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Summary

When speaking, we dynamically coordinate movements of our jaw, tongue, lips, and larynx. To 

investigate the neural mechanisms underlying articulation, we used direct cortical recordings from 

human sensorimotor cortex while participants spoke natural sentences that included sounds 

spanning the entire English phonetic inventory. We used deep neural networks to infer speakers’ 

articulator movements from produced speech acoustics. Individual electrodes encoded a diversity 

of articulatory kinematic trajectories (AKTs), each revealing coordinated articulator movements 

toward specific vocal tract shapes. AKTs captured a wide range of movement types, yet they could 

be differentiated by the place of vocal tract constriction. Additionally, AKTs manifested out-and-

back trajectories with harmonic oscillator dynamics. While AKTs were functionally stereotyped 

across different sentences, context-dependent encoding of preceding and following movements 

during production of the same phoneme demonstrated the cortical representation of coarticulation. 

Articulatory movements encoded in sensorimotor cortex give rise to the complex kinematics 

underlying continuous speech production.
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Introduction

To speak fluently, we perform an extraordinary movement control task by engaging nearly 

100 muscles to rapidly shape and reshape our vocal tract to produce successive speech 

segments to form words and phrases. The movements of the articulators—lips, jaw, tongue, 

and larynx—are precisely coordinated to produce particular vocal tract patterns (Fowler et 

al., 1980; Bernstein, 1967). Previous research that has coded these movements by linguistic 

features (e.g. phonemes—well studied units of sound) has found evidence that the neural 

encoding in the ventral sensorimotor cortex (vSMC) is related to the presumed kinematics 

underlying speech sounds (Bouchard, et al., 2013, Lotte et al., 2015, Carey et al., 2017). 

However, there are two key challenges that have precluded a complete understanding of how 

vSMC neural populations represent the actual articulatory movements underlying speech 

production.

The first challenge is to move beyond the experimentally convenient approach, taken in most 

studies, of studying the vSMC during isolated speech segments (Grabski et al., 2012, 

Bouchard, et al., 2013, Carey et al., 2017), towards studying the richer, complex movement 

dynamics in natural, continuous speech production. The second challenge is to go beyond 

categorical linguistic features (e.g. phonemes or syllables), towards describing the precise 

representations of movement, that is, the actual speech kinematics. Overcoming these 

challenges is critical to understanding the fluid nature of speech production. While speech is 

often described as the combination of discrete components with local invariances (i.e. vocal 

tract gestures (Browman & Goldstein, 1989) or phonemes), at any given time, the 

articulatory movements underlying the production of a speech segment may be influenced 

by previous and upcoming speech segments (known as coarticulation) (Hardcastle & Hewitt, 

1999). For example, in “cool,” lip rounding necessary for /u/ is also present in /k/ while in 

“keep” /k/ is palatalized in anticipation of /i/. A central question remains as to whether 

cortical control invokes combinations of these primitive movement patterns to perform more 

complicated tasks (Bernstein, 1967, Bizzi et al., 1991, Bizzi & Cheung, 2013).

To address these challenges, we recorded high-density intracranial electrocorticography 

(ECoG) signals while participants spoke aloud full sentences. Our focus on continuous 

speech production allowed us to study the dynamics and coordination of articulatory 

movements not well captured during isolated syllable production. Furthermore, since a wide 

range of articulatory movements is possible in natural speech, we used sentences to cover 

nearly all phonetic and articulatory contexts in American English. Our approach allowed us 

to characterize sensorimotor cortical activity during speech production in terms of vocal 

tract movements.

A major obstacle to studying natural speech mechanisms is that the inner vocal tract 

movements can only be monitored for extended durations with specialized tools for tracking 

tongue movements with high spatial and temporal resolution, most of which are not 

practically compatible with intracranial recordings nor suitable for capturing naturalistic 

speech patterns. We overcame this obstacle by developing a statistical approach to derive the 

vocal tract movements from the produced acoustics. Then, we used the inferred articulatory 
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kinematics to determine the neural encoding of articulatory movements, in a manner that 

was model independent and agnostic to pre-defined articulatory and acoustic patterns used in 

speech production (e.g. phonemes, gestures, etc.). By learning how combinations of 

articulator movements mapped to electrode activity, we estimated articulatory kinematic 

trajectories (AKTs) for single electrodes, and characterized the heterogeneity of movements 

that were represented through the speech vSMC.

Results

Inferring articulatory kinematics

To estimate the articulatory kinematics during natural speech production, we built upon 

recent advances in acoustic-to-articulatory inversion (AAI) to obtain reliable estimates of 

vocal tract movements from only the produced speech acoustics (Richmond, 2001; Afshan et 

al., 2015, Mitra et. al., 2017). While existing methods for AAI work well in situations where 

simultaneously recorded acoustic and articulatory data are available to train for the target 

speaker, there are few successful attempts for AAI in which no articulatory data is available 

from the target speaker. Specifically for this purpose, we developed an approach for 

Speaker-Independent Acoustic-to-Articulatory Inversion (AAI). We trained the AAI model 

using publicly available multi-speaker articulatory data recorded via Electromagnetic 

Midsagittal Articulography (EMA), a reliable vocal tract imaging technique well suited to 

study articulation during continuous speech production (Berry, 2011). The training dataset 

comprised simultaneous recordings of speech acoustics and EMA data from 8 participants 

reading aloud sentences from the MOCHA-TIMIT dataset (Wrench, 1999; Richmond, et. 

al., 2011). EMA data for a speech utterance consisted of six sensors that tracked the 

displacement of articulators, critical to speech articulation (Figure 1A) in the caudo-rostral 

(x) and dorso-ventral (y) directions. We approximated laryngeal function by using the 

fundamental frequency (f0) of produced acoustics and whether or not the vocal folds were 

vibrating (voicing) during the production of any given segment of speech. In all, a 13 

dimensional feature vector described articulatory kinematics at each time point (Figure 1B).

We modified the deep learning approach by Liu et. al., 2015 by incorporating phonological 

context to capture context dependent variance. Additionally, we spectrally warped training 

speakers to sound like the target (or test) speaker to improve cross-speaker generalizability 

(Toda et al., 2007). With these modifications, our AAI method performed markedly better 

than the current state-of-the-art methods within the speaker independent condition, and 

proved to be a reliable method to estimate articulatory kinematics. Using leave-one-

participant-out cross validation, the mean correlation of inferred trajectories with ground 

truth EMA for a held out test participant was 0.68 ± 0.11 across all articulators and 

participants (0.53 correlation reported by Afshan et al., 2015). Figure 1B shows the inferred 

and ground truth EMA traces for each articulator during an example utterance for an unseen 

test speaker. There was a high degree of correlation across all articulators between the 

reference and inferred movements. Figure S1A shows a detailed breakdown of performance 

across each of the 12 articulators.

To investigate the ability of our AAI method to infer acoustically relevant articulatory 

movements, we trained identical deep recurrent networks to perform articulatory synthesis, 
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i.e., predicting the acoustic spectrum (coded as 24 dimensional mel-cepstral coefficients and 

energy) from articulatory kinematics, for both the real and inferred EMA. We found on 

average that there was no significant difference (p=.4, Figures S1B and C) in the resulting 

acoustic spectrum of unseen utterances when using either the target speaker’s real EMA or 

those inferred via from the AAI method. This suggests that the difference between inferred 

and real EMA may largely be attributed to kinematic excursions that do not have significant 

acoustic effects. Other factors may also include differences in sensor placement, acquisition 

noise, and other speaker/recording specific artifacts that may not have acoustic relevance.

