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Study Objectives: Severities of obstructive sleep apnea (OSA) estimated both for the overall sleep duration and for the time spent in rapid eye movement 
(REM) and non-rapid eye movement (NREM) sleep are important in managing the disease. The objective of this study is to investigate a method by which 
snore sounds can be analyzed to detect the presence of OSA in NREM and REM sleep.
Methods: Using bedside microphones, snoring and breathing-related sounds were acquired from 91 patients with OSA (35 females and 56 males) 
undergoing routine diagnostic polysomnography studies. A previously developed automated mathematical algorithm was applied to label each snore sound 
as belonging to either NREM or REM sleep. The snore sounds were then used to compute a set of mathematical features characteristic to OSA and to train a 
logistic regression model (LRM) to classify patients into an OSA or non-OSA category in each sleep state. The performance of the LRM was estimated using 
a leave-one-patient-out cross-validation technique within the entire dataset. We used the polysomnography-based diagnosis as our reference method.
Results: The models achieved 80% to 86% accuracy for detecting OSA in NREM sleep and 82% to 85% in REM sleep. When separate models were 
developed for females and males, the accuracy for detecting OSA in NREM sleep was 91% in females and 88% to 89% in males. Accuracy for detecting OSA 
in REM sleep was 88% to 91% in females and 89% to 91% in males.
Conclusions: Snore sounds carry sufficient information to detect the presence of OSA during NREM and REM sleep. Because the methods used include 
technology that is fully automated and sensors that do not have a physical connection to the patient, it has potential for OSA screening in the home 
environment. The accuracy of the method can be improved by developing sex-specific models.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a prevalent sleep disorder in 
which breathing ceases due to frequent upper airway collapse. 
It causes oxygen desaturation and arousal, which disrupts nor-
mal sleep. A complete closure of the upper airway is called ap-
nea, whereas a partial closure is called hypopnea.1 The average 
number of apnea and hypopnea events per night is used to de-
rive an apnea-hypopnea index (AHI). Patients with OSA have 
increased risk for the development of cardiovascular diseases, 
stroke, diabetes, neurocognitive deficits, excessive daytime 
sleepiness, depression, and mood disorder.2

The current standard for OSA diagnosis is clinical poly-
somnography (PSG), where the patient undergoes overnight 
in-facility monitoring of more than 20 physiological signals. 
An expert sleep technician is required to apply complex and 

SCIENTIF IC INVESTIGATIONS

Snore Sound Analysis Can Detect the Presence of Obstructive Sleep Apnea 
Specific to NREM or REM Sleep
Shahin Akhter, PhD1; Udantha R. Abeyratne, PhD1; Vinayak Swarnkar, PhD1; Craig Hukins, MBBS, FRACP2

School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Australia; 2Sleep Disorders Centre, Department of Respiratory and 
Sleep Medicine, Princess Alexandra Hospital, Woolloongabba, Australia

pii: jc-17-00506 ht tp://dx.doi.org/10.5664/jcsm.7168

subjective scoring rules on signals to identify apnea and hy-
popnea events and calculate AHI. PSG classifies sleep into two 
broad categories: rapid eye movement (REM) and non-rapid 
eye movement (NREM) sleep. NREM comprises most normal 
sleep (with a 3:1 ratio for NREM: REM). Although NREM 
dominates the early hours of sleep cycles, REM periods get 
longer toward the end. PSG computes both the overall AHI and 
the AHI in NREM and REM sleep to assess the OSA in detail.1

Although the required amount of apnea and hypopnea events 
to diagnose OSA can be found both in NREM and REM sleep 
stages, growing evidence from literature indicates that events 
during REM sleep are important clinical entities for consider-
ation. Apneas and hypopneas in REM sleep have been found 
to be linked with nondipping of nocturnal blood pressure (BP)3 
and incident hypertension,4,5 whereas unrecognized OSA (ie, 
patient categorized as no OSA because the overall AHI < 10 

BRIEF SUMMARY
Current Knowledge/Study Rationale: Snoring is a symptom of obstructive sleep apnea (OSA) that can potentially be linked to NREM and REM 
sleep as well as upper airway collapse in patients with OSA. In this study, we test whether the analysis of snoring and breathing-related sounds can 
accurately identify OSA during REM and NREM sleep.
Study Impact: This study demonstrates that snoring sound can be used to estimate the presence of OSA, specific to NREM or REM sleep, at high 
accuracy. The noninvasive, fully automated, and low-cost nature of the technology holds promise as a potential tool for screening of the disease.
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events/h, but the AHI in REM sleep ≥ 20 events/h) has an in-
dependent association with hypertension.6 Hypertension (ie, 
BP ≥ 140/90 mmHg) in individuals carries the risk of the de-
velopment of cardiovascular diseases. Based on a 10-year pre-
diction model using the Framingham dataset, BP exceeding 
the high normal rate (≥ 130/85 mmHg) is singularly attribut-
able to almost 30% of coronary heart disease in adults.7 Inhi-
bition of neuronal input to the hypoglossal nerve results in a 
reduction of genioglossal and pharyngeal muscle tone in REM 
sleep,8,9 thus increasing the propensity of severe upper airway 
collapse during REM sleep (prolonged apneas and hypopneas 
with minimum SpO2

10,11 and greater fluctuations in BP12). In 
addition, increased sympathetic activity and hemodynamic 
control (such as increased BP and heart rate) in REM sleep13,14 
may result in increased cardiac afterload and trigger ischemic 
events in patients with vascular disease. Hence, it is important 
to identify the overall AHI as well as the AHI in NREM and 
REM sleep for better diagnosis and management of OSA.

