraints formulated in section 3, the evolution of DAS can be 

controlled by replacing spherical control-point triplets, with anatomical triplets in Equation 

4. In the simplest case this can be achieved by introducing low-resolution anatomical 

surfaces at the resolution of the control-point grid GD. In this way a low-resolution deformed 

anatomical configuration DASD can be determined from correspondences found between the 

control-point grid and a fixed low-resolution target sphere, TSSD, and associated low-

resolution anatomical grid TASD, with coordinates y, Y ∈ ℝ3 and XD ∈ 2, Y ∈ ℝ3. 

Coordinates y′ ∈ ℝ3 are then estimated using:
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y′D = ∑
i = 0

2
ηM − > T(p, Xi

D ∣ 𝓣p\{Xi
D}), Yi

D (11)

This is shorthand for the notation in Eq 10, where 𝓣p\{Xi
D} represents the points in the 

triplet p excluding Xi
D. Therefore, transformations (F in Fig. 2) are assessed by comparing 

matching triplets between yD and y′D. Nevertheless, it is important to note that the discrete 

displacement space continues to be estimated on the sphere. This allows registration to 

achieve lower anatomical distortions without sacrificing the quality of the alignment. We 

refer to this adaptation as anatomical MSM (aMSM).

5. Implementation details

Due to local minima in the similarity function and nonlinear penalty terms, the proposed 

registration cost functions are non-convex. This means that they cannot be solved by 

conventional discrete solvers such as α-expansion (used in graph cuts, Boykov et al. (2001)), 

which would require pairwise terms to be submodular (meet the triangle inequality). Instead, 

it is necessary to use methods that account for non-submodularity, such as FastPD 

(Komodakis and Tziritas, 2007; Komodakis et al., 2008) and QPBO (Rother et al., 2007). 

However, these methods only solve pairwise Markov Random Field (MRF) functions.

In order to account for triplet terms we adopt the approach of Ishikawa (2009, 2014). This 

allows reduction of higher order terms either by: A) addition of auxiliary variables (for 

example by reducing a triplet to three pairwise terms (Ishikawa, 2009); or B) by 

reconfiguration of the polynomial form of the MRF energy, until the higher-order function 

can be replaced by a single quadratic (Ishikawa, 2014). We present results using the latter 

version, known as Excludable Local Configuration (ELC). This has the advantage that, 

provided an ELC can be found, there is no increase in the number of pairwise terms, which 

has some impact on the computational time.

Once terms are reduced, optimisation proceeds as solutions to a series of binary label 

problems, where results for the full label space are obtained using the hierarchical 

implementation of the fusion moves technique (Lempitsky et al., 2010), as described in 

Glocker et al. (2010). In each instance, the reduction is passed to the FastPD solver 

(Komodakis and Tziritas, 2007; Komodakis et al., 2008) for optimisation.

For effective aMSM implementation, choices have to be made with regards to how far the 

anatomy should be reasonably downsampled. Resampling of the anatomical surface is 

performed by barycentric interpolation, using correspondences between the initial source 

sphere (SSS) and regular, low-resolution icospheric spherical grids (Supplementary 

Material). Where resolution of SASD exceeds that of the control-point grid, regularisation 

for each control-point triplet is calculated by averaging distortions for every higher-

resolution triplet in SASD that falls within the area of that control-point grid face. This 

results in a trade-off between run time and accurate capture of the true anatomical distortion 
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(see Supplementary Material). For every increase in anatomical mesh resolution relative to 

the control-point grid, strain calculations better represent that of the native deformation, but 

number of strain calculations increases by a factor of four.

In general, estimation of triplet energies and reduction through ELC and binary FastPD 

slows the run time relative to the original MSM approach. To reduce some of the impact, the 

control-point grids are no longer reset after each iteration. Instead, the source mesh and 

control grid incrementally deform together and all neighbourhood relationships are learned 

once at the beginning of each resolution level. To prevent folding of the mesh during 

alignment a weighting penalty is placed on the regularisation cost that severely penalises 

flipping of the triangular faces. This is done to ensure the final transformation is smooth and 

invertible.