To further validate the AAI method, we examined how well the inferred kinematics 

preserved phonetic structure. To do so, we analyzed the phonetic clustering resulting from 

both real and inferred kinematic descriptions of phonemes. For one participant’s real and 

inferred EMA, a 200 millisecond window of analysis was constructed around the kinematics 

for each phoneme onset. We then used linear discriminant analysis (LDA) to model the 

kinematic differences between phonemes from the real EMA data. We projected the both 

real and inferred EMA data for phonemes into this two dimensional LDA space to observe 

the relative differences in phonetic structure between real and inferred EMA. We found that 

the phonetic clustering and relative distances between phonemes centroids were largely 

preserved (Figure 1C) between inferred and real kinematic data (correlation r = 0.97 for 

consonants and 0.9 for vowels, p<.001). Together, these results demonstrate that using 

kinematic, acoustic, and linguistic metrics, it is possible to obtain high-resolution 

descriptions of vocal tract movements from easy-to-record acoustic data.

Encoding of articulatory kinematic trajectories at single vSMC electrodes

Using AAI, we inferred vocal tract movements as traces from EMA sensor locations (Figure 

1A) while participants read aloud full sentences during simultaneous recording of acoustic 

and high-density intracranial electrocorticography signals. To describe the relationship 

between vocal tract dynamics and sensorimotor cortical activity, we used a trajectory 

encoding model (Saleh et al., 2012) to predict each electrode’s high gamma (70 – 150 Hz) 

activity (z-scored analytic amplitude) (Crone et al., 2001) as a weighted sum of articulator 

kinematics over time. Similar to models describing spectro-temporal receptive fields 

(Theunissen et al., 2001), a widely used tool to describe acoustic selectivity, we used ridge 

regression to model high gamma activity for a given electrode from time-varying estimated 

EMA sensor positions. In Figure 2, we show for an example electrode (Figure 2A), the 

weights learned (Figure 2C) from the linear model act as a spatio-temporal filter that we 

then convolved with articulator kinematics (Figure 2B) to predict electrode activity (Figure 

2D).

The resulting filters described specific patterns of articulatory kinematic trajectories (AKTs) 

(Figure 2C), which are the vocal tract dynamics that best explain each electrode’s activity. 

By validating on held-out data, we found that the AKT model significantly explained neural 

activity for electrodes active during speech in the vSMC (108 electrodes across 5 

participants, mean r = 0.25 ± 0.08 up to 0.5, p<.001) compared to AKT models constructed 

for electrodes in other anatomical regions (p<.001, Wilcoxon signed rank tests, Figure S7).
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To provide a more intuitive understanding of these filters, we projected the X and Y 

coordinates of each trajectory onto a midsagittal schematic view of the vocal tract (Figure 

2E). Each trace represents a kinematic trajectory of an articulator with a line that thickens 

with time to illustrate the time course of the filter. For the special case of the larynx, we did 

not estimate actual movements because they are not measured with EMA, and therefore used 

voicing-related pitch modulations that were represented along the y-axis with the x-axis 

providing a time course for visualization.

We observed a consistent pattern across articulators where each exhibited a trajectory that 

moved away from the starting point in a directed fashion before returning to the starting 

point. The points of maximal movement describe a specific functional vocal tract shape 

involving the coordination of multiple articulators. For example, the AKT (Figure 2E) for 

the electrode in Figure 2A exhibits a clear coordinated movement of the lower incisor and 

the tongue tip in making a constriction at the alveolar ridge. Additionally, the tongue blade 

and dorsum move frontward to facilitate the movement of the tongue tip. The upper and 

lower lips remain open and the larynx is unvoiced. The vocal tract configuration corresponds 

to the classical description of an alveolar constriction (e.g., production of /t/, /d/, /s/, /z/, 

etc.). The tuning of this electrode to this particular phonetic category is apparent in Figure 

2D, where both the measured and predicted high gamma activity increased during the 

productions /st/, /dɪs/, and /nz/, all of which require an alveolar constriction of the vocal 

tract.

While vocal tract constrictions have typically been described as the action of one primary 

articulator, the coordination among multiple articulators is critical for achieving the intended 

vocal tract shape (Kelso, et al., 1984). For example, in producing a /p/, if the lower lip moves 

less than it usually does (randomly, or because of an obstruction) the upper lip compensates 

and the lip closure is accomplished (Abbs & Gracco, 1984). This coordination may arise 

from the complex and highly overlapping topographical organization of articulator 

representation in the vSMC (Meier et al., 2008, Grabski et al., 2012). We asked whether, like 

the coordinated limb movements encoded motor cortex (Aflalo & Graziano, 2006; Saleh et 

al., 2012), the encoded AKTs were the result of coordinated articulator movements. 

Alternatively, high gamma activity could be related to a single articulator trajectory with the 

rest of articulators representing irrelevant correlated movements. To evaluate these 

hypotheses, we used a cross-validated, nested regression model to compare the neural 

encoding of a single articulator trajectory with the AKT model. Here, we refer to one 

articulator as one EMA sensor. The models were trained on 80% of the data and tested on 

the remaining 20% data. For each electrode, we fit single articulatory trajectory models 

using both X and Y directions for each estimated EMA sensor and chose the single 

articulator model that performed best for our comparison with the AKT model. Since each 

single articulator model is nested in the full AKT model, we used a general linear F-test to 

determine whether the additional variance explained by adding the rest of the articulators at 

the cost of increasing the number of parameters was significant. After testing each electrode 

on the data held-out from the training set, we found that the multi-articulatory patterns 

described by the AKT model explained significantly more variance compared to the single 

articulator trajectory model (F(280, 1820)>1.31, p <.001 for 96 of 108 electrodes, mean F-

statistic=6.68, p<.001, Wilcoxon signed rank tests, Figure S3, mean change in R2: 99.55% 
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± 8.63%, Figure S4). This means that activity of single electrodes is more related to vocal 

tract movement patterns involving multiple articulators than those of a single articulator.

One potential explanation for this result is that single electrode neural activity in fact 

encodes the trajectory of a single articulator, but could appear to be multi-articulatory 

because of the correlated movements of other articulators due to the biomechanical 

properties of the vocal tract. While we would expect some coordination among articulator 

movements due to the intrinsic dynamics of the vocal tract, it is possible that further 

coordination could be cortically encoded. To evaluate these hypotheses, we examined the 

structure of correlations among articulators during periods of high and low neural activity 

for each speech-active electrode. If the articulator correlation structures were same 

regardless of electrode activity, the additional articulator movements were solely the result 

of governing biomechanical properties of the vocal tract. However, we found that articulator 

correlation structures differed according to whether high gamma activity was high or low 

(threshold at 1.5 standard deviations) (p<.001 for 108 electrodes, Bonferroni corrected) 

indicating that, in addition to coordination due to biomechanical properties of the vocal tract, 

coordination among articulators was reflected in changes of neural activity. Contrary to 

popular assumptions of a one-to-one relationship between a given cortical site and 

articulator in the homunculus, these results demonstrate that, similar to cortical encoding of 

coordinated movements in limb control (Saleh, et al., 2012), neural activity at a single 

electrode encodes the specific, coordinated trajectory of multiple articulators.

Kinematic organization of vSMC

In our previous work, we used hierarchical clustering of electrode selectivity patterns to 

reveal the phonetic organization of the vSMC (Bouchard et al., 2013). We next wanted to 

examine whether clustering based upon all encoded movement trajectories, i.e. grouping of 

kinematically similar AKTs, yielded similar organization. Because the AKTs were mostly 

out-and-back in nature, we extracted the point of maximal displacement for each articulator 

along their principal axis of movement (see methods) to concisely summarize the kinematics 

of each AKT. We used hierarchical clustering to organize electrodes by their condensed 

kinematic descriptions (Figure 3A). To interpret the clusters in terms of phonetics, we fit a 

phoneme encoding model for each electrode. Similar to the AKT model, electrode activity 

was explained as a weighted sum of phonemes in which the value each phoneme was either 

1 or 0 depending on whether it was being uttered at a given time. For each electrode, we 

extracted the maximum encoding weight for each phoneme. The encoded phonemes for each 

electrode were shown in the same order as the kinematically clustered electrodes (Figure 

3B).