Because of the increasing demand for OSA screening and 
inherent limitations of PSG as an OSA screening method, there 
is growing interest in alternative approaches to screening, such 
as portable monitoring. Portable monitoring devices measure 
varying numbers of physiological signals—from only one or 
two to as many as in-laboratory monitoring. According to a re-
view on the home diagnosis of sleep apnea,15 portable monitors 

are classified into four types: type 1 incorporates standard 
PSG, type 2 uses both sleep stages and respiratory measures 
with at least seven channels, type 3 and type 4 use only respira-
tory measures (at least three respiratory channels in type 3 and 
at least one respiratory channel in type 4) without any provi-
sions for sleep stages. Although clinical PSG provides OSA 
severity through overall AHI and its possible interlink with 
sleep stages (eg, REM AHI and NREM AHI) and body posi-
tion (eg, supine AHI and nonsupine AHI) for individuals, such 
information is not readily available in existing type 3 or type 4 
devices for potable and ambulatory monitoring.15,16

Sleep is a dynamic physiological state that exhibits dis-
tinct breathing patterns and ventilatory control in normal in-
dividuals.17 Breathing tends to be regular in NREM sleep.17 
Conversely, REM sleep is known to have rapid and irregular 
breathing patterns18,19 that may coexist with the altered upper 
airway patency in patients with OSA.17–20 This combination al-
lows for the potential of severe breathing obstructions during 
REM sleep.10,11 The severity of such events may not be recog-
nized in the existing type 3 or type 4 devices because they do 
not measure NREM and REM sleep.21 Therefore, our current 
study aims to address the limitation of type 3 and type 4 de-
vices by developing a simple, low-cost, and noninvasive tech-
nique to detect the presence of OSA in NREM and REM sleep.

OSA is commonly associated with nocturnal snoring in pa-
tients.22,23 Literature indicates that properties of snoring sound 
can be used to characterize OSA24–30 and the sound alters 
within the vicinity of NREM and REM sleep.31 Our current 
study hypothesized that if our previously developed models for 
OSA/non-OSA classification25 can be modified to utilize snore 
sounds labeled as either NREM or REM,31 this should allow us 
to identify patients with OSA in each sleep state. Such an ap-
proach may provide us the opportunity to develop a technique 
for home diagnosis and long-term monitoring of OSA that does 
not require a sensor to be attached to the patient.

To design one such system, we aimed to explore the ability 
of snoring and breathing-related sounds in patients with OSA 
to characterize the presence of OSA in NREM and REM sleep. 
The novelty of our approach is that it employs a technique that 
collects snore sounds without attaching a sensor to the patient, 
labels the sounds as either NREM or REM, and then identifies 
if OSA is present in NREM or REM sleep. The process by 
which sounds are labeled and OSA is detected is completely 
automated.

METHODS

In the work of this paper our target is to train models using 
characteristics of snore sounds to predict OSA in NREM and 
REM sleep separately. We used PSG-based diagnosis as a ref-
erence for assessing the model performance on train and test 
data. A block diagram of our method is presented in Figure 1.

Acquisition of PSG Data and Snore Sounds
We included PSG and snoring and breathing-related sound data 
from 91 patients (35 females and 56 males) acquired for our 
previous study.32 Patients were referred for PSG testing at the 

Figure 1—Block diagram.

Block diagram of the proposed technique to identify OSA in NREM and 
REM sleep. NREM = non-rapid eye movement, OSA = obstructive sleep 
apnea, PSG = polysomnography, REM = rapid eye movement.
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Sleep Diagnostic Laboratory of the Princess Alexandra Hos-
pital, Brisbane, Australia. Routine PSG recordings were made 
using clinical PSG equipment (Siesta, Compumedics, Sydney, 
Australia). Standard 30-second epoch length and guidelines 
from Rechtschaffen and Kales33 and those from the Chicago 
Criteria1 (AASM1999) were used during PSG testing for scoring 
sleep and OSA.

Snoring and breathing-related sounds were recorded using 
a bedside microphone (Model NT3, RODE, Sydney, Austra-
lia) at 44100 Hz sampling rate simultaneously with the PSG. 
A professional quality preamplifier and A/D converter unit 
(Model Mobile Pre-USB, M-Audio, California, United States) 
was used during the recording.

Snore Database
We applied an automatic algorithm developed by our group34 
on the overnight snoring and breathing-related sounds record-
ing to collect snore episodes. From 91 patients 108,228 snore 
episodes were collected. Snore episodes were then automati-
cally labeled as either NREM or REM by using our previously 
developed algorithm.35 The snore labelling algorithm has 81% 
accuracy.35

To minimize the effect of the number of snore episodes 
in NREM and REM sleep, the patients with a total of fewer 
than 10 snores in each category (ie, NREM and REM) were 
removed. For example, if a patient had ≥ 10 NREM snores 
and < 10 REM snores, then the data for this patient were used 
only for the NREM snore-based logistic regression model 
(LRM) to predict OSA/non-OSA in NREM sleep. According 
to this inclusion/exclusion criteria, all 91 patients (35 females 
and 56 males) were included in the NREM snore database and 
85 patients (33 females and 52 males) were included in REM 
snore database.

Feature Extraction
From each snore episode, we computed different types of fea-
tures: formant frequencies (FF), Mel frequency cepstral coef-
ficients (MFCC), non-Gaussianity score (NGS), loudness, and 
pitch. We anticipated that patients with high OSA in REM and/
or NREM sleep should demonstrate more snore-to-snore irregu-
larities attributable to that sleep state. Therefore, to capture this 
sleep specific snore-to-snore variation we computed statistical 
properties such as the mean, standard deviation (SD), and skew-
ness of features for each patient. Please see Table 1 for details.