Finally, to improve convergence and allow for smoother warps, modifications are also made 

to the rescaling of the discrete label space at each iteration. In the original framework the 

label space switches between the vertices and barycentres of a regular sampling grid 

(Robinson et al., 2014). In the new framework the discrete displacement vectors dlp are 

instead rescaled by 0.8× their original length over 5 iterations, before being reset to their 

original lengths.

6. Experimental Methods and Results

We tested this framework on real data collected as part of the adult Human Connectome 

Project (HCP4) and Developing Human Connectome Project (dHCP5) to assess the impact 

of the proposed strain regulariser on both spherical and anatomical deformations. In all 

experiments results were compared for the higher-order MSM registration framework 

(MSMSTR) and the original form (sMSMPAIR). Where feasible MSM was also compared 

against FreeSurfer (FS: arguably the most commonly used tool for cortical surface 

alignment) and Spherical Demons (SD), which is diffeomorphic on the sphere. Note, 

standard implementations of FreeSurfer and Spherical Demons are not capable of 

multimodal or multivariate alignment.

6.1. Cohorts

A subset of 28 subjects from the full HCP cohort (1200 subjects) were selected for 

parameter optimisation of the multimodal alignment protocol laid out in Glasser et al. 

(2016a). Here registration was driven using a combination of features reflecting myelin 

maps (Glasser and Van Essen, 2011), 34 well-defined cortical surface resting-state fMRI 

spatial maps, and 8 visuotopic features (reflecting topographic organisation of functional 

connectivity in the visual cortex; see Glasser et al. (2016a) Supplementary Methods sec 2). 

This subset of 28 subjects has been previously used for multiple forms of parameter 

optimisation in the HCP, including registration alignment and data clean up, and has been 

specially selected to reflect a broad spectrum of the dataset. This includes a sub-set of 

4http://www.humanconnectome.org/
5http://www.developingconnectome.org/
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examples displaying challenging problems, including unusual functional topology (see 

Glasser et al. (2016a) Supplementary Results sec 1.3); and poor SNR.

In the second experiment a subset of dHCP subjects was used to explore longitudinal 

alignment of developing cortical shapes. This group was selected specifically to include all 

subjects scanned twice within 32.66 ± 1.22 weeks PMA (first scan) and 41.47 ± 1.61 weeks 

PMA (second scan) in order to allow straight-forward comparison of the deformations 

across subjects.

6.2. Data

Acquisition of HCP data was performed on a Siemens 3T Skyra platform, using a 32-

channel head coil and MPRAGE (T1w) and SPACE (T2w) sequences (Glasser et al., 2013). 

Isotropic structural image acquisitions were acquired at 0.7mm3. Functional imaging data 

was acquired with multiband (factor 8) 2mm Gradient-Echo EPI sequences (Moeller et al., 

2010). Four resting state fMRI (rfMRI) scans were acquired (two successive 15 minutes 

scans in each of two sessions) (Smith et al., 2013). Seven task-fMRI (tfMRI) experiments 

were also conducted, including: working memory, gambling, motor, language, social 

cognition, relational, and emotional tasks; tfMRI scans were acquired after the rfMRI scans 

in each of two hour-long sessions on separate days (Barch et al., 2013). Additional details 

regarding specific acquisition parameters and task protocols are available in Barch et al. 

(2013) and Smith et al. (2013), as well as on the HCP website6. Generation of surface 

meshes and associated shape features were carried out using HCP Structural Pipelines 

(Glasser et al., 2013).

dHCP data was acquired at St. Thomas Hospital, London, on a Philips 3T scanner using a 32 

channel dedicated neonatal head coil (Hughes et al., 2016). To reduce the effects of motion, 

T2 images were obtained using a Turbo Spin Echo (TSE) sequence, acquired in two stacks 

of 2D slices (in sagittal and axial planes), using parameters: TR=12s, TE=156ms, SENSE 

factor 2.11 (axial) and 2.58 (sagittal). Overlapping slices (resolution (mm) 0.8×0.8×1.6) 

were acquired to give final image resolution voxels 0.5×0.5×0.5mm3 after motion corrected 

reconstruction, combining Cordero-Grande et al. (2016); Kuklisova-Murgasova et al. (2012). 

