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Association of Polygenic Risk Scores for Multiple
Cancers in a Phenome-wide Study:
Results from The Michigan Genomics Initiative

Lars G. Fritsche,1,2,3 Stephen B. Gruber,4 Zhenke Wu,1,5 Ellen M. Schmidt,1 Matthew Zawistowski,1,2

Stephanie E. Moser,6 Victoria M. Blanc,7 Chad M. Brummett,6,8 Sachin Kheterpal,6,8

Gonçalo R. Abecasis,1,2 and Bhramar Mukherjee1,2,5,9,10,11,*

Health systems are stewards of patient electronic health record (EHR) data with extraordinarily rich depth and breadth, reflecting thou-

sands of diagnoses and exposures. Measures of genomic variation integrated with EHRs offer a potential strategy to accurately stratify

patients for risk profiling and discover new relationships between diagnoses and genomes. The objective of this study was to evaluate

whether polygenic risk scores (PRS) for common cancers are associated with multiple phenotypes in a phenome-wide association study

(PheWAS) conducted in 28,260 unrelated, genotyped patients of recent European ancestry who consented to participate in theMichigan

Genomics Initiative, a longitudinal biorepository effort within Michigan Medicine. PRS for 12 cancer traits were calculated using sum-

mary statistics from the NHGRI-EBI catalog. A total of 1,711 synthetic case-control studies was used for PheWAS analyses. There were

13,490 (47.7%) patients with at least one cancer diagnosis in this study sample. PRS exhibited strong association for several cancer traits

they were designed for, including female breast cancer, prostate cancer, melanoma, basal cell carcinoma, squamous cell carcinoma, and

thyroid cancer. Phenome-wide significant associations were observed between PRS andmany non-cancer diagnoses. To differentiate PRS

associations driven by the primary trait from associations arising through shared genetic risk profiles, the idea of ‘‘exclusion PRS

PheWAS’’ was introduced. Further analysis of temporal order of the diagnoses improved our understanding of these secondary associa-

tions. This comprehensive PheWAS used PRS instead of a single variant.
Introduction

In the past decade, genome-wide association studies

(GWASs) using single-nucleotide polymorphisms (SNPs)

led to discovery of many common disease susceptibility

loci.1–3 An alternative agnostic way of exploring gene-dis-

ease association is through phenome-wide association

studies (PheWASs).4–6 PheWASs enable simultaneous

exploration of the association between genetic variants

and a broad spectrum of physiological/clinical pheno-

types. To explore the joint genome 3 phenome landscape,

one needs access to both electronic health records (EHRs)

and GWAS data. The promise and potential of these studies

have recently been illustrated by the electronic Medical

Records and Genomics (eMERGE) network.7,8 Beyond ge-

netic associations, EHR has enabled discovery of new asso-

ciations between disease and secondary effects of drugs or

blood biomarker levels.9–11

PheWASs have been used both to replicate known ge-

netic-phenotypic associations and to discover new conse-

quences for disease-associated variants. PheWASs use
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computable phenotypes derived from EHR databases.

Traditional PheWASs have used International Classifica-

tion of Disease (ICD) codes to define a set of computable

phenotypes or ‘‘PheWAS codes’’ defined and validated by

experts using a combination of ICD codes.12 Standard

PheWASs have primarily focused on correlating genetic

variants, one at a time, to a spectrum of phenotypes.

When each variant is associated with a small effect size,

these studies can provide only limited insight. For

this reason, many areas of genetics now use ensembles

of variants that cumulatively explain substantial variation

in disease risk.13–15 For example, PRS constructed

from multiple GWASs identified loci that have been

proposed for cancer screening, risk prediction, and risk

stratification.16–19

In this paper, we present the exploration of PRS in a

PheWAS setting instead of a traditional PheWAS that con-

siders single variants, one at a time. We focus on cancer

traits while constructing the PRS. We construct PRS for

multiple cancers including some of the most common

groupings of cancers in the United States—prostate cancer
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Table 1. Demographics and Clinical Characteristics of the Final
Analytic Dataset

Characteristic Analytic Data Set

n 28,260

Females, n (%) 15,113 (53.5%)

Mean age, years (SD) 54.1 (15.9)

Total number of ICD9 code days 3.5 million

Number of unique ICD9 codes 10,322

Median number of visits per participant 23

Median days between first and last visit 1,265

Median ICD9 code days per participant 28
(PCa [MIM: 176807]), breast cancer (MIM: 114480), colo-

rectal cancer (MIM: 114500), lung cancer (MIM: 211980),

melanoma of skin (MIM: 155601), and basal cell carci-

noma (MIM: 614740)—and correlate them with PheWAS

codes.

Our study is based on the Michigan Genomics Initia-

tive (MGI) launched in 2012, a biorepository effort to

create a longitudinal cohort of participants in Michigan

Medicine.

MGI enrolled participants undergoing anesthesia prior

to a surgery or diagnostic procedure, creating a patient

community with genome-wide data, electronic health in-

formation, and permission for follow-up and re-contact

in future studies. Our current analysis of 28,260 patients

in MGI indicates that 47.7% of these patients have at least

one current or previous neoplasm diagnosis (excluding

benign neoplasms). This presents a unique opportunity

to study multiple cancer outcomes leveraging both EHR

and genomic data in MGI.

At the same time, this enrichment of cancer patients in

MGI highlights some of the special features of the sam-

pling frame for the study and source population. Because

of the self-selective, consent-based nature of MGI patient

enrollment, the sample selection mechanism is non-prob-

abilistic, that is, the probability of a sampling unit being

included in the study is not pre-determined. TheMGI sam-

ple is enriched for neoplasm diagnoses, which could be

related to the fact that many surgeries are diagnostic pro-

cedures that are specifically related to cancer treatment

and screening (e.g., colonoscopy, skin biopsies). Cancer pa-

tients undergo surgery more frequently than the general

population and frequently choose an academic medical

center for diagnostic and/or interventional procedures.