Formant Frequencies
Formants are the resonance frequencies of the vocal tract (ie, 
F1-F3 correspond to pharyngeal constriction, tongue advance-
ment, and lip-rounding, respectively36). Constrained upper 
airway regions during apneic events in NREM or REM sleep 
should alter the physical dimension of the airways, and hence 
the resonance frequencies. We considered FF from snoring 
sound to capture such changes in the acoustic characteristics 
of the upper airway. A linear predictive coding scheme with 
a Yule-Walker autoregressive parameter estimation method37 
was used to estimate the first four formants (F1, F2, F3, and 
F4) of snores. The SD and skewness of F1, F2, F3, and F4 were 
also computed. Eight formant-based features were computed 
from the F1, F2, F3, and F4 (ie, SD and skewness of F1, F2, 
F3, and F4).

Mel Frequency Cepstral Coefficients
Our speech sound gets filtered by different regions of the vocal 
anatomy and our ear resolves the sound frequencies nonlin-
early across the audio spectrum. There exist similarities be-
tween snore sound generation and speech production. Here, the 
upper airway acts as an acoustic filter during the snore sound 
generation, which may be further affected by the narrowed air-
way tunnel during OSA. Inspired by the source/filter theory 
of human speech synthesis, a similar mathematical technique, 
MFCC, was applied to represent speech into a nonlinear Mel 
scale of sound frequencies.38 This is consistent with the previ-
ous research on OSA, which has shown that the MFCC of snore 
sounds have potential in categorizing patients with OSA.26,39 
We included 12 MFCC and their delta and acceleration coeffi-
cients into our current investigation. We measured the entropy 
of snore segments as well as their SD and skewness. A total 
of 108 MFCC-based features were collected from each of the 
NREM and REM groups.

Non-Gaussianity Score
The NGS of snore episodes is a technique proposed to quantify 
the deviation of a signal from a Gaussian distribution.40 The 
details of NGS can be found in Ghaemmaghami et al.40 The 
quasi-periodic structures in a snore sound tend to make them 
non-Gaussian in general and we have used the NGS success-
fully in the past to analyze snores.25,40 In this study, we com-
puted NGS for each snore and estimated their SD and skewness 
as the diagnostic features.

Table 1—Feature set derived for OSA/non-OSA classification during NREM and REM sleep.
Feature Category Statistical Properties Number of Features Feature Serial

Mel frequency cepstral coefficient Entropy, SD and skew of 12 coefficients, SD and 
skewness of delta and acceleration coefficient 108 1–108

Non-Gaussianity score SD, skewness 2 109–110
Pitch period variation SD 1 111
Formant (F1, F2, F3 and F4) SD, skewness 8 112–119
Loudness Mean, SD 2 120–121

NREM = non-rapid eye movement, OSA = obstructive sleep apnea, REM = rapid eye movement, SD = standard deviation.
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Loudness
We computed the loudness (in dB) of snore episodes in the 
NREM and REM group. We considered that the breath-to-
breath structural changes occurring in the upper airway may 
alter the loudness of individual snoring events in patients with 
OSA and assist in categorizing such patients. The feature was 
measured by 20 × (the logarithm of the ratio of sound pres-
sure Ps of snore segments to a reference sound pressure level 
Pref = 2 × 10−5 Pa). The pressure Ps was computed based on the 
microphone sensitivity value given in the product datasheet.41 
The mean and SD of maximum loudness were computed to 
capture snore-to-snore variations.

Pitch
Pitch is widely used as a feature in speech-processing appli-
cations36 as well as in snoring. We used the pitch period of 
NREM and REM snores to quantify intersnore variability in 
patients with OSA. We used autocorrelation with the center 
clipping technique41 on snores to compute pitch period. The SD 
of pitch periods of NREM and REM snores within each patient 
were utilized to extract the pitch-based features.

LRM Development
An LRM is a generalized linear model that uses several inde-
pendent predictors (ie, features) to estimate the probability (Y) 
of a categorical event (dependent variable). In this work, inde-
pendent predictors are snore-based mathematical features and 
categorical event: “patient has OSA at AHI threshold (AHIths) 

(ie, Y = 1)” or “patient does not have OSA at AHIths (ie, Y = 0).” 
The models were trained separately for identifying OSA in 
NREM and REM sleep using features from NREM and REM 
snores respectively. The models were designed at two thresh-
olds of AHI, 15 and 30 events/h. The values used for AHIths are 
common15 in the home diagnosis of sleep apnea. Due to a lack 
of patients with fewer than 5 AHI events/h in NREM and REM 
sleep, this was not considered.

The LRM uses the regression function to estimate the prob-
ability of Y from the independent variables (ie, snore features) 
as shown in equation 1 and equation 2.

In equation 1 and equation 2, f1, f2 …fF are the features of snor-
ing, β0 is the intercept and β1, β2 and so on are the regression 
coefficients of the LRM. In order to select an optimal deci-
sion threshold for Y we used receiver operating characteristic 
curve analysis.

Altogether we designed six models, which are described as 
follows:

• M1: LRM trained using NREM snores to predict OSA 
in NREM sleep.

• M2: LRM trained using NREM snores from females to 
predict OSA in NREM sleep in females.

• M3: LRM trained using NREM snores from males to 
predict OSA in NREM sleep in males.

• M4: LRM trained using REM snores to predict OSA in 
REM sleep.

• M5: LRM trained using REM snores from females to 
predict OSA in REM sleep in females.

• M6: LRM trained using REM snores from males to 
predict OSA in REM sleep in males.

The performances of all models were calculated in terms of 
accuracy, sensitivity, and specificity.