T1 images were acquired using an IR-TSE (Inversion Recovery Turbo Spin Echo) sequence 

at the same resolutions with TR=4.8s, TE=8.7ms, SENSE factor 2.26 (axial) and 2.66 

(sagittal). All images were reviewed by an expert paediatric neuroradiologist and checked 

for possible abnormalities. Generation of surface meshes and associated shape features were 

carried out using dHCP Structural Pipelines (Makropoulos et al., 2017).

6.3. Strain Parameter Optimisation

Higher-order MSM (MSMSTR) was run using: tri-clique data terms, bulk modulus (κ) of 1.6, 

shear modulus (μ) of 0.4 (i.e. a 4 to 1 ratio), and k = 2. These parameters were empirically 

optimised for multimodal alignment of adult HCP data (sec. 6.4), keeping κ + μ= 2 and 

regularisation λ constant, for maximum alignment and minimum total deformations. These 

values were kept throughout the paper. Experiments on the influence of these parameters for 

6http://www.humanconnectome.org/documentation/Q1/imaging-protocols.html
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longitudinal alignment of cortical anatomies (run using aMSMSTR, Supplementary Material 

sec. 2) show that, in general, results are robust over a range of parameters.

6.4. Multimodal alignment of adult HCP data

In the first experiment, sMSMSTR was compared against sMSMPAIR, SD, and FS for 

alignment of task fMRI data from a subset of 28 subjects from the HCP project. In this 

instance, anatomical regularisation was not used lest it predjudiced the solution towards 

alignment of cortical folding patterns, as these may not consistently reflect areal features 

across large parts of the brain across subjects. MSM methods were compared against FS and 

SD, run using their default settings (cortical folding alignment only) because FS registration 

is fixed and immutable, and the current implementation of SD allows only for alignment of 

univariate features.

MSM was run in two stages: first registration was initialised using constrained alignment of 

cortical folds (as described in Robinson et al. (2014) as the MSMSulc protocol) optimized in 

order to maximize task fMRI alignment. Then alignment of areal features was refined using 

what has become known as MSMAll (Glasser et al., 2016a). In this multimodal registration 

features containing myelin maps (Glasser and Van Essen, 2011), resting-state networks 

(RSNs) and visuotopic features were used to drive alignment to a group average template.

MSMSulc was run using strain-based regularisation (sMSMSTR) over three control-point 

(CP) grid resolutions with CP resolution: CPres=162, 642, 2542; and features sampled to 

regularly-spaced grids (MSSD,FSSD) at resolutions: DPres=2542, 10242, 40962. 

Regularisation strength was controlled through λ = 10, 7.5, 7.5. Features were variance 

normalised but no smoothing of the data was performed. Notably, the re-optimised strain-

based MSMSulc substantially outperforms both pairwise MSMSulc and the FreeSurfer 

registration (Table 1).

MSMAll was optimised three times, once using strain-based higher-order regularisation and 

likelihood terms (sMSMSTR) and twice using pair-wise regularisation sMSMPAIR. In each 

case, common parameters between the methods were fixed; registration was run over three 

control-point grid resolutions: CPres=162, 642, 2542, DPres=2542, 10242, 40962; features 

were variance normalised and there was no smoothing of the data. Regularisation of 

sMSMSTR was optimised in order to maximise alignment of tfMRI (appraised through 

estimates of cluster mass - defined below), subject to mean edge distortion (defined below) 

not exceeding that for FreeSurfer. Then sMSMPAIR was optimised twice: in the first case to 

achieve comparable peak edge distortions to sMSMSTR (this keeps peak distortions well 

controlled, but limits the amount of registration that can occur, see Introduction) and in the 

second case to match comparable mean values of edge distortions (this allows a similar 

amount of registration to occur, but peak distortions may exceed neurobiologically plausible 

thresholds).