The analytic framework presented in this paper conducts

careful sensitivity analysis for protecting our inference

against such selection biases, unbalanced case-control ra-

tios, and phenotypic enrichment.

There are several distinct aspects to our study. Our study

represents a comprehensive PheWAS focused on using

PRS in a cancer-enriched cohort accrued in an academic

health center. Our study is also a PheWAS focused on can-

cer. Our results demonstrate that PRS, a summary score

constructed based on results of large population-based

GWASs, can be potentially useful for cancer risk stratifica-

tion among patients in an academic medical center. We

also note that when a PRS-based PheWAS leads to the as-

sociation of a cancer-specific PRS (e.g., prostate cancer

PRS) with other secondary related phenotypes (e.g., erec-

tile dysfunction or urinary incontinence), these findings

may require careful consideration. We observe that

many of these secondary associations are often driven

by the primary cancer diagnosis. We introduce the

notion of ‘‘exclusion PRS PheWAS’’ to detect independent

secondary associations that have shared genetic etiology.

We extract the temporal order of diagnoses from the

EHR to shed further insight into these secondary

associations.
The America
Subjects and Methods

MGI Cohort
Participants were recruited through Michigan Medicine health

system while awaiting diagnostic or interventional procedures

either during a preoperative visit prior to the procedure or on

the day of procedure that required anesthesia. Opt-in written

informed consent is obtained. In addition to coded biosamples

and protected secure health information, participants understand

that all EHR, claims, and national data sources linkable to the

participant may be incorporated into the MGI databank. Each

participant donates a blood sample for genetic analysis, undergoes

baseline vital signs and a comprehensive history and physical,

and completes validated self-report measures of pain, mood,

and function, including NIH Patient Reported Outcomes Mea-

surement Information System (PROMIS) measures. Data were

collected according to Declaration of Helsinki principles. Study

participants provided written informed consent, and protocols

were reviewed and approved by local ethics committees (IRB ID

HUM00099605). In the current study, we report results obtained

from 28,260 genotyped samples of European ancestry with avail-

able integrated EHR data (see summary characteristics of the

cohort in Table 1).
Genotyping and Sample Quality Control (QC)
DNA from 37,412 blood samples was genotyped on two batches

of customized Illumina Infinium CoreExome-24 bead arrays

(‘‘UM_HUNT_Biobank_11788091_A1’’ [n ¼ 21,207] and ‘‘UM_

HUNT_Biobank_v1-1_20006200_A’’ [n¼ 16,205]) that in addition

to standard genome-wide tagging SNPs (n ¼ �240,000) and exo-

mic variants (n ¼ �280,000) contained about 70,000 additional

custom content variants, e.g., candidate variants from GWASs,

nonsense andmissense variants from sequencing studies, ancestry

informativemarkers, andNeanderthal variants. Genotype analysis

was performed with Illumina GenomeStudio (module 1.9.4, algo-

rithmGenTrain 2.0). After initial clustering, variant cluster bound-

aries were re-defined in a second run using only individuals with

call rate of at least 99% while the remaining samples were geno-

typed afterwards.

We excluded samples with (1) call rate < 99%, (2) estimated

contamination > 2.5% (BAF Regress),20 (3) large chromosomal

copy number variants (single chromosome with missingness R

five times larger than other chromosomes), (4) lower call rate

than its technical duplicate or twin, (5) gonosomal constellations

other than XX and XY, or (6) whose inferred sex did notmatch the
n Journal of Human Genetics 102, 1048–1061, June 7, 2018 1049



reported gender. We excluded variants if (1) their probes could not

be perfectly mapped or mapped perfectly to multiple position in

the human genome assembly (Genome Reference Consortium

Human genome build 37 and revised Cambridge Reference

Sequence of the human mitochondrial DNA; BLAT),21 (2) they

showed deviations fromHardyWeinberg equilibrium in European

ancestry samples (p < 0.0001), (3) had a call rate < 99%,

(4) another variant with higher call rate assayed the same variant,

or (5) the allele frequency differences between the two array

versions within unrelated, European ancestry samples had a

p value < 0.001 (PLINK v.1.90).22 After quality control, 392,323

polymorphic variants remained.

Before preparing the final analytical dataset, we reduced the data

to 33,028 samples for which we had complete age and ICD9 data

available. Next, we estimated pairwise kinship with the software

KING23 and limited further analysis to a subset that contained no

pairs of individuals with a first- or second-degree relationship. We

inferred recent ancestry by projecting all genotyped samples into

the space of the principal components of the Human Genome Di-

versity Project reference panel using PLINK (938 unrelated individ-

uals).24,25We limited the principal component analysis to variants

that were shared between the HGDP reference and the MGI data,

had aminor allele frequency> 1%, and remained after LD pruning

(r2 < 0.5; PLINK). Samples of recent European ancestry (�90% of

participants) were defined as samples that fell into a circle around

the center of the European HGDP populations in the PC1 versus

PC2 space, whereas the circle’s radius was set to 1/8 of the distance

between the center of the European HGDP populations and the

centroid of the centers of the European, East Asian, and Sub-

Saharanpopulations (Figure S1). Principal componentswere stored

and used for further association tests. After quality control, 28,260

unrelated, genotyped individuals of recent European ancestry with

age and ICD9 data remained for further analysis.
Phasing and Genotype Imputation
We imputed genotypes of the Haplotype Reference Consortium