Feature Selection and Classification
For each LRM, we followed a sequential forward feature se-
lection (SFS) technique to identify a subset of features that 
were significant for predicting OSA/non-OSA in NREM and 
REM sleep and improved the model performance. The SFS 
was stopped when no further improvement was achieved. 
For each selected feature, SFS followed a tenfold cross vali-
dation within the training subsets and computed the mean 
squared error. Based on the mean of errors, a new feature 
was added or removed from the selected subset and this 
process continued until the adding feature did not reduce 
the error.

An optimum feature subset from SFS method was used to 
train the LRM to categorize a patient as OSA or non-OSA 
in NREM and REM sleep using snore sounds. Our study in-
cluded NREM snores from 91 subjects to train M1 and REM 
snores from 85 subjects to train M4 by following the criteria 
at least 10 snores in each group. Sex-specific models M2, 
M3, M5, and M6 were trained using snores collected from 
females and males in either NREM or REM category.

In each model, we followed a leave-one-patient-out cross-
validation (LOOCV) technique within our dataset so that the 
model trained on all the patients and leaves one for testing on 
it. This process was repeated until every patient was tested at 
least once.

Statistical Analysis
We used statistical properties such as mean and SD of de-
mographic details of NREM and REM AHI groups for 
identifying evidence of sleep-specific differences. Pearson 
correlation coefficient r was used to measure the correla-
tion of patients’ demography against sleep-related AHI. 
Demographic details such as the AHI and arousal index 
(ArI) of overall sleep as well as their NREM and REM con-
stituents did not exhibit normal distribution (P < .05). We 
used nonparametric Mann-Whitney U test (level of signifi-
cance α = .05) to search statistically significant differences 
in demography of patients between the NREM and REM 
AHI groups.

Based on the statistical analysis of demographic details ob-
tained from PSG studies, we further investigated the outcome 
of the models at different AHIths whether any of the models 
can be linked with PSG-based clinical parameters. Such an ap-
proach would provide more insights into patients with sleep-
specific OSA through our technique. Using our LRM-based 
decision as the ground truth we divided the females and males 
into two groups: OSA and non-OSA. We then compared the 
means of several clinical parameters such as BMI, Epworth 
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Sleepiness Scale (ESS) score, BP, etc. using statistical analysis 
between the groups.

We considered the one-way analysis of variance (ANOVA) 
test for comparing the variations within the group and across 
the groups. Test results were observed as F statistics and at the 
level of significance α = .05. F statistics indicate the ratio of 
mean squared error of within group and across the group varia-
tion and P is the probability of observing the test static greater 
than or equal to the value of F statistics.

RESULTS

Database Characteristics
Demographic details and PSG findings of the patients in-
cluded in the NREM and REM snore database are presented 
in Table 2. The ages of females and males of the NREM group 
were 50.7 ± 15.6 years and 49.5 ± 10.7 years, respectively. Both 
NREM and REM groups showed similar age or BMI with no 
significant differences (P > .05) between sexes. The neck cir-
cumference of male patients was significantly higher than that 
of females in both the NREM and REM groups (P < .05). Over-
all AHI and NREM AHI was significantly higher in males 
compared to the females (P < .05) in both groups. There was 
no significant difference in REM AHI between females and 
males of both groups. Both NREM and REM groups reported 
similar ESS score with no significant differences between sex.

Analysis of OSA Severity in NREM and REM Sleep
Our patient population exhibited a strong relationship be-
tween the overall AHI of patients and its AHI in NREM sleep 
(r = .98, P < .05) irrespective of sex. In comparison with this 
finding, REM-AHI showed a significant relationship with the 
overall AHI only for female patients (r = .5; P < .05). A com-
parative analysis of patient demography and PSG findings be-
tween sexes are presented in Table 3. It is to be observed from 
Table 3 that ArI in NREM sleep is significantly higher than 
the REM sleep (P < .05, Mann-Whitney U test) with no sex 
differences. Both sexes had similar ESS score irrespective of 
the sleep type.

Furthermore, we compared the demographic differences be-
tween females and males in NREM and REM AHI groups. 
Both females and males with OSA in NREM and REM sleep 
had higher BMI and neck circumference relative to the non-
OSA group (P < .05) with no significant differences in BMI 
between sex. Only the neck circumference showed a consis-
tently significant sex difference (P < .05) in both NREM and 
REM AHI groups.

Performance of Models in Predicting OSA in NREM 
and REM Sleep
Table 4 shows the LOOCV results of the models at AHIths 15 
and 30 events/h. The M1 achieved a sensitivity of 86.66% and 
a specificity of 87.09% in predicting OSA in NREM sleep at 
AHIths 15 events/h. The corresponding numbers for M4 were 

Table 2—Clinical examination details of patients with OSA included in the NREM and REM snore database.
NREM Snore Database Female (n = 35) Male (n = 56) P

Age (years) 49.5 ± 10.7 50.7 ± 15.6 .38
BMI (kg/m2) 32.3 ± 9.9 32.9 ± 6.1 .34
NC (cm) 38.5 ± 4.6 44.4 ± 3.9 6.0e−8

AHI (events/h) 22.9 ± 25.3 40.7 ± 28.2 7.7e−4

REM AHI (events/h) 32.0 ± 31.4 35.9 ± 25.6 .27
NREM AHI (events/h) 21.1 ± 25.7 39.6 ± 29.5 8.3e−4

REM ArI (events/h) 24.7 ± 22.6 27.9 ± 19.6 .22
NREM ArI (events/h) 27.8 ± 21.7 40.4 ± 21.8 .001
ESS score 9.7 ± 4.6 10.8 ± 6.1 .37