Following registration, tfMRI timeseries on the subjects’ native meshes were resampled 

according to the registration to the standard mesh. Improvements in alignment were assessed 

via comparisons of the group mean activation maps (obtained using mixed effects FLAME 

Woolrich et al. (2009)) both qualitatively and quantitatively, via cluster mass, calculated 
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using the following formula: CM = Σi∈S |z(xi)|A(xi). Here xi is a vertex coordinate, z(xi) is 

the statistical value at this coordinate, A(xi) is the area associated with this vertex (calculated 

from a share of the area of each mesh triangle connected to it in the mid-thickness surface) 

and S is the set of vertices where |z(xi)| > 5, and the threshold of 5 was chosen to be 

approximately equivalent to a two-tailed Bonferroni correction. The cluster mass measure 

reflects both the size of the super-threshold clusters and the magnitude of the statistical 

values within them.

Distortions are reported in terms of absolute values for: areal distortions (log2 J, Eq. 4), 

shape distortions (log2 R), and edge distortions. Edge distortions are estimated from the 

relative change in length of edges between neighbouring vertices in the mesh: log2
L2
L1

, where 

L2 is edge length following registration, and L1 is length before, and are reported per vertex 

by taking the average values for all connected edges. These maps reflect a univariate 

summary of changes to area and shape and thus were used during optimisation.

Results in Table 1 and Fig. 3 demonstrate that, as expected, multimodal alignment of tfMRI 

data (MSMAll) significantly improved the sharpness and peak values of the group z-

statistics, relative to cortical folding based alignment (SD, FS,MSMSulc). This resulted in a 

20.97% increase in total cluster-mass for MSMAll run with sMSMSTR relative to MSMSulc, 

a comparable increase of 22.42% over SD, and a 27.31% increase over FS. Fig. 5 displays 

the spread of improvements across all pure contrasts within each task as improvement 

relative to FS - again sMSMSTR outperformed all other methods.

In terms of folding-based methods, both sMSMSTR and SD produced much lower and 

smoother distortions than FS; although it is important to note both were optimised for 

alignment of areal features (Robinson et al., 2014; Yeo et al., 2010), whereas FS was 

optimised for alignment of cortical folds. MSMSulc achieved marginal improvements over 

SD, with slight increases in tfMRI cluster mass obtained from deformations with lower 

isotropic distortions, and similar edge distortions. Fig. 6A–C (top row) shows sMSMSTR 

edge distortions dispersed across the whole of the surface whereas SD alignment resulted in 

peaks of high distortions.

For multimodal alignment, optimising the original form of MSM to achieve comparable 

mean distortions achieved comparable improvements in cluster mass to sMSMSTR but led to 

extensive patches of extreme distortions across the cortical averages (Fig 4, Fig 6D), with 

peak values for log2 J (Fig 4 left) and log2 R (Fig 4 right) far exceeding that of sMSMSTR by 

128% and 63% respectively. Such levels of distortions are neurobiologically highly 

implausible given expected ranges of regional variation from previous studies (Van Essen, 

2005).

When distortions were instead matched for peak strains, improvements in total cluster mass 

observed for sMSMSTR were 3.86% above the gains obtained with the original form of 

MSM (Table 1). This resulted in sharper tMRI group task maps (Fig. 3). Note, greater 

improvements would be expected should regularisation of sMSMSTR be reduced further. 
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However, out of an abundance of conservatism we chose not to exceed the edge distortion of 

FreeSurfer.

6.5. Longitudinal Registration

In the second experiment we explored the impact of anatomical warp regularisation for 

within-subject longitudinal alignment of 10 different neonatal subjects, each scanned twice 

within two specific time points (TPs): 32.66 ± 1.22 weeks PMA (TP1) and 41.47 ± 1.61 

weeks PMA (TP2). This criterion was selected by clustering all longitudinally scanned 

subjects (37 at time of writing) into groups with similar TPs, such that the resulting 

deformations may be directly compared.