There was a clear organizational structure that revealed shared articulatory patterns among 

AKTs. The first level organized AKTs by their direction of jaw movement (lower incisor 

goes up or down). Sub-levels manifested four main clusters of AKTs with distinct 

coordinative articulatory patterns. The AKTs in each cluster were averaged together yielding 

a representative AKT for each cluster (Figure 3C). Three of the clusters described 

constrictions of the vocal tract: coronal, labial, and dorsal, which broadly cover all 
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consonants in English. The other cluster described a vocalic (vowel) AKT involving 

laryngeal activation and a jaw opening motion.

Instead of distributed patterns of electrode activity representing individual phonemes, we 

found that electrodes exhibited a high degree of specificity towards a particular group of 

phonemes. Electrodes within each AKT cluster also primarily encoded phonemes that had 

the same canonically defined place of articulation. For example, an electrode within the 

coronal AKT cluster was selective for /t/, /d/, /n/, /ʃ/, /s/, and /z/, all of which have a similar 

place of articulation. However, there were differences within clusters. For instance, within 

the coronal AKT cluster (Figures 3A and B, green), electrodes that exhibited a 

comparatively weaker tongue tip movement (less purple) had phonetic outcomes less 

constrained to phonemes with alveolar places of constriction (less black for phonemes in 

green cluster).

Hierarchical clustering was also performed on the phoneme encoding weights to identify 

phoneme organization to both compare with and help interpret the clustering of AKTs. 

These results confirm our previous description of phonetic organization of the vSMC 

(Bouchard, et al., 2013), as phonetic features defined by place-of-articulation were 

dominant. We found a strong similarity in clustering when electrodes were described by 

their AKTs and phonemes (Figures 3A and B), which is not surprising given that AKTs 

reflected specific locations of vocal tract constrictions (Figure 3C).

We observed broad groupings of electrodes that were sensitive to place-of-articulation, but 

within those groupings, we found differences in encoding for manner and voicing in 

consonant production. Within the coronal cluster, electrode encoding weights were highest 

for fricatives, then affricates, and followed by stops (F(3) = 36.01, p < .001, ANOVA). 

Conversely, bilabial stops were more strongly encoded than labiodental fricatives (p < .001, 

Wilcoxon signed rank tests). Additionally, we found that consonants (excluding liquids) 

were clustered entirely separately from vowels. This is an important distinction from our 

previous work (Bouchard et al., 2013), where clustering was performed independently for 

the consonants and vowels in a CV syllable. Again, the vocalic AKTs were defined by both 

laryngeal action (voicing) and jaw opening configuration. Vowels were organized by three 

primary clusters which correspond to low vowels, mid/high vowels, and high front vowels.

To understand how kinematically and phonetically distinct each AKT cluster was from one 

another, we quantified the relationship between within-cluster and between-cluster 

similarities for each AKT cluster using the silhouette index as a measure of clustering 

strength (Figure S5). The degrees of clustering strength of AKT clusters for kinematic and 

phonetic descriptions were significantly higher compared to shuffled distributions indicating 

that clusters had both similar kinematic and phonetic outcomes (p < .01, Wilcoxon signed 

rank tests).

We also examined the anatomical clustering of AKTs across vSMC for each participant. 

While the anatomical clusterings for coronal and labial AKTs were significant (p < .01, 

Wilcoxon signed rank tests), clusterings for dorsal and vocalic AKTs were not. We found 

that only one participant had more than two dorsal AKT electrodes so we could not justly 
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quantify the clustering strength of this cluster. Furthermore, vocalic AKTs were not well 

clustered because two spatial locations (dorsal and ventral LMC) were found, as previously 

seen in Bouchard et al., 2013. To further investigate the anatomical locations of AKT 

clusters, we projected electrode locations from all participants onto a common brain (Figure 

4). Previous research has suggested that somatomotor maps of place of articulation are 

organized along the dorsal-ventral axis of the vSMC with labial constrictions were more 

dorsal and velar constrictions more ventral (Bouchard et al., 2013, Carey et al., 2017). We 

found that this coarse somatotopic organization was present for AKTs, which were spatially 

localized according to kinematic function and place of articulation. Since AKTs encoded 

coordinated articulatory movements, we did not find single articulator localization. For 

example, with detailed descriptions of articulator movements, we found lower incisor 

movements were not localized to a single region, but rather opening and closing movements 

were represented separately as seen in vocalic and coronal AKTs, respectively.

Damped oscillatory dynamics of trajectories

Similar to motor cortical neurons involved in limb control, we found that the encoded 

kinematic properties were time-varying trajectories (Hatsopoulos et al., 2007). However, in 

contrast to the variety of trajectory patterns found during limb control from single neurons, 

we observed that each AKT exhibited an out-and-back trajectory from single ECoG 

electrode recordings. To further investigate the trajectory dynamics of every AKT, we 

analyzed phase portraits (velocity and displacement relationships) for each articulator. In 

Figure 5A, we show the encoded position and velocity of trajectories of each articulator, 

along its principal axis of displacement, for AKTs of 4 example electrodes, each 

representative of a main AKT cluster. The trajectory of each articulator was determined by 

the encoding weights from each AKT. All trajectories moved outwards and then returned to 

the same position as the starting point with corresponding increases and decreases in 

velocity forming a loop. This was true even for articulators that only made relatively small 

movements. In Figure 5B, we show the trajectories for each articulator from all 108 AKTs, 

which again illustrate the out-and-back trajectory patterns. Trajectories for a given 

articulator did not exhibit the same degree of displacement, indicating a level of specificity 

for AKTs within a particular cluster. Qualitatively, we observed that trajectories with more 

displacement also tended to correspond with high velocities.

While each AKT specifies time-varying articulator movements, the governing dynamics 

dictating how each articulator moves, may be time-invariant. In articulator movement 

studies, the time-invariant properties of vocal tract gestures have been described by damped 

oscillatory dynamics (Saltzman & Munhall, 1989). Just like a pendulum, descriptors of 

movement (i.e. velocity and position) are related to one another independent of time. We 

found that there was a linear relationship between peak velocity and displacement for every 

articulator described by the AKTs (Figure 5C, r: 0.85, 0.77. 0.83, 0.69, 0.79, 0.83 in 

respective order, p < .001), demonstrating that AKTs also exhibited damped oscillatory 

dynamics. Furthermore, the slope associated with each articulator revealed the relative speed 

of that articulator. The lower incisor and upper lip moved the slowest (0.65 and 0.65 slopes) 

and the tongue varied in speed along the body with the tip moving fastest (0.66, 0.78, 0.99 

slopes, respectively). These dynamics indicate that an AKT makes a stereotyped trajectory 
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to form a single vocal tract configuration, a sub-syllabic speech component, acting as a 

building block for the multiple vocal tract configurations required to produce single 

syllables. While we were unable to dissociate whether the dynamical properties of single 

articulators were centrally planned or resulted from biomechanical properties of the vocal 

tract (Fuchs & Perrier, 2005), the velocity-position relationship strongly indicates that the 

AKT model encoded movements for each articulator corresponding to the intrinsic dynamics 

of continuous speech production.