REM Snore Database Female (n = 33) Male (n = 52) P
Age (years) 49.7 ± 11.0 50.6 ± 16.0 .44
BMI (kg/m2) 32.4 ± 10.2 33.2 ± 6.0 .27
NC (cm) 38.4 ± 4.5 44.7 ± 3.6 1.9e−8

AHI (events/h) 24.5 ± 25.9 42.0 ± 28.0 .001
REM AHI (events/h) 33.7 ± 32.2 36.6 ± 25.7 .37
NREM AHI (events/h) 22.7 ± 26.3 40.0 ± 29.4 .001
REM ArI (events/h) 25.7 ± 23.4 28.5 ± 19.8 .003
NREM ArI (events/h) 28.8 ± 22.4 41.2 ± 21.9 .24
ESS score 9.5 ± 6.4 10.5 ± 6.1 .44

Values are presented as mean ± standard deviation. AHI = apnea-hypopnea index, ArI = arousal index, BMI = body mass index, ESS = Epworth Sleepiness 
Scale, NC = neck circumference, REM = rapid eye movement, NREM = non-rapid eye movement.
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Table 3—Statistical analysis of the demographic characteristics and PSG indices of the females and males included in the 
study of sleep-specific OSA.

NREM AHI < 15 NREM AHI > 15
Female (n = 15) Male (n = 14) P * Female (n = 20) Male (n = 42) P *

Age (years) 46.6 ± 8.5 48.4 ± 12.5 .98 52.6 ± 12.2 51.4 ± 16.5 .68
BMI (kg/m2) 29.6 ± 8.7 31.3 ± 6.6 .45 35.2 ± 10.6 33.4 ± 6.0 .80
NC (cm) 37.8 ± 4.5 42.4 ± 3.6 .007 39.3 ± 4.6 45.0 ± 3.8 5.2e−5

AHI (events/h) 6.7 ± 4.4 10.0 ± 5.9 .16 40.0 ± 27.2 49.8 ± 25.5 .12
NREM AHI (events/h) 4.8 ± 3.8 6.8 ± 3.9 .14 38.4 ± 27.7 49.5 ± 26.6 .11
REM AHI (events/h) 14.4 ± 12.3 18.3 ± 11.3 .30 50.7 ± 34.9 41.2 ± 26.4 .28
NREM ArI (events/h) 16.1 ± 6.5 23.0 ± 15.4 .19 40.0 ± 25.4 45.7 ± 20.8 .19
REM ArI (events/h) 17.2 ± 12.4 18.6 ± 10.2 .48 32.7 ± 28.2 30.7 ± 21.0 .90
ESS score 10.1 ± 6.8 10.0 ± 6.1 .95 9.2 ± 6.4 11.0 ± 6.1 .20

NREM AHI < 30 NREM AHI > 30
Female (n = 22) Male (n = 26) P * Female (n = 13) Male (n = 30) P *

Age (years) 50.3 ± 10.7 45.2 ± 17.1 .46 46.4 ± 11.0 55.1 ± 12.9 .09
BMI (kg/m2) 29.3 ± 8.1 31.2 ± 6.1 .13 44.4 ± 7.1 34.3 ± 5.9 .001
NC (cm) 37.7 ± 4.4 43.1 ± 3.5 3.3e−5 41.9 ± 3.7 45.5 ± 3.9 .02
AHI (events/h) 13.3 ± 10.9 16.7 ± 10.3 .15 61.4 ± 30.8 59.9 ± 22.6 > .99
NREM AHI (events/h) 10.9 ± 9.3 13.2 ± 7.8 .29 61.8 ± 30.6 60.8 ± 22.5 .88
REM AHI (events/h) 24.5 ± 26.1 25.2 ± 17.1 .33 62.3 ± 34.5 44.5 ± 28.3 .22
NREM ArI (events/h) 19.2 ± 8.2 24.1 ± 12.9 .14 61.8 ± 26.1 53.5 ± 18.4 .49
REM ArI (events/h) 19.3 ± 12.6 10.9 ± 10.1 .56 46.4 ± 38.9 34.4 ± 23.0 .65
ESS score 10.2 ± 7.0 10.4 ± 7.1 .92 7.4 ± 3.5 11.1 ± 5.3 .07

REM AHI < 15 REM AHI > 15
Female (n = 13) Male (n = 13) P * Female (n = 19) Male (n = 40) P *

Age (years) 44.0 ± 8.5 47.2 ± 10.3 .34 53.6 ± 10.9 51.8 ± 17.4 > .99
BMI (kg/m2) 31.0 ± 12.3 33.6 ± 6.7 .16 33.4 ± 8.6 33.1 ± 5.8 > .99
NC (cm) 37.6 ± 4.4 43.7 ± 2.0 7.6e−4 39.0 ± 4.6 45.0 ± 4.0 2.0e−5

AHI (events/h) 9.8 ± 10.2 36.6 ± 38.6 .027 34.5 ± 28.8 43.8 ± 24.0 .09
NREM AHI (events/h) 10.4 ± 12.5 38.0 ± 38.8 .03 31.2 ± 30.0 42.0 ± 26.2 .07
REM AHI (events/h) 7.0 ± 4.9 7.0 ± 5.1 .89 51.9 ± 30.1 46.2 ± 22.1 .56
NREM ArI (events/h) 21.9 ± 13.3 42.2 ± 26.7 .01 33.6 ± 26.2 40.9 ± 20 .5 .09
REM ArI (events/h) 13.1 ± 9.1 12.0 ± 10.3 .77 34.2 ± 26.4 33.9 ± 19.2 .49
ESS score 10.6 ± 6.5 7.9 ± 5.6 .27 8.8 ± 6.5 11.3 ± 6.0 .10

REM AHI < 30 REM AHI > 30
Female (n = 20) Male (n = 24) P * Female (n = 12) Male (n = 29) P *