Here we present results from the group with the biggest scan separation. Over this time 

period cortical geometry and the pattern of distortions resulting from the spherical projection 

change dramatically (Fig. 7a). However, since the relationship between structural and 

functional organisation of the brain presumably remains reasonably consistent, we assume it 

is sufficient to drive registration using geometric features only (mean curvature, Fig. 7c).

Results are compared for: the original MSM spherical framework (sMSMPAIR); spherical 

MSM with higher-order strain regularisation (sMSMSTR); anatomical MSM with strain 

regularisation (aMSMSTR); and Spherical Demons (SD). All registrations were run using the 

TP1 surface as the target of the registration, and TP2 as the moving surface, as this was 

found to generate the most accurate alignment, where this was judged in terms of correlation 

between features sets, relative to total surface distortion. This is likely because it is a better-

defined problem to register a more complex surface to a simpler surface than the reverse. 

Deformations in the direction TP1 → TP2 were then obtained by inverting the 

transformation. Note that biases associated with unidirectional registration can be 

circumvented by registering in both directions and averaging, as performed in Garcia et al. 

(2017).

SD was run using its default parameterisation and represents a baseline for smooth 

diffeomorphic spherical alignment. All MSM registrations were optimised over 4 resolution 

levels with mesh resolutions: CPres=162, 642, 2542, 10242, DPres=10242, 10242, 40962, 

40962; variance normalisation and smoothing was applied σin = σref = 6, 4, 2, 1. aMSMSTR 

was parameterised to penalise distortions of the midthickness surfaces, using anatomical 

mesh resolutions (DASD,TASD) of AGres=2542, 10242, 40962, 40962. To encourage even 

penalization of size changes across the surface, SAS and TAS were normalised to the same 

total surface area prior to aMSMSTR registration. In each case λ was selected to optimise 

feature map correlation relative to areal distortions.

After registrations, true midthickness surfaces were projected through the estimated warp 

using the procedure described in sec. 4. Methods were compared in terms of the goodness of 

fit of the obtained alignments relative to distortions of the anatomy. In order to compare 

deformations between data sets, relative values for areal (log2 J) and shape (log2 R) 

distortions were estimated at each vertex i as Log2Ji = log2
Ji
J

, Log2Ri = log2
Ri
R

, where Ĵ 

and R̂ represent (per surface) average values of R and J, respectively. Alignment quality was 
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assessed through improvements in correlation of curvature feature maps and Dice overlap of 

16 folding-based cortical regions (Fig. 9) relative to affine registration. Here, cortical labels 

were obtained through registration of each timepoint’s T2 brain volume to 20 manually 

annotated neonatal atlases (ALBERTS: Gousias et al. (2012)). The resulting 20 

segmentations were then fused in a locally-weighted scheme to form the subject’s cortical 

labels (see LWV-MSD in Artaechevarria et al. (2009); Makropoulos et al. (2014)), so that 

similar patches between each atlas and the image have increased weighting.

Results in Fig. 8 show strong improvements for aMSMSTR over the purely spherical 

methods. Areal distortions are much reduced (Fig 8a), and shape distortions (Fig 8b) are 

lower than all methods other than for SD, for which alignment quality is comparatively 

lower (Fig. 9).

To further assess the smoothness and consistency of the distortions between subjects, the 

initial time point for all scans was registered to a 34 week surface template (Božek et al., 

2016), using sMSMSTR alignment of sulcal depth maps using the following parameters: 

CPres=162, 642, 2542; DPres=2542, 10242, 40962; λ = 0.5, 0.5, 0.5; σin = σref = 6, 4, 2. 