Coarticulated kinematic trajectories

Some of the patterns observed in the detailed kinematics of speech result from interactions 

between successive vocal tract constrictions, a phenomenon known as coarticulation 

(Farnetani, 1997). Depending on the kinematic constraints of upcoming or previous vocal 

tract constrictions, some vocal tract constrictions may require anticipatory or carryover 

modifications to be optimally produced. Despite these modifications, each vocal tract 

constriction is often thought of as an invariant articulatory unit of speech production in 

which context-dependent kinematic variability results from the co-activation (i.e. temporal 

overlap) of vocal tract constrictions (Fowler, 1980; Browman & Goldstein, 1989; Saltzman 

& Munhall, 1989). We investigated whether the vSMC shared similar invariant properties by 

studying how vSMC representations of vocal tract AKTs interacted with one another during 

varying degrees of anticipatory and carryover coarticulation.

During anticipatory coarticulation, kinematic effects of upcoming phonemes may be 

observed during the production of the present phoneme. For example, consider the 

differences in jaw opening (lower incisor goes down) during the productions of /æz/ (as in 

‘has’) and /æp/ (as in ‘tap’) (Figure 6A). The production of /æ/ requires a jaw opening but 

the degree of opening is modulated by the upcoming phoneme. Since /z/ requires a jaw 

closure to be produced, the jaw opens less during /æz/ to compensate for the requirements 

of /z/. On the other hand, /p/ does not require a jaw closure and the jaw opens more during /

æp/. In each context, the jaw opens during /æ/, but to differing degrees based the 

compatibility of the upcoming movement.

To investigate whether anticipatory coarticulation is neurally represented, we investigated 

the change in neural activity during the production /æz/ and /æp/, two contexts with differing 

degrees of coarticulation. While vSMC activity at the electrode population level is biased 

towards surrounding contextual phonemes (Bouchard & Chang, 2014), we investigated the 

representation of coarticulation at single electrodes. We studied high gamma of an electrode 

that encoded a vocalic AKT, crucial for the production of /æ/ (high phonetic selectivity 

index for /æ/, see methods). In Figure 6B, the AKT for electrode 120, describes a jaw 

opening and laryngeal vocal tract configuration. Time locked to the acoustic onset of /æ/, 

high gamma for electrode 120 was higher during /æp/ than /æz/ (Figure 6C). To quantify this 

difference, we compared the median high gamma activity during 50 ms centered at point of 

peak discriminability for all phonemes (p<.05, Wilcoxon signed rank tests). We also found 

that the predicted high gamma from the AKT was similarly higher during /æp/ than /æz/ (p<.

001, Wilcoxon signed rank tests) (Figure 6D). For this electrode, we found that high gamma 
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activity reflected changes in kinematics, as predicted by the AKT, due to anticipatory 

coarticulation effects.

We then examined whether coarticulatory effects were present in all vSMC electrodes 

during all the anticipatory contexts of every phoneme. To quantify this effect, we fit a 

mixed-effects model to study how high gamma for a given electrode changed during the 

production of a phoneme with different following phonemes. In particular, we expected that 

for an electrode with an AKT heavily involved in producing a given phoneme, the kinematic 

compatibility of the following phoneme would be reflected in its peak high gamma. The 

model used cross-random effects to control for differences across electrodes and phonemes 

and a fixed effect of predicted high gamma from the AKT to describe the kinematic 

variability to which each electrode is sensitive. In Figure 6E, each line shows the 

relationship between high gamma and coarticulated kinematic variability for a given 

phoneme and electrode in all following phonetic contexts with at least 25 instances. For 

example, one line indicates how high gamma varied with the kinematic differences during /

tæ/, /tɑ/, …, /ts/, etc. Kinematic variability due to following phonemes was a significant 

effect of the model indicating that neural activity associated with particular articulatory 

movements is modulated by the kinematic constraints of the following articulatory context 

(β = 0.30, SE = 0.04, χ2(1) = 38.96, p = 4e–10).

In a similar fashion, we also investigated the neural representation of carryover articulation, 

in which kinematic effects of previously produced phonemes are observed. In Figure 6F, we 

again show two coarticulated contexts with varying degrees of compatibility: /æz/ (as in 

‘has’) and /iz/ (as in ‘ease’). /æ/ involves a large jaw opening while /i/ does not. However, in 

both contexts the jaw is equally closed for /z/ and the major difference between /æz/ and /iz/ 

is how much the jaw must move to make the closure. While the target jaw position for /z/ 

was achieved in both contexts, we found that for an electrode with a coronal AKT involved 

in producing /z/ (Figure 6G), the difference in high gamma reflected the kinematic 

differences between the two preceding phonemes (Figures 6H and I). Again, we used a 

mixed-effects model to examine the effects of carryover coarticulation in all vSMC 

electrodes to find that neural activity reflected carried-over kinematic differences in 

electrodes with AKTs for making the present phoneme (β = 0.32, SE = 0.04, χ2(1) = 42.58, 

p = 6e–11) (Figure 6J). These results indicate that electrodes involved in producing a 

particular vocal tract configuration reflect kinematic variability due to anticipatory and 

carryover coarticulation.

Comparison with other encoding models

To evaluate how well AKTs are encoded in the vSMC, we compared i) the AKT model’s 

encoding performance with respect to other cortical regions, and ii) vSMC encoding models 

for alternative representations of speech.

To determine how specific AKTs are to the vSMC, we compared AKT model performance 

(Pearson’s r on held-out data) of every cortical region recorded from across participants 

(Figure 7A). Besides electrodes from middle frontal gyrus (MFG) and pars orbitalis (n = 4), 

the AKT model significantly explained some of the variance for all recorded cortical regions 

above chance level (p<.001, Wilcoxon rank-sum test). However, for the considered 
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electrodes in this study (EIS)—i.e., the speech active electrodes in the vSMC—the AKT 

model explained neural activity markedly better than in other cortical areas (p<1e–15, 

Wilcoxon rank-sum test). The other cortical areas we examined were all previously shown to 

be involved in different aspects of speech processing: acoustic and phonological processing 

(STG & MTG) (Mesgarani et al., 2013), and articulatory planning (IFG) (Flinker et al., 

2015). Therefore, it was expected that cortical activity in these regions would have some 

correlation to the produced kinematics. The higher performance of the AKT model for EIS 

indicates that studying the neural correlates of kinematics may best focused in the vSMC.

While AKTs were best encoded in vSMC, there may be alternative representations of speech 

that may better explain vSMC activity. We evaluated vSMC encoding of both acoustics 

(described here by using the first three formants: F1, F2, and F3) and phonemes with respect 

to the AKT model. Each model was fit in the same manner as the AKT model and 

performance compared on held-out data from training. If each vSMC electrode represented 

acoustics or phonemes, we would expect a higher model fit for that representation than the 

AKT model. Due to the similarity of these representations, we expected the encoding 

models to be highly correlated. It is worth noting that the inferred articulator movements are 

unable to provide an account of movements without correlations to acoustically significant 

events, a key property that would be invaluable for differentiating between models. 

Furthermore, while acoustics and phonemes are both complete representations of speech, the 

midsagittal movements of a few vocal tract locations captured by EMA are a partial 

description of speech relevant movements of the vocal tract in that we are missing palate, 

lateral and oropharyngeal movements. Even so, we found that articulator movements were 

encoded markedly better than both the acoustic and phoneme encoding models despite the 

limitations of the AKT model (Figure 7B & C, p<1e–20, Wilcoxon rank-sum test).

These comparisons were consistent with previous findings that vSMC encoding is tuned to 

articulatory features (Bouchard et al., 2013; Cheung et al., 2015). During single vowel 

production, vSMC showed encoding of directly measured kinematics over phonemes and 

acoustics (Conant et al., 2018). Furthermore, vSMC is also responsible for non-speech 

voluntary movements of the lips, tongue, and jaw, in behaviors such as swallowing, kissing, 

oral gestures. While vSMC is critical for speech production, it is not the only vSMC 

function. Indeed, when vSMC is injured, patients have facial and tongue weakness, in 

addition to dysarthria. When vSMC is electrically stimulated, we observe movements -- not 

speech sounds, phonemes, or auditory sensations (Penfield & Boldrey, 1937; Breshears et 

al., 2015).