Age (years) 47.1 ± 10.1 50.0 ± 15.5 .46 54.0 ± 11.5 51.2 ± 16.7 .79
BMI (kg/m2) 30.1 ± 10.6 31.6 ± 5.7 .13 36.2 ± 8.5 34.6 ± 5.9 .49
NC (cm) 37.4 ± 4.1 43.1 ± 2.1 1.4e−5 40.3 ± 4.7 46.0 ± 4.0 .001
AHI (events/h) 10.8 ± 8.7 32.2 ± 30.7 .002 47.2 ± 29.3 50.2 ± 23.0 .53
NREM AHI (events/h) 10.1 ± 10.6 39.9 ± 32.0 .002 43.9 ± 31.2 47.7 ± 25.7 .43
REM AHI (events/h) 12.1 ± 8.5 13.5 ± 8.6 .65 69.6 ± 23.5 55.7 ± 18.4 .05
NREM ArI (events/h) 20.1 ± 11.7 38.2 ± 25.1 .56 43.3 ± 28.4 43.7 ± 19.0 .56
REM ArI (events/h) 14.4 ± 9.6 14.4 ± 9.6 .98 44.3 ± 28.9 40.1 ± 18.5 .95
ESS score 10.5 ± 6.5 9.1 ± 5.5 .50 7.9 ± 6.2 11.6 ± 6.4 .06

Values are presented as mean ± standard deviation. * = comparing females and males within group. AHI = apnea-hypopnea index, ArI = arousal index, 
BMI = body mass index, ESS = Epworth Sleepiness Scale, NC = neck circumference, NREM = non-rapid eye movement, OSA = obstructive sleep apnea, 
PSG = polysomnography, REM = rapid eye movement.
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88.13% and 88.46%. When AHIths 30 events/h was used to 
train M1 and M4, the performance of the two models declined 
considerably.

Performance of the Sex-Specific Models in Predicting 
OSA in NREM and REM Sleep
Figure 2 illustrates receiver operating characteristic curves of 
training models using optimum feature subset and Table 5 shows 
the leave-one-patient-out validation results for these models. 
Results from sex-specific models demonstrate that testing ac-
curacy improved by 5% to 8% compared to the sex-indepen-
dent models (see Table 4 and Table 5). The LRM performance 

varied at different values of AHIths. At AHIths 15 events/h, fe-
male models performed better while at AHIths 30 events/h, the 
performance of the male models was better.

Evaluation of Optimum Feature Selection 
of the Models
For every iteration of the models, SFS automatically selected 
an optimum feature subset within the training feature space; 
Figure 3 presents a graphical view of how many times each 
of the 121 features were selected in models M2, M3, M5 and 
M6 after LOOCV iterations. It is evident from Figure 3 that 
MFCC-based features were frequently selected by the models, 

Table 4—Performance of the models in predicting OSA in NREM and REM sleep.

Model
Training Performance Testing Performance

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

M1 (NREM)
AHIths 15 events/h 86.90 87.41 87.08 86.66 87.09 86.81
AHIths 30 events/h 80.46 81.47 81.05 82.57 79.24 80.21

M4 (REM)
AHIths 15 events/h 91.58 92.48 91.86 88.13 88.46 85.23
AHIths 30 events/h 85.36 86.36 85.88 82.92 81.81 82.35

Values are presented as percentages. AHIths = apnea-hypopnea index threshold, NREM = non-rapid eye movement, OSA = obstructive sleep apnea, 
REM = rapid eye movement.

Figure 2—ROC curves.

ROC curves for classifying OSA/non-OSA in either NREM or REM sleep demonstrate that sex-based models improve the classification performance at both 
AHIths = 15 and 30 events/h. AHIths = apnea-hypopnea index threshold, AUC = area under the curve, NREM = non-rapid eye movement, OSA = obstructive 
sleep apnea, REM = rapid eye movement, ROC = receiver operating characteristic.
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Figure 3—Selection frequency of features during LOOCV.

A bar plot representation of the selection frequency of each of the 121 features during LOOCV of models M2, M3, M5 and M6: (A) and (B) are for NREM 
AHIths 15 and 30 events/h on the female and male dataset. Similarly, (C) and (D) are for REM AHI. The two colors are used respectively for models using 
female and male patients. AHIths = apnea-hypopnea index threshold, LOOCV = leave-one-patient-out cross-validation, NREM = non-rapid eye movement, 
REM = rapid eye movement.

Table 5—Performance of the sex-spxecific models in predicting OSA in NREM and REM sleep.

Model
Training Performance Testing Performance

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

M2 (NREM Female)
AHIths 15 events/h 100.00 100.00 100.00 100.00 83.33 91.42
AHIths 30 events/h 100.00 100.00 100.00 100.00 89.28 91.42

M3 (NREM Male)
AHIths 15 events/h 90.78 92.73 91.23 88.37 84.61 87.50
AHIths 30 events/h 100.00 100.00 100.00 93.54 84.00 89.28

M5 (REM Female)
AHIths 15 events/h 91.77 100.00 95.06 94.73 84.61 90.62
AHIths 30 events/h 100.00 100.00 100.00 91.66 85.00 87.50

M6 (REM Male)
AHIths 15 events/h 95.24 100.00 96.40 90.00 84.61 88.67
AHIths 30 events/h 100.00 100.00 100.00 96.55 83.33 90.56

Values are presented as percentages. AHIths = apnea-hypopnea index threshold, NREM = non-rapid eye movement, OSA = obstructive sleep apnea, 
REM = rapid eye movement.
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of which the optimum feature subset selection showed dif-
ferences between females and males. Although model M2 
often selected the entropy of MFCC coefficients, model M3 
considered skewness of MFCC coefficients (Figure 3A and 
Figure 3C).