Distributions of LogJ for each subject were then resampled onto the template and compared 

using FSL’s PALM (Winkler et al., 2014), which performs permutation testing for surface 

image data. This assesses at each vertex whether distortions are statistically greater than 

zero, performing family-wise error correction through Threshold Free Cluster enhancement 

(TFCE, Smith and Nichols (2009)).

Results in Fig. 10 show mean Loĝ2J across the surface is much smoother for aMSMSTR than 

for spherical methods (SD, sMSMPAIR, sMSMSTR). This translates to much broader areas 

where distortions (expansion at TP2 vs TP1) are significantly above zero. These areas 

correspond to regions in the frontal and parietal lobe, which are expected to grow faster 

during this time period as well as after birth (Moeskops et al., 2015; Hill et al., 2010). In 

contrast, sMSM and SD pick up no reliable evidence of increased expansion in the frontal 

lobe.

7. Discussion

Human brain imaging studies are extremely diverse; a wide variety of different tissue 

properties are studied using a range of available imaging modalities. The relationships 

between these properties are unknown but are likely to be complex since studies have shown 

apparent disassociations between patterns of functional and folding organisation (Amunts et 

al., 2007; Glasser et al., 2016a). This paper, therefore, presents a new framework, which 

combines flexible alignment of a wide variety of different combinations of image features, 

with biologically-constrained and physically-plausible deformations of spherical mesh 

representations or cortical anatomies. In this way, it will be possible for users to explore a 

wide range of theories regarding the morphological and areal organisation of the human 

cerebral cortex, using a single tool.

The paper builds on previous work in which we proposed a technique for spherical 

alignment of brain imaging data, implemented using discrete optimisation (Robinson et al., 
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2014). This framework offered significant advantages for multimodal registration on account 

of offering a modular and flexible choice of cost functions, and deformations robust to local 

minima. One limitation of the original approach was that it was implemented through use of 

first-order discrete methods and a regularization function with several limitations (see 

Introduction). This created tension between controlling peak distortions in regions with 

individual differences in the layout of cortical areas, and maximizing alignment across the 

rest of the surface. This paper therefore presents an improved framework that utilises 

advances in discrete optimisation to include higher-order smoothness penalty terms 

(Ishikawa, 2009, 2014). Using this framework we improve the robustness of MSM through 

inclusion of a new hyperelastic strain energy density penalty (Eq. 4) that allows complete 

control over local changes in shape (R) and area (J). By harnessing complete control over all 

kinds of distortion in a way that makes it possible to prevent implausibly high peak 

distortions, we have been able to significantly improve the alignment of complex 

multimodal feature sets. Notably, this includes, enhancing the alignment of data from the 

adult multimodal parcellation feature set from the HCP (Glasser et al., 2016a).

A further advantage of the proposed higher-order framework is that it enabled regularisation 

of the anatomical deformations implied by the spherical warp. Experiments performed for 

longitudinal alignment (10 neonatal cortices) show that anatomical MSM (aMSM) generates 

smooth and biologically plausible deformations. These deformations reflect patterns of 

cortical growth similar to those previously reported in region-of-interest studies (Moeskops 

et al., 2015). Importantly, however, aMSMSTR allowed us to observe statistically significant 

trends using a much smaller sample size, and without the loss of detail associated with large 

regions of interest.

Throughout this paper we have compared the proposed MSM only against other spherical 

registration frameworks: Spherical Demons (SD) and FreeSurfer (FS), and solely optimised 

for cortical folding alignments. We compare directly to spherical methods as these offer 

more flexibility in terms of the range of features that can be used to drive the registration. 

Whilst it is possible that methods designed for smooth and/or diffeomorphic alignment of 

cortical surface geometries (Durrleman et al., 2009; Lombaert et al., 2013; Orasanu et al., 

2016a) may outperform MSM for the specific task of longitudinal alignment, to our 

knowledge neither have reported smooth, statistically significant surface expansion maps 

like those produced by aMSM. Further, these methods are coupled to alignment of cortical 

shape. This limits their flexibility for between subject alignment on account of known 

dissociation between the brain’s functional (or areal) organisation and patterns of cortical 

folding (Amunts et al., 2007; Glasser et al., 2016a; Nenning et al., 2017). For the same 

reason, it is not clear how methods that combine spectral alignment of shape with 

correspondences learnt from functional or diffusion MRI (Lombaert et al., 2015; Orasanu et 

al., 2016a) should resolve this conflict to obtain a unified mapping across the whole brain.