using the Michigan Imputation Server26 and filtered poorly

imputed variants with R2 < 0.3 and/or minor allele frequency

(MAF) < 0.1% resulting in more than 17 million imputed variants

available after quality control and filtering. The obtained accuracy

for imputed variants, i.e., the average empirical R2 values for

different MAF frequency bins, was 0.89 (0.1% % MAF % 0.5%),

0.94 (0.5% < MAF % 5%), and 0.96 (MAF > 5%).
Phenome Generation
We extracted the ICD9 data for 28,260 unrelated, genotyped indi-

viduals of recent European ancestry and mapped a total of

3.5 million ICD9 codes to PheWAS codes (PheWAS translation ta-

ble version 1.2).12 The ICD9 codes (10,322 unique ICD9 codes)

were aggregated to PheWAS traits using the PheWAS R pack-

age.12 Cases for a given PheWAS code were defined if an individual

had at least one assignment of that PheWAS code in their record.

The remaining individuals that did not have overlapping PheWAS

codes that are a part of the exclusion criteria were considered as

control subjects. A total of 1,857 case-control studies were gener-

ated of which 1,711 withR20 cases were used for further analyses

(see Table S1; phenotypes with <50 cases were coded as ‘‘<50’’).
GWAS Catalog SNP Extraction and Construction of PRS
We downloaded previously reported GWAS variants from the

NHGRI-EBI Catalog (file date: June 31, 2017).27,28 None of the dis-
1050 The American Journal of Human Genetics 102, 1048–1061, Jun
covery studies included in the catalog used any subset of the MGI

cohort. This is primarily because MGI started recruiting in 2012

and the genotype data became available only recently. Variant po-

sitions were converted to GRCh37 using variant IDs from dbSNP

build 144 (UCSC Genome Browser) after updating outdated

dbSNP IDs to their merged dbSNP IDs. Entries with missing risk al-

leles, risk allele frequencies, or odds ratios were excluded. If a re-

ported risk allele did not match any of the reported forward strand

alleles of a non-ambiguous SNP (not A/T or C/G) in the 1000 Ge-

nomes Project genotype data, we assumed minus strand designa-

tion and corrected the effect allele to its complementary base of

the forward strand. Entries with a reported risk allele that did

not match any of the alleles of an ambiguous SNP (A/T and C/G)

in the 1000 Genomes Project data would have been excluded at

this step. We included only entries with broad European ancestry

(as reported by the NHGRI-EBI Catalog). To allow an additional

quality control check, we compared the reported risk allele fre-

quencies (RAF) in controls with the frequencies of the 503 Euro-

pean samples of the 1000 Genomes Project reference data (Phase

3, release 5).29 We then excluded entries whose RAF deviated

more than 15% from the reference. This chosen threshold is sub-

jective and was based on clear differentiation between correct and

likely flipped alleles on the two diagonals (see Figure S2) as noted

frequently in GWAS meta-analyses quality control procedures.30

For each analyzed cancer type, we extracted overlapping GWAS

hits in our genotype data and estimated pairwise LD (r2) using

the available allele dosages of the corresponding controls. For pair-

wise correlated SNPs (r2 > 0.5) or SNPs with multiple entries, we

kept the SNP with the younger publication date (and smaller

p value, if necessary) and excluded the other (Figure S2 and Table

S2). Finally, we weighted the allele dosages of risk SNPs of the risk

increasing alleles with their reported log odds ratios and calculated

PRS as their sum. Namely, for subject j in MGI, the PRS was of the

form PRSj ¼
P

ibiGij where the sum extends over all included loci,

bi are the log odds ratios retrieved from the GWAS catalog for locus

i, andGij was the measured dosage data for the risk allele on locus i

in subject j. This variable was created for eachMGI participant and

for each cancer separately.
Statistical Analysis
For the current study, we initially explored 30 cancer traits that

had matching entries in the GWAS catalog (Table S3) and

restricted our analysis to 12 cancer traits with at least 5 risk

SNPs detected in the GWAS catalog after filtering that had rela-

tively larger samples sizes in MGI (namely n R 250 case subjects)

(Table 2). Logistic regression was used for all genetic association

analysis. Firth’s bias reduction method was applied to all single

SNP and PRS models to resolve the problem of separation in logis-

tic regression (Logistf in R package ‘‘EHR;’’ see Web Resources),31 a

common problem for binary or categorical outcome models when

for a certain part of the covariate space there is only one observed

value of the outcome which often leads to very large parameter es-

timates and standard errors. Firth’s bias-reduction32 is a penalized

likelihood method that reduces the bias in such situations by add-

ing a penalty term to the likelihood.

To estimate the association of PRS with the primary cancer

phenotype, we first determined the PRS quartiles using all control

samples, categorized all samples according to these PRS quartiles,

and fitted Firth bias-corrected logistic regression adjusting for

age, sex, genotyping array, and the first four principal compo-

nents. We report odds ratios corresponding to the top versus the
e 7, 2018



Table 2. Association Analysis of Cancer Traits with at Least Five NHGRI EBI GWAS Catalog Risk SNPs and More than 250 Cases in MGI

Cancer Traita
No. Case
Subjects

No. Control
Subjects

No. Risk
SNPs used
for PRSb

Effect Size
Correlation ½br�
between GWAS
Catalog and MGI
[95% CI]

Effect Size
Correspondence
(Lin’s CCC) MGI
versus GWAS
Catalog [95% CI]

Estimated PRS-Cancer Association

PRS Odds Ratio [95% CI] pc

Continuous PRS
(Transformed to
Standard Normal)
Point Estimate
[95% CI] pd

Breast cancer (female)e 1,827 11,073 78 0.67 [0.53,0.78] 0.64 [0.51, 0.75] 2.3 [2.0,2.7]; 2.5 3 10�29 1.4 [1.3;1.5]; 3.6 3 10�37