Clinical Attributes of Predicted OSA in NREM 
and REM Sleep
Our analysis showed that when M5 (trained using AHIths 15 
events/h) was used as ground truth to divide subjects into OSA 
and non-OSA groups, then the systolic blood pressure (SBP) 
in the two groups were significantly different (ANOVA test 
P = .01, see Figure 4). However, this was not true for the cor-
responding model for male subjects (ie, M6). The nonoverlap-
ping comparison intervals in Figure 4A represent a significant 
difference (F statistics of morning SBP = 5.53 and P = .026). 
The female subjects having REM OSA at AHIths 15 events/h, 
according to M5, tended to have higher SBP (by at least 16 
mmHg) than the female subjects in the non-OSA group at 
AHIths 15 events/h. This was consistent for morning and eve-
ning SBP as well.

When results of M2 and M3 were used as ground truth to 
divide the subjects into OSA and non-OSA groups at AHIths 30 
events/h, the ArIs of the male subjects were significantly differ-
ent (see Figure 5). Other clinical parameters that showed simi-
lar significant difference between two groups were minimum 
SpO2 (ie, M2) and age (ie, M2). Table 6 shows the ANOVA test 
result for all the models and clinical parameters.

Comparative Efficacy of Models Using Automated 
Versus PSG-Based NREM/REM Labeling
The models M1, M2, M3, M4, M5, and M6 were redesigned to 
evaluate the performances of automated labeling of NREM/
REM snores against the technician-scored sleep stages from 
PSG studies using a subset of 63 out of 91 patients. Table 7 
presents these results obtained after LOOCV iterations. The 
results in Table 7 show no significant difference between the 
automated and the PSG-based snore labelling approaches. 
Overall, the model M5 using automatically labeled REM 
snores from female patients estimated slightly better (ie, 4% to 
8% higher accuracy) than the PSG-based labeling.

DISCUSSION

In this paper, we have demonstrated that snoring sounds alone 
can be used to estimate OSA severity in NREM and REM sleep 
with 88% to 91% accuracy. This is similar to our previous ob-
servation in OSA/non-OSA classification,25,42 where separate 
sex-based models showed an improvement in the classification. 
In order to investigate sex influence on our models in predicting 
OSA in NREM and REM sleep, we designed separate models 
for females and males. We observed that designing sex-specific 
models improved the classification accuracy from 82% to 85% 
to 87% to 91% for OSA prediction in REM sleep and from 80% 
to 86% to 88% to 91% for OSA prediction in NREM sleep. The 
improvement in model performance after sex consideration 

Figure 4—Comparison of SBP between females and males.

A comparison of SBP levels between females and males with REM AHI > 15 and < 15 events/h when REM AHI range was predicted by the models M5 
(REM female) and M6 (REM male). SBP was measured in the morning after (A, B) and the evening before (C, D) the PSG study. Circles indicate the group 
means of one-way ANOVA tests and the horizontal lines indicate the comparison interval. F statistics represent the ratio of mean squared error of within 
group variation and between group variation of SBP. The P is the level of statistical significance of the difference between group means. If the differences 
are significant, then the horizontal lines are disjointed and P < .05. The lines overlap if the difference is insignificant and P > .05. AHI = apnea-hypopnea 
index, ANOVA = analysis of variance, PSG = polysomnography, REM = rapid eye movement, SBP = systolic blood pressure.
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Table 6—ANOVA test outcomes.
Model M2 (NREM Female) Model M5 (REM Female)

AHIths 15 events/h AHIths 30 events/h AHIths 15 events/h AHIths 30 events/h
F P F P F P F P

Age 2.32 .14 1.36 .25 5.99 .02 5.15 .03
BMI 3.51 .07 17.51 .00 0.51 .48 0.62 .44
ESS 0.25 .62 0.01 .92 1.31 .26 0.75 .39
SBP (evening) 7.97 .01 0.86 .36 7.61 .01 3.03 .09
SBP (morning) 3.92 .06 0.04 .85 5.53 .03 0.69 .41
ArI 8.41 .01 22.74 .00 4.59 .04 1.94 .17
Min. SpO2 6.59 .01 2.59 .22 4.66 .04 7.90 .01

Model M3 (NREM Male) Model M6 (REM Male)
AHIths 15 events/h AHIths 30 events/h AHIths 15 events/h AHIths 30 events/h
F P F P F P F P

Age 2.46 .12 3.40 .07 0.13 .72 0.58 .45
BMI 0.06 .82 0.62 .43 0.03 .87 0.03 .87
ESS 0.40 .53 0.02 .90 1.66 .20 0.59 .45
SBP (evening) 0.00 .97 0.45 .50 0.07 .79 0.92 .34
SBP (morning) 0.60 .44 2.95 .09 0.08 .78 0.14 .71
ArI 12.61 .00 40.51 .00 2.63 .11 13.84 .00
Min. SpO2 4.44 .04 7.92 .01 0.35 .56 0.38 .54

ANOVA test outcomes of clinical parameters of models to predict OSA in NREM and REM sleep at AHIths 15 and 30 events/h. F and P are the test statistics 
and significance of one-way ANOVA test. AHIths = apnea-hypopnea index threshold, ANOVA = analysis of variance, ArI = arousal index, BMI = body mass 
index, ESS = Epworth Sleepiness Scale, Min. SpO2 = minimum oxygen desaturation during an apnea or hypopnea event, SBP = systolic blood pressure 
(measured in the evening and morning).

Figure 5—Comparison of ArI between females and males.