Decoding articulator movements

Given that we could determine encoding of AKTs at single electrodes, we next wanted to 

understand how well we could decode vocal tract movements from the population of 

electrodes. We decoded articulatory movements during sentence production with a long 

short-term memory recurrent neural network (LSTM), an algorithm well suited for time 

series regression (Hochreiter & Schmidhuber, 1997). The performance of the decoder was 

high, especially in light of the articulatory variance lost due to process of inferring 

kinematics and the neural variance unrecorded by the ECoG grid (i.e. within the central 
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sulcus or at a resolution finer than the capability of the electrodes). For an example sentence 

(Figure 8A), the predicted articulator movements from the decoder closely matched with the 

inferred articulator movements from the acoustics. All of the articulator movements were 

well predicted across 100 held-out sentences significantly above chance (mean r: 0.43, p<.

001) (Figure 8B). Prior work has demonstrated the possibility of decoding phonemes from 

ECoG recordings (Mugler et al., 2014) with automatic speech recognition techniques to 

decode full sentences (Herff et al., 2015) in addition to phrase classification with non-

invasive recordings (Wang et al. 2017). Here, we show that decoding articulator movements 

directly from neural signals may be an additional approach for decoding speech.

Discussion

Our goal was to demonstrate how neural activity in human sensorimotor cortex represents 

the movements of vocal tract articulators during continuous speech production. We used a 

novel acoustic-to-articulatory inversion (AAI) method to infer vocal tract movements, which 

we then related directly to high-resolution neural recordings. By describing vSMC activity 

with respect to detailed articulatory movements, we demonstrate that discrete neural 

populations encode articulatory kinematic trajectories (AKTs), a level of complexity that has 

not been observed using simpler syllable-level speech tasks in our previous work.

There are two important features of the AKTs that are encoded in the vSMC. First, encoded 

articulator movements are coordinated to make a specific vocal tract configuration. While 

the structure of coordination across articulators has been shown shown to be task-specific 

(e.g. different coordinative patterns during /p/ versus /z/) (Kelso et al., 1984), cortical control 

of this coordination has not been previously studied. However, studies in limb control have 

discovered single motor cortical neurons that encode complex coordinated movements 

involving both the arm and hand with specific functions (Aflalo & Graziano, 2006; Saleh et 

al., 2012). While previous studies have investigated vSMC activity on the basis of whether 

or not a given articulator is involved (Bouchard et al., 2013), we studied vSMC activity 

using detailed articulatory trajectories that suggest, similar to limb control, coordinated 

movements across articulators for specialized vocal tract configurations are encoded at the 

single electrode level. For example, the coordinated movement to close the lips is encoded 

rather than individual lip movements. This finding is consistent with studies where 

stimulation of localized neural populations in non-human primates has revealed functional 

action maps of complex arm and hand movements (Graziano et al., 2002). For speech, we 

found four major clusters of AKTs that were differentiated by place of articulation and 

covered the main vocal tract configurations that comprise American English. At the 

sampling level of ECoG, cortical populations encode sub-syllabic coordinative movements 

of the vocal tract.

The second important feature of AKTs is the trajectory profile itself. Encoded articulators 

moved in out-and-back trajectories with damped oscillatory dynamics. During limb control, 

single motor cortical neurons have been also found to encode time-dependent kinematic 

trajectories, but the patterns were very heterogeneous and did not show clear spatial 

organization (Hatsopoulos et al., 2007). It is possible that individual neurons encode highly 

specific movement fragments that combine together to form larger movements represented 
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by ensemble activity at the ECoG scale of resolution. For speech, these larger movements 

correspond to canonical vocal tract configurations. While motor cortical neurons encoded a 

variety of trajectory patterns, we found that AKTs only exhibited out-and-back profiles 

which may be a fundamental movement motif in continuous speech production.

With both coordinative and dynamical properties, each AKT appeared to encode the 

movement necessary to make a specific vocal tract configuration and return to a neutral 

position. Although we have described neural activity associated with articulatory movements 

without regard to any particular theory of speech production, the AKTs discovered here bear 

a striking resemblance to the vocal tract gestures theorized to be the articulatory units of 

speech production (Fowler et al., 1980; Browman & Goldstein, 1989). Each vocal tract 

gesture is described as a coordinated articulatory pattern to make a vocal tract constriction. 

Like the AKTs, each vocal tract gesture has been characterized as a time-invariant system 

with damped oscillatory dynamics (Saltzman and Munhall, 1989).

Articulatory theories suggest that each vocal tract gesture is an invariant unit and that the 

variability in the kinematics of continuous speech directly results from the temporal 

overlapping of successive gestures (Saltzman and Munhall, 1989). A particularly interesting 

phenomenon is that some vocal tract gestures are incompatible with one another in that the 

two vocal tract patterns require opposing movements of the articulators. This incompatibility 

results in a coarticulated compromise of target vocal tract patterns while compatible gestures 

are able to combine without inhibiting any necessary articulator movements (Farnetani, 

1991; Farnetani & Faber, 1992). Despite the theorized invariance of vocal tract gestures, we 

found that AKTs encoded in vSMC neural activity reflected kinematic differences due to 

constraints of the phonetic or articulatory context. While the invariant properties of vocal 

tract gestures may be represented elsewhere in higher order speech processes, the AKTs 

encoded in the vSMC represent coarticulation of successive AKTs.

The neural encoding of coarticulation also suggests that the vSMC does not locally encode 

phonemes. Phonemes by definition are segmental, perceptually defined, discrete units of 

sound. We would expect that an electrode encoding a particular set of phonemes as features 

would exhibit the same patterns of activation during the production of the same phoneme 

regardless of preceding or following phonemes and the accompanying kinematic constraints. 

However, we found that not only was there a difference in neural activity between 

productions of the same phoneme in different contexts, but also that the differences in 

kinematics partially explained the changes in neural activity. Furthermore, a direct 

comparison showed that AKTs were better encoded than both phoneme and acoustic models 

at single electrodes. We find the neural encoding of coarticulation to offer compelling 

support for AKTs as dominant features encoded in the speech sensorimotor cortex.

In summary, we described the cortical encoding of the movements underlying the rich 

dynamics of continuous speech production. These findings paint a new picture about the 

cortical basis of speech, and perhaps other sequential motor tasks. Coordinated articulator 

trajectories are locally encoded and fluidly combine while taking into account the 

surrounding movement context to produce the wide range of vocal tract movements we 

require to communicate. The insights gained by understanding the vSMC in terms of 
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articulatory movements will help frame new questions of higher order planning and its 

realization as speech, or more broadly, movement.

STAR Methods

CONTACT FOR RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Edward Chang (Edward.Chang@ucsf.edu).

EXPERIMENTAL MODEL AND PARTICIPANT DETAILS

Participants—Five human participants (Female, ages: 30, 31, 43, 46, 47) underwent 

chronic implantation of high-density, subdural electrode array over the lateral surface of the 

brain as part of their clinical treatment of epilepsy (2 left hemisphere grids, 3 right 

hemisphere grids). Participants gave their written informed consent before the day of the 

surgery. No participants had a history of any cognitive deficits that were relevant to the aims 

of the present study. All participants were fluent in English. All procedures were approved 

by the University of California, San Francisco Institutional Review Board.