Cancer of prostatee 1,425 9,793 93 0.81 [0.73,0.87] 0.74 [0.66, 0.81] 3.3 [2.7,3.9]; 3.7 3 10�43 1.7 [1.6;1.8]; 3.8 3 10�69

Melanomas of skine 1,404 23,798 16 0.92 [0.77,0.97] 0.91 [0.77, 0.97] 2.4 [2.0,2.8]; 2.6 3 10�31 1.4 [1.3;1.5]; 6.7 3 10�36

Basal cell carcinomae 1,124 23,798 19 0.88 [0.71,0.95] 0.85 [0.68, 0.94] 2.7 [2.2,3.2]; 1.1 3 10�27 1.5 [1.4;1.6]; 3.3 3 10�44

Cancer of bladder 978 26,748 16 0.65 [0.22,0.86] 0.57 [0.22, 0.79] 1.4 [1.2,1.7]; 0.00018 1.2 [1.1;1.2]; 4.9 3 10�6

Non-Hodgkins lymphoma 878 26,794 18 0.51 [0.05, 0.79] 0.24 [0.028,0.43] 1.3 [1.1,1.6]; 0.0063 1.1 [1.0;1.2]; 0.0029

Colorectal cancer 718 22,183 42 0.48 [0.21,0.68] 0.39 [0.17,0.58] 1.3 [1.1,1.6]; 0.011 1.1 [1.1;1.2]; 0.00078

Squamous cell carcinomae 703 23,798 5 0.95 [0.39,1.00] 0.92 [0.57, 0.99] 2.0 [1.6,2.5]; 2.0 3 10�10 1.4 [1.3;1.5]; 1.8 3 10�18

Malignant neoplasm of kidney,
except pelvis

613 26,748 7 0.33 [�0.57,87] 0.053 [�0.094, 0.20] 0.98 [0.77,1.3]; 0.89 0.99 [0.91;1.1]; 0.86

Cancer of bronchus, lung 570 27,596 9 0.90 [0.60,0.98] 0.82 [0.53, 0.93] 1.2 [0.91,1.6]; 0.13 1.1 [0.99;1.2]; 0.091

Thyroid cancere 472 26,692 8 0.97 [0.82,0.99] 0.94 [0.82, 0.98] 3.2 [2.5,4.5]; 1.8 3 10�18 1.4 [1.3;1.6]; 4.8 3 10�19

Cancer of brain and nervous system 321 27,069 9 0.79 [0.26,0.95] 0.66 [0.25,0.87] 1.3 [0.92,1.7]; 0.13 1.1 [1.0;1.2]; 0.042

Abbreviations: PRS, polygenic risk score; CI, confidence interval.
aUnderlying ICD9 codes are listed in Table S4.
bGWAS Catalog SNPs after quality control; corresponding summary statistics are listed in Tables S2 and S5.
cOdds ratio for each cancer with top PRS quartile compared to bottom PRS quartile. Point estimates, confidence intervals, and p values are obtained by fitting Firth’s Bias-Corrected Logistic Regression.
dAssociation of each cancer with continuous PRS that were transformed to standard normal distribution. Point estimates, confidence intervals, and p values are obtained by fitting Firth’s Bias-Corrected Logistic Regression.
ePRS OR > 1.5, pcontinous PRS < 2.9 3 10�5, selected for PRS PheWAS analysis

T
h
e
A
m
e
rica

n
Jo
u
rn
a
l
o
f
H
u
m
a
n
G
e
n
e
tics

1
0
2
,
1
0
4
8
–
1
0
6
1
,
Ju
n
e
7
,
2
0
1
8

1
0
5
1



bottom quartile PRS (reference), referred to as PRS OR. We also

used continuous PRS instead of the categorized version as the

covariate for enhanced power. For comparability of effect sizes

corresponding to the continuous PRS across cancer traits, we

transformed the PRS to the standard normal distribution using

‘‘ztransform’’ of the R package ‘‘GenABEL’’ (see Web Resources).

To compare reported associations of individual GWAS catalog

SNPs with association observed in the MGI dataset, we tested

the association between reportedGWAS hits and its corresponding

trait using Firth bias-corrected logistic regression implemented in

EPACTS (v.3.3, see Web Resources). Age, sex, genotyping array,

and principal components 1–4 were included as covariates (see

Kinship and Ancestry Inference).

To determine the agreement of estimated effect sizes [estimated

log(odds ratios)] between the MGI case-control studies and the

published GWAS catalog hits, we estimated Pearson’s correlation

coefficient ½br� and Lin’s concordance measure between the two

sets of coefficients.33,34 Toward more standard discovery type

genome-wide association analysis with MGI data, we performed

GWAS for the nine cancer traits where the correspondence be-

tween the effect sizes were relatively strong [br R0:6 ] (Table 2).

For computationally efficient GWA analysis, we used the score

test-based saddle point approximation (SPA)35 method adjusting

for age, sex, genotyping array, and the first four principal compo-

nents. SPA was reported to provide accurate test statistics even for

extremely unbalanced case-control ratios similar to Firth bias cor-

rected logistic regression (see below) but was estimated to be 100

times faster than the latter.35

For our primary PRS-PheWAS, for the six PRS in Table 2 that

showed strong and significant association, we conducted Firth

bias-corrected logistic regression by fitting a model of the

following form and repeated them for each of the 1,711

phenotypes.

logit (P(Disease¼1jPRS, Age, Sex, Array, PC))

¼ b0 þ bPRSPRSþ bAgeAgeþ bSexSexþ bArrayArray þ b PC

where the PCs were the first four principal components obtained

from the principal component analysis of the genotyped GWAS

markers and where ‘‘Array’’ represents the two genotyping array

versions used in MGI accounting for potential batch effects. To

adjust for multiple testing, we applied the conservative phe-

nome-wide Bonferroni correction according to the 1,711 analyzed

PheWAS codes (Table S1). Through a PheWAS plot, we present

–log10 (p values) corresponding to each of the 1,711 association

tests for H0 : bPRS ¼ 0. Directional arrows on the PheWAS plot

indicate whether a phenome-wide significant trait was positively

or negatively associated with the PRS.