Comparison of ArI between females and males during NREM and REM sleep as categorized by our sex-specific models M2 (NREM female) (A), M3 
(NREM male) (B), M5 (REM female) (C), and M6 (REM male) (D). Mean and comparison intervals are indicated as circles and horizontal lines, respectively. 
F statistics and P indicate the test statistics and the significance level of one-way ANOVA testing between groups. An overlap between the comparison 
intervals and P > .05 indicates that the means of the two groups are not statistically significant; for significance, the two intervals should remain disjointed with 
P < .05. AHI = apnea-hypopnea index, ANOVA = analysis of variance, ArI = arousal index, NREM = non-rapid eye movement, REM = rapid eye movement.
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may be associated with sex-specific differences in the upper 
airway (both structural and functional) and variation in clini-
cal presentation of OSA in females and males.43 This warrants 
further study with a much larger dataset.

To the best of our knowledge, this is the first attempt of detect-
ing NREM and REM snores in patients with OSA and deploy-
ing such information to estimate the presence of OSA at different 
AHIths in NREM and REM sleep. Other studies have investigated 
snoring sound characteristics in different sleep states,44–46 but did 
not use the information to estimate the respective AHI. These 
studies were either limited to descriptive statistics of snore fea-
tures44 or included a limited dataset without independent valida-
tion of the findings.45,46 Our approach in this study has applied 
an automatic technique to separate NREM and REM snores that 
were tested on an independent dataset reporting 81% accuracy.35 
Using acoustic features of these snores and a trained LRM, our 
results suggest that such an approach can reliably detect OSA in 
NREM and REM sleep at AHIths 15 and 30 events/h.

The major novelty of our approach is that we used snore 
sounds acquired with sensors that do not need to be attached 
to the patient (bedside microphones) to estimate OSA severity 
in NREM and REM sleep. Currently, these data are only able 
to be collected by type 1 and type 2 devices21 that use a host of 
body contact bioelectrodes such as electroencephalography,47 
electromyography, and electro-oculography. Type 3 and type 
4 devices meant for portable monitoring typically avoid such 
sensors because of difficulties in deployment and reliable data 
acquisition in the absence of a sleep technologist to monitor 
the process. Our approach makes it possible to estimate AHI 
in NREM and REM sleep through a fully automated process 
using sensors that are free from difficulties faced by those that 
must be in contact with the patient.

Separate indices for OSA severity in NREM and REM sleep 
have clinical importance. Several recent studies have reported 
that obstructive apnea and hypopnea events that occur during 
REM sleep are linked to prevalent hypertension,4,5 nondipping 
of nocturnal BP,3 and diabetes.48 Hence, the diagnosis of OSA 
and its subsequent treatment require both the overall AHI as 
well as the AHI in NREM and REM sleep. All the snore-based 
OSA detection techniques proposed in the past were designed 
to identify only the overall severity of OSA in patients. With-
out data that also provide the patient’s AHI in NREM and 
REM sleep, clinicians cannot make a fully informed decision 
about their patient’s care.

We observed that the SBP in females with OSA in REM 
sleep, identified by model M5, at AHIths 15 events/h was sig-
nificantly higher (P < .05) than that in males (see Table 6). This 
can be related to earlier reports that hypertension and other 
comorbidities are more common in females (P < .0001).43 This 
could be possibly linked to the findings that females exhibit 
higher AHI in REM sleep than males.43,49 However, we rec-
ognize that further analysis on a larger population is needed 
before a firm conclusion can be reached.

One limitation of the current study is the dependency of 
our method on the availability of snores during NREM and 
REM sleep. Snoring sound is quite common in patients with 
OSA,22,23 but a very small percentage of patients with OSA do 
not snore.50 Our method cannot be used on such patients.

ABBRE VI ATIONS

AHI, apnea-hypopnea index
ANOVA, analysis of variance 

Table 7—A comparison between the performances of models for NREM/REM OSA classification in 63 females and males 
using NREM and REM snores as identified by the PSG data and an HNN model.35

Model
PSG HNN

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

M1 (NREM)
AHIths 15 events/h 86 83 85 84 85 84
AHIths 30 events/h 88 89 89 88 92 90

M2 (NREM Female)
AHIths 15 events/h 92 80 87 85 83 84
AHIths 30 events/h 75 89 87 75 95 92

M3 (NREM Male)
AHIths 15 events/h 87 88 87 87 88 87
AHIths 30 events/h 90 94 92 90 89 89

M4 (REM)
AHIths 15 events/h 89 83 88 75 79 76
AHIths 30 events/h 88 92 90 81 75 78

M5 (REM Female)
AHIths 15 events/h 83 83 83 100 80 91
AHIths 30 events/h 86 82 83 100 79 87

M6 (REM Male)
AHIths 15 events/h 80 83 81 85 78 83
AHIths 30 events/h 100 100 100 94 83 89

Values presented as percentages. AHIths = apnea-hypopnea index threshold, HNN = hierarchical neural network, NREM = non-rapid eye movement, 
OSA = obstructive sleep apnea, PSG = polysomnography, REM = rapid eye movement.
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ArI, EEG arousal index
BMI, body-mass index
BP , blood pressure
ESS, Epworth sleepiness scale
FF, formant frequency 
HNN, hierarchical neural network 
LOOCV, leave-one patient-out cross-validation 
LRM, logistic regression model
MFCC, Mel frequency cepstral coefficient 
NC, neck circumference
NGS, non-Gaussianity score 
NREM, non-rapid eye movement
NREM AHI, apnea-hypopnea index in NREM sleep
OSA, obstructive sleep apnea
PSG , polysomnography
REM , rapid eye movement 
REM AHI, apnea-hypopnea index in REM sleep
SBP, systolic blood pressure
SD, standard deviation
SFS, sequential feature selection
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