METHOD DEAILS

Experimental Task—Participants read aloud 460 sentences from the MOCHA-TIMIT 

database (Wrench, 1999). Sentences were recorded in 9 blocks (8 of 50, and 1 of 60 

sentences) spread across several days of patients’ stay. Within each block, sentences are 

presented on a screen, one at a time, for the participant to read out. The order was random 

and participants were given a few seconds of rest in between. MOCHA-TIMIT is a sentence-

level database, a subset of the TIMIT corpus designed to cover all phonetic contexts in 

American English. Each participant read each sentence 1–10 times. Microphone recordings 

were obtained synchronously with the ECoG recordings.

Data acquisition and signal processing—Electrocorticography was recorded with a 

multi-channel amplifier optically connected to a digital signal processor (Tucker-Davis 

Technologies). Speech was amplified digitally and recorded with a microphone 

simultaneously with the cortical recordings. ECoG electrodes were arranged in a 16 × 16 

grid with 4 mm pitch. The grid placements were decided upon purely by clinical 

considerations. ECoG signals were recorded at a sampling rate of 3,052 Hz. Each channel 

was visually and quantitatively inspected for artifacts or excessive noise (typically 60 Hz 

line noise). The analytic amplitude of the high-gamma frequency component of the local 

field potentials (70 – 150 Hz) was extracted with the Hilbert transform and down-sampled to 

200 Hz. Finally, the signal was z-scored relative to a 30 second window of running mean and 

standard deviation, so as to normalize the data across different recording sessions. We 

studied high-gamma amplitude because it has been shown to correlate well with multi-unit 

firing rates and has the temporal resolution to resolve fine articulatory movements (Crone et 

al., 2006).

Phonetic and phonological transcription—For the collected speech acoustic 

recordings, transcriptions were corrected manually at the word level so that the transcript 
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reflected the vocalization that the participant actually produced. Given sentence level 

transcriptions and acoustic utterances chunked at the sentence level, hidden Markov model 

based acoustic models were built for each participant so as to perform sub-phonetic 

alignment (Prahallad et. al., 2006). Phonological context features were also generated from 

the phonetic labels, given their phonetic, syllabic and word contexts.

Speaker-Independent Acoustic-to-Articulatory Inversion (AAI)—To perform 

articulatory inversion for a target participant for whom only acoustic data is available, we 

developed a method, we refer to as “Speaker-Independent AAI”, where parallel EMA and 

speech data were simulated for the target speaker. In contrast to earlier approaches for 

speaker-independent AAI, where normalization is performed to remove speaker identity 

from acoustics, we accomplished the opposite goal of transforming the 8 EMA participants’ 

spectral properties to match those of the target speaker for whom we want to estimate vocal 

tract kinematics. To transform the acoustics of all data to the target speaker, we applied voice 

conversion (as proposed in Toda et al., 2007) to transform the spectral properties of each 

EMA speaker to match those of the target participant. This method assumes acoustic data 

corresponding to the same sentences for the two participants. When parallel acoustic data 

was not available across participants in our case (the mngu0 corpus uses a different set of 

sentences than the MOCHA-TIMIT corpus), concatenative speech synthesis were used to 

synthesize comparable data across participants (Hunt and Black ‘94).

Since there was no information about the target speaker’s kinematics, we back off to using a 

participant and articulator normalized average of the 8 speakers’ articulatory space. For 

cross-participant utilization of kinematic data, for each of the training speakers, we use an 

articulator specific z-scoring across each participant’s EMA data. This ensured that the 

target speaker’s kinematics were an unbiased average across all available EMA participants. 

The kinematics were described by 13 dimensional feature vectors (12 dimensions to 

represent X and Y coordinates of 6 vocal tract points and fundamental frequency, F0, 

representing the Laryngeal function).

We used 24 dimensional mel-cepstral coefficients as the spectral features. Both kinematics 

and acoustics were sampled at a frequency 200 Hz (each feature vector represented a 5 ms 

segment of speech). Additionally, phonetic and phonological information corresponding to 

each frame of speech was coded as one-hot vectors and padded onto the acoustic features. 

These features included phoneme identity, syllable position, word part of speech, positional 

features of the current and of the neighboring phoneme and syllable states. We found that 

contextual data provided complementary information to acoustics and improved inversion 

accuracies.

Using these methods for each EMA participant-to-target participant pair, we were able to 

create a simulated dataset of parallel speech and EMA data, that were both customized for 

the target participant. For training the inversion model itself, we used a deep recurrent neural 

network based articulatory inversion technique (replicating Liu. et al., 2015) to learn a 

mapping from spectral and phonological context to a speaker generic articulatory space. 

Following (Liu., et. al., 2015) an optimal network architecture with a 4 layer deep recurrent 

network with two feedforward layers (200 hidden nodes) and two bidirectional LSTM layers 

Chartier et al. Page 15

Neuron. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(with 100 LSTM cells) was chosen. The trained inversion model was then applied to all 

speech produced by the target participant to infer articulatory kinematics in the form of 

Cartesian X and Y coordinates of articulator movements. The network was implemented 

using Keras (Chollet et. al., 2015), a deep learning library running on top of a Tensorflow 

backend.

Electrode selection—We selected electrodes located on either the precentral and 

postcentral gyri that had distinguishable high gamma activity during speech production. We 

measured the separability of phonemes using the ratio of between-class to within-class 

variability (F statistic) for a given electrode across time. We chose electrodes with a 

maximum F statistic of 8 or greater. This resulted in a total of 108 electrodes across the 5 

participants with robust activity during speech production.

Encoding models—To uncover the kinematic trajectories represented in electrodes, we 

used linear encoding models to describe the high gamma activity recorded at each electrode 

as a weighted sum of articulator kinematics over time. This model is similar to the 

spectrotemporal receptive field, a model widely used to describe selectivity for natural 

acoustic stimuli (Theunissen et al., 2001). However, in our model, articulator X and Y 

coordinates are used instead spectral components. The model estimates the time series xi(t) 

for each electrode i as the convolution of the articulator kinematics A, comprised of 

kinematic parameters k, and a filter H, which we refer to as the articulatory kinematic 

trajectory (AKT) encoding of an electrode.

xi(t) = ∑
k

K
∑
τ

T
Hi(k, τ)A(k, t − τ)

Since our task was not designed to differentiate between motor commands and 

somatosensory feedback, we designed our filter to use a 500 ms window of articulator 

movements centered about the high gamma sample to be predicted. Movements occurring 

before the sample of high gamma are indicated by a negative lag while movements occurring 

after the high gamma sample are indicated by a positive lag. The 500 ms window was 

chosen to both maximize the performance of the AKT model (Figure S6) and allow full 

visualization of the AKTs. While Figure S6, indicates the filters need only be 200 ms long 

for optimal performance, we found that extending filters to 500 ms with appropriate 

regularization ensured that we could visualize every AKT in its entirety. Some AKTs 

encoded movements occurring well before or after the corresponding neural activity 

resulting AKTs cutoff using a 200 ms window. L2 regularization ensured that weights from 

time points not encoding an articulatory trajectory (e.g. at 250 ms before the neural sample) 

had no weighting and did not affect interpretability of the AKTs.

Additionally, we fit acoustic and phoneme encoding models to electrode activity. Instead of 

articulator X and Y coordinates, we used formants (F1, F2, and F3) as a description of 

acoustics and a binary description of the phonemes produced during a sentence. Each feature 
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indicated whether a particular phoneme was being produced or not with a 1 or 0, 

respectively.

The encoding models were fit using ridge regression and trained using cross-validation with 

70% of the data used for training, 10% of the data held-out for estimating the ridge 

parameter, and 20% held out as a final test set. The final test set consisted of sentences 

produced during entirely separate recording sessions from the training sentences. 