Furthermore, our extensive sensitivity analyses included (1)

similar models adjusting for 20 PCs, (2) matching case to control

subjects and conducting conditional logistic regression analysis,

and (3) using the unweighted risk allele counts as predictor. The

reason for these three sensitivity analyses was to check (1) whether

the first four PCs were sufficient to control for population stratifi-

cation, (2) whether differences in age and sex distributions or

extreme case-control ratios influenced the main analysis, and (3)

whether ignoring effect sizes and using total risk allele count pro-

duced similar results. For (2), wematched case and control subjects

using the R package ‘‘MatchIt’’ and applied nearest neighbor

matching for age, PC1–4 (using Mahalanobis-metric matching;

matching window caliper/width of 0.25 standard deviations),

and exact matching for sex. We considered a varying set of
1052 The American Journal of Human Genetics 102, 1048–1061, Jun
case:control matching ratios from 1:1 to 1:10. We observed gain

in precision with increasing the number of matched control sub-

jects per case subject, but the gain in precision became negligible

after 1:10 matching ratio (Table S6). Moreover, for some cancers

with large number of case subjects, we could not attain 1:10

matching ratio for all case subjects and ended up with varying

number of control subjects per case subject. For example, for pros-

tate cancer the average number of matched control subjects per

case subject was around 5.36

To investigate the possibility of the secondary trait associations

with PRS being completely driven by the primary trait association,

we performed a second set of PheWAS after excluding individuals

affected with the primary cancer trait for which the PRS was con-

structed, referred to as ‘‘exclusion PRS PheWAS.’’ We applied exclu-

sion PRS PheWAS instead of a PRS PheWAS that uses the primary

cancer trait as covariate because the control exclusion criteria im-

plemented in the PheWAS phenotype construction pipeline will

often eliminate these primary cancer case subjects from being

eligible control subjects for some selected secondary related phe-

notypes and thus a logistic regression analysis will lead to com-

plete separation.12 We also stratified the MGI dataset (or the

corresponding gender subset depending on cancer type) into ten

groups of equal size by PRS deciles and determined the percentage

of observed case subjects for secondary traits in each risk decile

and conducted a test of significance in difference in proportions

across the deciles before and after removing individuals affected

with cancer traits related to the primary cancer trait. As a follow-

up tool to understand the secondary associations, we created a

plot to display the temporal ordering of diseases plotted against

time of diagnoses. If not stated otherwise, analyses were per-

formed using R 3.4.1 (see Web Resources).
Results

In the current study, we report results obtained from

28,260 genotyped and unrelated samples of inferred Euro-

pean ancestry with available integrated ICD9-based EHR

data. The study sample contains 53.5% females and the

mean age is 54 years (see Table 1 for summary). We con-

ducted our initial analysis on 12 cancer traits that after

quality control had at least five independent risk variants

in the NHGRI EBI GWAS Catalog and more than 250

case subjects in our cohort (Table 2, Table S2). Table 2 sum-

marizes data on 8,423 distinct individuals that were

affected by at least 1 of the 12 cancers. Of these patients,

6,398 had one cancer, 1,574 had two cancers, and 451

had more than two cancer sites involved.

Correspondence of MGI Effect Estimates with Those

Reported in GWAS

To assess the calibration properties of the 12 ICD9-based

cancer case-control studies, we first compared the concor-

dance of observed effect estimates (log odds ratios) from

MGI with published effect estimates reported in the

NHGRI EBI GWAS Catalog.

We found strong positive correlation (estimated Pear-

son’s correlation coefficient ½br� > 0.6) between the MGI

andGWAS reported estimates for 9 of the 12 cancers: female

breast cancer (78 SNPs; ½br� ¼ 0.67 [95% CI: 0.53,0.78]),
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D

B Figure 1. Calibration of Association Pa-
rameters
Calibration of association parameters be-
tween the MGI-GWAS and NHGRI-EBI
GWAS Catalog derived effect estimates
[log(OR)] for (A) breast cancer (females
only), (B) cancer of prostate, (C) mela-
noma, (D) basal cell carcinoma, (E) squa-
mous cell carcinoma, and (F) thyroid
cancer. The agreement of two sets of SNP-
specific beta coefficients (non-reference
allele is the effect allele), their Pearson
correlation (coefficient br, incl. 95% confi-
dence interval and p) and Lin’s correspon-
dence correlation (coefficient CCC; incl.
95% confidence interval) are shown;
dashed line indicates perfect concordance;
solid line indicates fitted line.
prostate cancer (PCa; 93 SNPs; ½br� ¼ 0.81 [0.73,0.87]), mela-

noma (16 SNPs; ½br� ¼ 0.92 [0.77,0.97]), basal cell carcinoma

(19 SNPs; ½br� ¼ 0.88 [0.71,0.95]), bladder cancer ([MIM:

109800]; 16 SNPs; ½br� ¼ 0.65 [0.22,0.86]), squamous cell car-

cinoma (5 SNPs; ½br� ¼ 0.95 [0.39,1]), lung cancer ([MIM:

211980]; 9 SNPs; ½br� ¼ 0.90 [0.6,0.98]), thyroid cancer

(9 SNPs; ½br� ¼ 0.79 [0.26,0.95]), and cancer of brain andner-

vous system (9 SNPs; ½br� ¼ 0.79 [0.26,0.95]) (Tables 2 and S5;

Figures 1 and S3).