Here we compare against SD and FS only for folding alignment on account of the fact that 

FS registration is fixed and hard-coded (allowing cortical folding alignment only) and the 

current implementation of SD allows only for alignment of univariate features. It is true that 

other groups have applied SD to alignment of brain function by mapping or embedding 

functional data to a univariate space (Nenning et al., 2017; Tong et al., 2017). However, our 
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comparisons of SD and sMSMSTR for registration of adult folding data show that sMSMSTR 

achieves warps with comparable smoothness to SD. By contrast, a strength of MSM is that it 

works flexibly with a range of multivariate and multimodal features. Furthermore, this 

flexibility has overcome a limitation of traditional spherical methods by generating plausible 

deformations of cortical surface anatomies. For these reasons we consider an extensive 

comparison between MSM and these specialised cases outside of the scope of this paper, but 

would welcome an independent analysis of these issues.

There remain limitations of the proposed approach inasmuch as the current implementation, 

using Ishikawa (2009, 2014), reduces the higher-order problem to a series of binary 

problems. In this paper, a multi-label solution is obtained through use of the fusion moves 

technique (Lempitsky et al., 2010). However, this circumvents the fast multi-label 

optimisation offered by the FastPD algorithm (Komodakis and Tziritas, 2007; Komodakis et 

al., 2008), leading to a slower solution. For comparison, on a specific 64-bit Linux system, 

the proposed version of MSM runs in approximately 1hr 15 minutes (comparable in run time 

to FreeSurfer) whereas the original pairwise form runs in less than 10mins, and Spherical 

Demons runs in less than 5 mins. Run times can be considerably brought down through 

appropriate code parallelisation. However, future work should also explore alternative 

higher-order optimisation strategies such as Fix et al. (2014); Komodakis and Paragios 

(2009).

Despite improved robustness of the proposed method to the effects of noise and topological 

variance in the data, this method is still a spatially-smooth, topology-constraining 

registration approach. An important future avenue will be to address the significant 

limitation that spatially constrained deformations cannot align brains with variable 

functional topologies (such as those observed for in ~10% of subjects for area 55b in Glasser 

et al. (2016a)). One avenue may be to explore combining hyper-alignment (Langs et al., 

2010; Haxby et al., 2011), or graph matching (Ktena et al., 2016), approaches with spatially-

constrained registration, such that constraints are placed to ensure that regions cannot be 

matched if they are very far apart in space (Iordan et al., 2016). Alternatively, in Robinson et 

al. (2016) we propose a group-wise registration scheme that accounts for topological 

variation though minimisation of rank of the feature set across the group.

In conclusion, we believe that this study establishes MSM as a powerful and flexible tool, 

which provides a valuable resource for studying a wide variety of properties of brain 

organisation across a range of populations. The strain-based version of MSM will be used in 

HCP studies on development, aging, and disease. Future work will expand studies on 

longitudinal fetal and neonatal cortical development across a larger cohort to better 

understand the mechanisms underpinning cortical growth, and will extend studies of 

neonatal resting-state networks through development of spatio-temporal templates of brain 

functional and structural organisation (Božek et al., 2016). By quantifying patterns of 

structural and functional development, it may be possible to generate vital biomarkers 

indicating neurodevelopmental outcomes for vulnerable groups such as preterm infants.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Areal distortions (changes in the relative spacing of vertices) occur as a result of projection 

from the anatomical surface to the spherical surface. These distortions change across the 

surfaces and between brains. Differences are particularly obvious for longitudinally acquired 

data. Shown here: A) White matter surfaces extracted from the same subject at 34 weeks 

post-menstrual age (PMA, top row) and 44 weeks PMA (bottom row) are projected to a 

sphere. B) Areal distortions estimated in terms of isotropic expansion of mesh faces 