Performance was measured as the correlation between the predicted response of the model 

and the actual high gamma measured in the final test set.

Hierarchical clustering—We used Ward’s method for agglomerative hierarchical 

clustering. Clustering of the electrodes was carried out solely on the kinematic descriptions 

for encoded kinematic trajectory of each electrode. To develop concise kinematic 

descriptions for each kinematic trajectory, we extracted the point of maximal displacement 

for each articulation. We used principal components analysis on each articulator to extract 

the direction of each articulator that explained the most variance. We then projected the filter 

weights onto each articulator’s first principal component and chose the point with the 

highest magnitude. This resulted in length 7 vector with each articulator described by the 

maximum value of the first principal component. Phonemes were clustered based on the 

phoneme encoding weights for each electrode. For a given electrode, we extracted the 

maximum encoding weight for each phoneme during a 100 ms window centered at the point 

of maximum phoneme discriminability (peak F statistic) for the given electrode.

Cortical surface extraction and electrode visualization—To visualize electrodes on 

the cortical surface of a participant’s brain, we used a normalized mutual information 

routine in SPM12 to co-register the preoperative T1 MRI with a postoperative CT scan 

containing electrode locations. We used Freesurfer to make pial surface reconstructions. To 

visualize electrodes across participants on a common MNI brain, we performed nonlinear 

surface registration using a spherical sulcal-based alignment in Freesurfer, aligned to the cvs 

avg35 inMNI152 template (Fischl et al., 1999). While the geometry of the grid is not 

maintained, the nonlinear alignment ensures that electrodes on a gyrus in the participant’s 

native space will remain on the same gyrus in the atlas space.

Decoding model—To decode articulatory movements, we trained a long short-term 

memory (LSTM) recurrent neural network to learn the mapping from high gamma activity 

to articulatory movements. LSTM are particularly well suited for learning mappings with 

time-dependent information (Hochreiter & Urgen Schmidhuber, 1997). Each sample of 

articulator position was predicted by the LSTM using a window of 500 ms of high gamma 

activity, centered about the decoded sample, from all vSMC electrodes. The decoder 

architecture was a 4 layer deep recurrent network with two feedforward layers (100 hidden 

nodes each) and two bidirectional LSTM layers (100 cells). Using Adam optimization and 

dropout (40% of nodes), we trained the network to reduce mean squared error of the 

decoded and actual output. The network was implemented using Keras (Chollet et. al., 

2015), a deep learning library running on top of a Tensorflow backend.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Nested encoding model comparison—We used a nested regression model to compare 

the neural encoding of a single articulator trajectory with the AKT model (Allen, 1997). For 

each electrode, we fit single articulatory trajectories models using both X and Y directions 

for each EMA sensor and chose the single articulator model that with the lowest residual 

sum of squares (RSS) on held-out data. From RSS values for the full (2) and nested (1) 

models, we compared the significance of the explained variance by calculating an F statistic 

for each electrode.

F =

RSS1 − RSS2
p2 − p1

RSS2
n − p2

p and n are the number of model parameters and samples used in RSS computation, 

respectively. An F statistic greater than the critical value defined by the number of 

parameters in both models and confidence interval indicates that the full model (AKT) 

explains statistically significantly explains more variance than the nested model (single 

articulator) after accounting for difference in parameter numbers.

Correlation structure comparison—To test whether the correlational structure of 

articulators (EMA points) was different between periods of low and high gamma activity for 

a speech responsive electrode, we split the inferred articulator movements into two data sets 

based on whether the z-scored high gamma activity of given electrode for that sample was 

above the threshold (1.5). We then randomly sampled 1000 points of articulator movement 

from each data set to construct two cross-correlational structures between articulators. To 

quantify the difference between the correlational structures, we computed the Euclidean 

distance between the two structures. We then sampled an additional 1000 points from the 

below threshold data set to quantify the difference between correlational structures within 

the sub-threshold data. We repeated this process 1000 times for each electrode and compared 

the two distributions of Euclidean distances with a Wilcoxon rank sum test (Bonferroni 

corrected for multiple comparisons) to determine whether correlational structures of 

articulators differed in relation to high or low high gamma activity of an electrode.

Silhouette analysis—To assess cluster separability, we computed the silhouette index for 

each electrode to compare how well each electrode matched its own cluster based on the 

given feature representation. The silhouette index for an electrode is calculated by taking the 

difference between the average dissimilarity with all electrodes within the same cluster and 

the average dissimilarity with electrodes from the nearest cluster. This value is then 

normalized by taking the maximum value of the previous two dissimilarity measures. A 

silhouette index close to 1 indicates that the electrode is highly matched to its own cluster. 0 

indicates that that the clusters may be overlapping, while −1 indicates that the electrode may 

be assigned to the wrong cluster.
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Phoneme Selectivity Index (PSI)—To determine the phoneme selectivity of each 

electrode, we use the statistical framework as described in Mesgarani et al., 2014 to test 

whether the high gamma activity of an electrode is significantly different during the 

productions of two different phonemes. For a phoneme pair and a given electrode, we 

created two distributions of high gamma activity from data acoustically aligned to each 

phoneme. We used a 50 ms window of activity centered on the time point with the peak F 

statistic for that electrode. We used a non-parametric statistical hypothesis test (Wilcox rank-

sum test) to assess whether these distributions have different medians (p<0.001). The PSI is 

the number of phonemes that have statistically distinguishable high gamma activity for a 

given electrode. A PSI of 0 indicates that no other phonemes have a distinguishable high 

gamma activity. Whereas, a PSI of 40 indicates that all other phonemes have distinguishable 

high gamma activity.

Mixed effects model—To examine the relationship between high gamma and 

coarticulated kinematics, we used a mixed-effects model with several crossed random 

effects. In particular, for a given electrode, we computed the “peak activity” by taking the 

median high gamma activity during a 50 ms window centered about the peak F statistic for 

that electrode (see PSI method) during the production of a target phoneme. We then took the 

mean peak activity for each unique phoneme pair (target phoneme preceded by context 

phoneme). For each electrode, we only considered phoneme pairs with at least 25 instances 

and a target PSI > 25. This helped stabilize the means and targeted electrodes that 

presumably encoded the AKT necessary to produce the target phoneme. In Figure 6C,D,H,I, 

we extended /z/ to include /z/ and /s/, and /p/ to include /p/ and /b/ since, from an EMA 

standpoint, the articulation is nearly identical and it increased the number of coarticulated 

instances we could analyze, thus decreasing biases from other contextual effects and 

variability from noise. In a similar fashion to high gamma, we computed high gamma 

activity predicted by the AKT model to provide insight into the kinematics during the 

production of a particular phoneme pair. Our mixed-effects model described high gamma 

from a fixed effect of kinematically predicted high gamma with crossed random effects 

(random slopes and intercepts) controlling for difference in electrodes, and target and 

context phonemes (Barr et al., 2013). To determine model goodness, we used ANOVA to 

compare the model with a nested model that retained the crossed random effects but 

removed the fixed effect. The mixed-effects model was fit using the lme4 package in R 

(Baayen et al., 2008).