Cancer GWASs in MGI

After having established strong positive correlation for 9 of

the 12 cancer traits and thus a phenotype quality that
The American Journal of Human Ge
appears to be in line with their corre-

sponding published GWASs, we per-

formed for each of these 9 cancers a

GWAS to explore our ability to repli-

cate and/or uncover cancer risk vari-

ants in a genome-wide setting. For

the 9 cancers, we could replicate a

total 55 of the 253 included risk

SNPs with consistent effect orienta-

tion with p < 0.05 after correcting

for the number of SNPs per phenotype

(Table S7). We found genome-wide

significant signals (p < 5 3 10�8) for

female breast cancer, melanoma of

skin, basal cell carcinoma, squamous

cell carcinoma, and thyroid cancer.

All but one of the genome-wide sig-

nals were found in loci already re-

ported in the GWAS catalog for the

corresponding cancer trait or related

phenotypes. For instance, the four

melanoma of skin loci with risk vari-

ants near SLC45A2 (MIM: 606202),

IRF4 (MIM: 601900), MC1R (MIM:

155555), and ASIP/RALY (MIM:

600201) were previously reported to

be associated with melanoma, non-
melanoma skin cancer, squamous cell carcinoma, or basal

cell carcinoma.37–41 Also, the two breast cancer risk loci

near FGFR2 (MIM: 176943) and FGF3/FGF4 (MIM:

164950/164980) as well as the thyroid cancer risk loci

near NRG1 (MIM: 142445) and FOXE1 (MIM: 602617)

were previously described.42–45 The only potentially novel

finding was the SNP rs77909434 on chromosome 13

showing borderline genome-wide association with mela-

noma (MAF in case subjects ¼ 5.3%; MAF in control sub-

jects ¼ 3.4%; p ¼ 1.5 3 10�8) located 53 kb downstream

of the Fibroblast Growth Factor 9 gene (FGF9 [MIM:

600921]) on chromosome 13. Since multiple phenotypes

were involved in the genome-wide explorations, this SNP
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would not have passed the Bonferroni multiple testing

correction for multiple GWASs. Further exploration in

larger studies are warranted to substantiate this suggestive

finding. We present GWASManhattan and QQ plots for all

nine cancer traits in Figure S4.

Owing to the smaller sample sizes compared to the

studies included in the NHGRI-EBI GWAS Catalog, only 8

of 253 catalog SNPs exceeded the genome-wide signifi-

cance (Table S5). However, we found cataloged risk SNPs

in Table 2 were markedly enriched in the top 1% of

GWAS associations, especially for the larger case-control

studies. For example, 27 out of the 93 GWAS Catalog PCa

risk SNPs fall in the top 1% of associated SNPs in the

MGI GWAS (with p < 0.0083) (Table S8).

Replicability of PRS Primary Cancer Association

PRS integrates multiple SNPs, weighted by prior effect esti-

mates and is expected to substantially improve the power

to detect an association compared to an analysis with indi-

vidual variants. To evaluate the association of PRS with the

primary cancer trait, we estimated the OR for patients in

the top risk quartile compared to the bottom quartile

(PRS OR). Six of the 12 cancer PRS revealed an at least

2-fold enrichment of case subjects with pQ1vsQ4 < 2.0 3

10�10, all of which also showed strong positive correlation

between the MGI and GWAS reported estimates (see

above): female breast cancer (PRS OR ¼ 2.3 [95% CI:

2.0;2.7], pQ1vsQ4 ¼ 2.5 3 10�29), prostate cancer (PRS

OR ¼ 3.3 [95% CI: 2.7;3.9], pQ1vsQ4 ¼ 3.7 3 10�43), mela-

noma (PRS OR ¼ 2.4 [95% CI: 2.0;2.8], pQ1vsQ4 ¼ 2.6 3

10�31), basal cell carcinoma (PRS OR ¼ 2.7 [95% CI:

2.2;3.2], pQ1vsQ4 ¼ 1.1 3 10�27), squamous cell carcinoma

(PRS OR ¼ 2.0 [95% CI: 1.6;2.5], pQ1vsQ4 ¼ 2.0 3 10�10),

and thyroid cancer (PRS OR ¼ 3.2 [95% CI: 2.5;4.5],

pQ1vsQ4 ¼ 1.8 3 10�18) (Figures 1A–1F, Table 2).

The corresponding p values obtained from Firth’s bias-

reduced logistic regression using continuous PRS were

even stronger as expected and indicated that these six can-

cer traits would withstand a Bonferroni multiple testing

correction in a phenome setting (1,711 traits; pPRS <

2.9 3 10�5): female breast cancer (pPRS ¼ 3.6 3 10�37),

prostate cancer (pPRS ¼ 3.8 3 10�69), melanoma (pPRS ¼
6.7 3 10�36), basal cell carcinoma (pPRS ¼ 3.3 3 10�44),

cutaneous squamous cell carcinoma (SCC, pPRS ¼ 1.8 3

10�18), and thyroid cancer ([MIM: 188550]; pPRS ¼ 4.8 3

10�19) (Tables 2 and S3). We excluded the remaining six

cancer traits from further investigation, because in this

initial analysis they showed only little or moderate associ-

ation (PRS OR< 1.5) and consequently only modest power

for subsequent exploration of phenome-wide associations

(Table 2).