(log2(Area2/Area1)), shown aligned and resampled to the 44 week subject (inflated brain 

view). C) Areal distortion difference between time points
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Figure 2. 
Projecting cortical anatomy through spherical warps. The figure follows the displacement of 

three (yellow) points on the source white anatomical surface (SAS), via the moving source 

spherical surface (MSS), into a new configuration on the target white anatomical surface 

(TAS), where source and target represent the left hemispheres of two different subjects aged 

38±1 week PMA. Steps: a) Vertex correspondence between the source sphere (SSS) and 

anatomy (SAS) means that points form triplets on both surfaces; b) Control-point grids (G, 

red) constrain the deformation of SSS within a discrete optimisation scheme (orange box). c) 

Each control-point (blue dot) can move to a finite number of possible positions on the 

surface (purple crosses). The optimal displacement (blue cross) improves feature map 

similarity whilst constraining deformations to be smooth; d) The displaced spherical surface 

configuration MSS is estimated from G using barycentric interpolation (Eq. 7); e) 

Barycentric correspondences are learnt between vertices on MSS (yellow dots) and TSS 
(pink crosses; Eq. 9); f) Weights (calculated during step e) are applied to the equivalent 

points on the target anatomical surface TAS (Eq. 10); creating g) a deformed anatomical 

surface configuration (DAS), which has the mesh topology of the source surface, but the 

shape of the target anatomical surface (TAS). Through this a transformation F can be 

estimated between SAS and DAS.
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Figure 3. 
Comparison of group Z-statistic spatial maps following folding alignment (MSMSulc, run 

with sMSMSTR) and alignment driven my multimodal features (MSMAll, run with 

sMSMSTR and sMSMPAIR, matched for peak strains) for: a) a working-memory contrast 

(2BK) and b) a language task (Story). White boxes highlight improvements in sharpness of 

the contrast in the areas of the Dorsal Lateral Pre-Frontal cortex (A); region 55b (B) and in 

the temporal lobe (B)
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Figure 4. 
Histogram plots comparing MSMAll distortions, plotted against log2 J (left) and log2 R 

(right). sMSMPAIR registration generates long tailed distributions with excessive peak 

distortions
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Figure 5. 
Bar chart of mean cluster mass statistics across HCP task categories for different methods. 

Note, only pure contrasts are included, that is direct response to individual tasks not 

differences in activations between tasks.
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Figure 6. 
Mean edge distortion maps, averaged across all surfaces. Top row) distortions for folding 

based alignment only, pink boxes highlight hot spots of edge distortions for SD method; 

Bottom row) multimodal (MM) alignments: MSM Pair Mean (MSMAll run with sMSMPAIR 

optimised to achieve comparable mean strains to sMSMSTR); MSM Pair Peak (MSMAll run 

with sMSMPAIR optimised to achieve comparable peak strains to sMSMSTR; MSM Strain 

(MSMAll run with sMSMSTR)
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Figure 7. 
Comparison of surface geometry (a), cortical labels (b) and curvature maps (c) for one 

exemplar data set (top=TP1, bottom=TP2)
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Figure 8. 
Cumulative distribution functions of Loĝ2J and Loĝ2R. for different methods: sMSMPAIR 

(red); SD (green); sMSMSTR (blue); aMSMSTR (black). Functions are estimated from the 

full distribution of strain values estimated by combining per-vertex strain values across all 

10 deformations.
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Figure 9. 
Alignment quality of longitudinal warps, assessed through feature map cross correlation and 

Dice Overlap (averaged across 16 cortical regions). Colour as for Fig. 8
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Figure 10. 
Comparison of distortion fields across subjects. Left: Loĝ2J relative areal distortion 

averaged across all 10 neonatal subjects in template space; Right: p-values for statistical 

comparison, thresholded at p < 0.05
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