DATA AND SOFTWARE AVAILABILITY

All analyses were conducted in Python using NumPy, SciPy, Pandas, and scikit-learn unless 

otherwise specified. Code and data are available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Sensorimotor cortex encodes articulatory kinematic trajectories (AKTs) in 

speech

• AKTs reveal coordinated movements of the tongue, lips, jaw, and larynx

• AKTs manifest stereotyped trajectory profiles of vocal tract articulators

• AKTs show context-dependent encoding of movements due to coarticulation
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Figure 1. Inferred articulator kinematics
A, Approximate sensor locations for each articulator during EMA recordings. Midsagittal 

movements represented as Cartesian X and Y coordinates. B, Midsagittal articulator 

movements inferred from both acoustic and phonetic features (in color), the trace of each 

reference sensor coordinate is also shown (in black). The larynx was approximated by 

fundamental frequency (f0) modulated by whether the segment of speech was voiced. C, 

Recorded articulator movements (EMA) representing consonants and vowels projected into 

a low dimensional (LDA) space. Inferred articulator movements projected into the same 

space were highly correlated with the original EMA. Correlations were pairwise distances 

between phonemes (consonants: r = 0.97, p<.001, vowels: r = 0.90, p<.001).
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Figure 2. Neural encoding of articulatory kinematic trajectories
A, Magnetic resonance imaging (MRI) reconstruction of single participant brain where an 

example electrode is shown in the ventral sensorimotor cortex (vSMC). B, Inferred 

articulator movements during the production of the phrase “stimulating discussions.” 

Movement directions differentiated by color; positive X and Y (purple), negative X and Y 

(green) directions as shown in Figure 1A. C, Spatiotemporal filter resulting from fitting 

articulator movements to explain high gamma activity for an example electrode. Time 0 

represents the alignment to the predicted sample of neural activity. Convolving the 

spatiotemporal filter with articulator kinematics explains high gamma activity D as shown 

by example electrode. High gamma from ten trials of speaking “stimulation discussions” 

were dynamically time warped based on the recorded acoustics and averaged together to 

emphasize peak high gamma activity throughout the course of a spoken phrase. E, Example 

electrode encoded filter weights projected onto midsagittal view of vocal tract exhibits 

speech-relevant articulatory kinematic trajectories (AKT). Time course of trajectories is 

represented by thin-to-thick lines. Larynx (pitch modulated by voicing) is one dimensional 

along y-axis with x-axis showing time course.
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Figure 3. Clustered articulatory kinematic trajectories and phonetic outcomes
A, Hierarchical clustering of encoded articulatory kinematic trajectories (AKTs) for all 108 

electrodes across 5 participants. Each column represents one electrode. Kinematics of AKTs 

were described as a 7 dimensional vector by the points of maximal displacement along the 

principal movement axis of each articulator. Electrodes were hierarchically clustered by their 

kinematic descriptions resulting in four primary clusters. B, A phoneme encoding model 

was fit for each electrode. Kinematically clustered electrodes also encoded four clusters of 

encoded phonemes differentiated by place of articulation (alveolar, bilabial, velar, and 

vowels). C, Average AKTs across all electrodes in a cluster. Four distinct vocal tract 

configurations encompassed coronal, labial, and dorsal constrictions in addition to vocalic 

control.
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Figure 4. Spatial organization of vocal tract gestures
Electrodes from 5 participants (2 left, 3 right hemisphere) colored by kinematic cluster 

warped to vSMC location on common MRI reconstructed brain. Opacity of electrode varies 

with Pearson’s correlation coefficient from kinematic trajectory encoding model.
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Figure 5. Damped oscillatory dynamics of kinematic trajectories
A, Articulator trajectories from encoded AKTs along the principal movement axes for 

example electrodes from each kinematic cluster. Positive values indicate a combination of 

upward and frontward movements. B, Articulator trajectories for all 108 encoded kinematic 

trajectories across 5 participants. C, Linear relationship between peak velocity and 

articulator displacement (r: 0.85, 0.77. 0.83, 0.69, 0.79, 0.83 in respective order, p <.001). 

Each point represents the peak velocity and associated displacement of an articulator from 

the AKT for an electrode.
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Figure 6. Neural representation of coarticulated kinematics
A, Example of different degrees of anticipatory coarticulation for the lower incisor. Average 

traces for the lower incisor (y-direction) are shown for /æz/ and /æp/ aligned to the acoustic 

onset of /æ/. B, Electrode 120 is crucially involved in the production of /æ/ with a vocalic 

AKT (jaw opening and laryngeal control), and has a high phonetic selectivity index for /æ/. 

C, Average high gamma activity for electrode 120 during the productions of /æz/ and /æp/. 

Median high gamma during 50 ms centered at the electrode’s point of peak phoneme 

discriminability (grey box) is significantly higher for /æp/ than /æz/ (p<.05, Wilcoxon signed 

ranks tests). D, Average predicted high gamma activity predicted by AKT in B. Median 

predicted high gamma is significantly higher for /æp/ than /æz/ (p<.001, Wilcoxon signed 

ranks tests). E, Mixed-effect model shows relationship of high gamma with kinematic 

variability due to anticipatory coarticulatory effects of following phonemes for all electrodes 

and phonemes (β = 0.30, SE = 0.04, χ2(1) = 38.96, p = 4e–10). Each line shows the 

relationship between high gamma and coarticulated kinematic variability for a given 

phoneme and electrode in all following phonetic contexts with at least 25 instances. 

Relationships from C and D for /æz/ (red) and /æp/ (yellow) are shown as points. Electrodes 

in all participants were used to construct the model. F, Example of different degrees of 

carryover coarticulation for the lower incisor. Average traces for the lower incisor (y-
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direction) are shown for /æz/ and /iz/ aligned to the acoustic onset of /z/. G, Electrode 122 is 

crucially involved in the production of /z/ with a coronal AKT, and has a high phonetic 

selectivity index for /z/. H, Average high gamma activity for electrode 122 during the 

productions of /æz/ and /iz/. Median high gamma is significantly higher for /æz/ than /iz/ 

(p<.05, Wilcoxon signed ranks tests). I, Average predicted high gamma activity predicted by 

AKT in G. Median predicted high gamma is significantly higher for /æz/ than /iz/ (p<.001, 

Wilcoxon signed ranks tests). J, Mixed-effect model shows relationship of high gamma with 

kinematic variability due to carryover coarticulatory effects of preceding phonemes for all 

electrodes (in all participants) and phonemes (β = 0.32, SE = 0.04, χ2(1) = 42.58, p = 6e–

11). Relationships from H and I for /æz/ (green) and /iz/ (blue) are shown as points.
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Figure 7. Neural encoding model evaluation
A Comparison of AKT encoding performance across electrodes in different anatomical 

regions. Anatomical regions compared: electrodes in study (EIS), superior temporal gyrus 

(STG), precentral gyrus* (preCG*), postcentral gyrus* (postCG*), middle temporal gyrus 

(MTG), supramarginal gyrus (SMG), pars opercularis (POP), pars triangularis (PTRI), pars 

orbitalis (PORB), middle frontal gyrus (MFG). Electrodes in study were speech selective 

electrodes from pre and post central gyri while preCG* and postCG* only included 

electrodes that were not speech selective. EIS encoding performance was significantly 

higher than all other regions (p<1e–15, Wilcoxon signed rank-test). B Comparison of AKT 

and formant encoding models for electrodes in the study. Using F1, F2, and F3, the formant 

encoding model was fit in the same manner as the AKT model. Each point represents the 

performance of both models for one electrode. C Comparison of AKT and phonemic 

encoding models. The phonemic model was fit in the manner as the AKT model except with 

phonemes described as one hot vectors. The best single phoneme predicting electrode 

activity was said to be the encoded phoneme of that particular electrode and that r-value was 

reported along with the r-value of the AKT model. Pearson’s r was computed on held-out 

data from training for all models. In both comparisons, the AKT performed significantly 

higher (p<1e–20, Wilcoxon signed rank-test)
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Figure 8. Decoded articulator movements from vSMC activity
A, Original (black) and predicted (colored) X and Y coordinates of articulation movements 

during the production of an example held-out sentence. Pearson’s correlation coefficient (r) 

for each articulator trace. B, Average performance (correlation) for each articulator for 100 

sentences held out from training set.
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