PRS PheWAS

Next, we evaluated each of the six remaining PRS that were

strongly associated with the primary cancer trait across a

collection of 1,711 EHR-derived phenotypes (not limited

to cancer traits) with at least 20 case subjects each (Table
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S1). For each of the six cancer PRS, we found strongest as-

sociations with their primary traits, except for squamous

cell carcinoma PRS which revealed its strongest association

with the more general skin cancer trait definition (pPRS ¼
7.2 3 10�61) (Figure 2). Overall, we found no or little

sign for inflation in our PheWAS results (median chi-square

based Lambda % 1.16). Notably, we observed deflation for

some PRS PheWASs that might be caused by lack of power

especially for the phenotypes with small number of case

subjects (Figure S5). We displayed the results from the

three types of sensitivity PheWAS analyses next to the orig-

inal results: conditional logistic regression results from

1:10 matched (for age, sex, and first four PCs) case-control

studies; adjusting for 20 principal components; and using

unweighted sum of risk allele counts instead of weighted

PRS (Figures S6–S11). The results remained robust with

respect to these design and analytic choices.

Secondary Associations

In addition, we identified for each PRS associations with

secondary traits besides their primary traits (Figures 2A–

2F, Table S9). For example, we observed associations of

the three skin cancer PRSs (PRS for melanoma, basal cell

carcinoma, and squamous cell carcinoma) with overall

skin cancer and other skin cancer subcategories—expected

due to their overlapping SNP sets—but also significantly

associated with multiple dermatologic phenotypes, e.g.,

actinic keratosis (pPRS < 1.2 3 10�10) and other degenera-

tive skin conditions or disorders, all potential pre-cancer

stages (Figures 2C–2E).

Similarly, the female breast cancer PRS was associated

not only with breast cancer (pPRS ¼ 3.6 3 10�37) but also

with acquired absence of breast (pPRS ¼ 2.4 3 10�14),

abnormal mammogram (pPRS ¼ 1.3 3 10�8), benign neo-

plasms of the breast (pPRS ¼ 1.83 10�7), and benign mam-

mary dysplasias (pPRS ¼ 1.2 3 10�5) (Figure 2A). The PRS

originally constructed for prostate cancer was associated

with prostate cancer (pPRS ¼ 3.8 3 10�69), as expected,

but also with four additional traits: elevated prostate spe-

cific antigen (pPRS ¼ 9.3 3 10�27), erectile dysfunction

(pPRS ¼ 6.3 3 10�15), urinary incontinence (pPRS ¼ 6.6 3

10�11), frequency of urination and polyuria (pPRS ¼ 2.9 3

10�6), and hyperplasia of prostate (pPRS ¼ 3.6 3 10�6)

(Figure 2B, Table S9).

While all of the above mentioned secondary trait associ-

ations were in the same effect orientation as their primary

traits, i.e., increasing PRSs were associated with increased

risk for the secondary trait, we observed an association of

increasing thyroid cancer PRS with decreased risk for hypo-

thyroidism (pPRS ¼ 7.0 3 10�10) (Figure 2F).

Exploring Secondary PRS PheWAS Associations via

Exclusion PRS PheWAS

Since we already applied exclusion criteria to the control

subjects during our phenome generation, e.g., indi-

viduals with elevated prostate-specific antigen levels were

excluded from being control subjects for prostate cancer
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Figure 2. PRS PheWAS Plots
PRS PheWAS plots for (A) breast cancer (females only), (B) cancer of prostate, (C) melanoma, (D) basal cell carcinoma, (E) squamous cell
carcinoma, and (F) thyroid cancer. 1,711 traits are grouped into 16 color-coded categories as shown on the horizontal axis; the p values
for testing the associations of PRS with the traits are minus log-base-10-transformed and shown on the vertical axis. Triangles indicate
phenome-wide significant associations with their effect orientation (up, risk increasing; down, risk decreasing). PRS upon multiplicity
adjustment (see Subjects and Methods). The solid horizontal line for p ¼ 2.9 3 10�5 cut-off.
and vice versa, we could not adjust for the primary cancer

traits as a predictor in logistic regression models to identify

independent secondary PRS PheWAS associations due to

the issue of complete separation. To alternatively explore

the secondary associations in PRS PheWAS (Figure 2), we

proposed and performed exclusion PRS PheWAS by

removing subjects affected with the cancer or related can-

cer traits for which the PRS was constructed. After

removing all breast cancer case subjects (n ¼ 1,894), no as-
The America
sociation with breast cancer PRS remained significant, i.e.,

acquired absence of breast (pPRS ¼ 0.52), abnormal

mammogram (pPRS ¼ 0.76), or benign neoplasms of the

breast (pPRS ¼ 0.49), indicating that the secondary trait as-

sociations were driven by the primary trait (Figure S12A).

However, we noted that the majority of case subjects of

the non-neoplasm phenotype ‘‘acquired absence of breast’’

(>94.4%; 624 of 661) were removed in this step as they are

highly correlated with breast cancer. We made similar
n Journal of Human Genetics 102, 1048–1061, June 7, 2018 1055
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Figure 3. Proportion of Primary and Secondary Traits Stratified by PRS Deciles
Percentage of primary and selected secondary traits in each cancer PRS category for (A) prostate cancer, (B) squamous cell carcinomas,
and (C) thyroid cancer. Observed percentages in the MGI database as represented by the height of bars for each of ten increasing decile-
stratified PRS strata from left to right. The PRS’s underlying trait is shown on top and secondary traits below with (blue) and without
(green) overlapping relevant cancer cases. Only individuals with age R 30 years were included in each analysis, and the prostate cancer
PRS example includes only male individuals (see Table S10 for detailed sample sizes and percentages).
observations for prostate cancer PRS where none of the

previously detected secondary trait associations remained

phenome-wide significant after removing all 1,425 pros-

tate cancer case subjects (Figure S12B).

In contrast, we found a markedly stronger association

between hypothyroidism and thyroid cancer PRS after

removing 472 thyroid cancer case subjects (pPRS ¼ 4.7 3

10�19) compared to the full analysis (pPRS ¼ 7.0 3 10�10)

which is consistent with the effect orientations between

thyroid cancer PRS and hypothyroidism (Figure 2F).

To account for the substantial overlap between skin can-

cer subtypes, e.g., 253 of the 1,404 individuals affected

withmelanoma are also affected by basal and/or squamous

cell carcinoma (Figure S13) and to account for the likely

intensified skin cancer screening of individuals that were

diagnosed with skin cancer once in their life time, we

excluded any type of skin cancer (n ¼ 3,910) and repeated

the PheWAS for melanoma, basal cell carcinoma, and squa-

mous cell carcinoma PRS. After doing so, only actinic kera-

tosis remained statistically associated with squamous cell

carcinoma PRS while all of the previously observed associ-

ations mainly driven by skin cancer diagnoses disappeared

(Figures 2C–2E and S12C–S12E). The association between

squamous cell carcinoma PRS and actinic keratosis was

less pronounced after excluding skin cancer cases but still

remained phenome-wide significant (pPRS ¼ 2.3 3 10�36

versus pPRS ¼ 1.1 3 10�12).

To further understand the discovered secondary associa-

tions in the PRS PheWAS analyses (Figures 2 and S12), we

conducted a simple follow-up analysis by stratifying the

data into PRS deciles. We discuss selected secondary trait

associations only for the prostate cancer (PCa), squamous

cell carcinoma (SCC), and thyroid examples in the main

text and relegate their comprehensive analysis and a
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similar analysis of breast cancer, melanoma, and basal

cell carcinoma PRS to the supplemental material (Table

S10). For prostate cancer, we stratified a total of 12,026

male individuals in MGI with age R 30 years into deciles

of PCa PRS. The observed PCa PRS associations in the

PheWAS analysis are further supported by their respective

increasing trait prevalences that are observed across

10 PCa PRS decile-stratified strata (Figure 3A; Table S10).

These strata were not adjusted for confounders, but it is

less likely that the PRS is strongly associated with other co-

variates. A striking observation is that the proportion of

PCa cases in lowest versus highest decile of PCa PRS is

5.4% versus 23.4% (D ¼ 18.0% [95% CI, 15.2 to 20.7%];

p¼ 2.43 10�35), emphasizing that the PRS can distinguish

well between high- and low-risk individuals in a realistic

academic medical center population.

Focusing on the secondary traits that reached phenome-

wide significance with the PCa PRS, all these traits are

known to be associated with PCa: erectile dysfunction

(ED), urinary incontinence (UI) (which commonly follows

invasive surgical removal of the prostate), and elevated

prostate-specific antigen levels (ePSA) (which is a known

biomarker for an increased PCa risk, being closely moni-

tored after prostatectomy). For example, when comparing

the lowest versus the highest PRS risk decile, we found sig-

nificant differences for ePSA (3.9% versus 11.2%; D¼ 7.2%

[95% CI, 5.1 to 9.4%]; p ¼ 3.0 3 10�11), ED (9.7%

versus 17.1%; D ¼ 7.4% [95% CI, 4.6 to 10.2%]; p ¼
1.5 3 10�7), and UI (4.7% versus 11.9%; D ¼ 7.1% [95%

CI, 4.8 to 9.3%]; p¼ 4.23 10�10). To test whether these as-

sociations are early indicators for PCa or whether they are

driven by the fact that subjects affected by these secondary

traits are also PCa-affected case subjects (perhaps as a side

effect of PCa treatment), we removed PCa-affected case
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subjects and evaluated secondary disease prevalence

across PCa PRS deciles. By doing so, prevalence of all sec-

ondary traits became roughly constant across PRS strata

(Figure 3A; Table S10) and can be illustrated by the compar-

ison of the proportions of the lowest versus the highest PRS

risk decile: ePSA (2.8% versus 2.2%, D ¼ �0.6% [95%

CI, �1.9 to 0.8%]; p ¼ 0.44), ED (7.6% versus 6.7%,

D ¼ �1.1% [95% CI, �3.1 to 1.1%]; p ¼ 0.38), and UI

(3.0% versus 2.8%, D ¼ 0.2% [95% CI, �1.6 to 1.3%];

p ¼ 0.90). Based on these observations, we hypothesize

that the association of PCa PRS on the secondary traits

ePSA, ED, and UI were driven by the PCa diagnosis,

through either prior symptoms of PCa or prescribed medi-

cation, chemotherapy, or surgical procedures for prostate

removal (Table S10).

For SCC PRS stratification, there was a gradual increase of

individuals affected with SCC with increasing PRS risk dec-

iles, a trend that was also noted for actinic keratosis,

dermatitis due to solar radiation, and seborrheic keratosis

(Figure 3B). However, when excluding case subjects with

skin cancer, the upward trend for the latter two pheno-

types disappeared. The previously observed difference be-

tween the top and bottom PRS risk decile of individuals

affected with actinic keratosis (5.5% versus 13.2%,

D¼ 7.7% [95%CI, 6.1 to 9.3%]; p¼ 4.03 10�21) wasmark-

edly reduced after excluding skin cancer case subjects but

still remained significant (2.8% versus 5.1%, D ¼ 2.4%

[95% CI, 1.3 to 3.5%]; p¼ 1.63 10�5) (Table S10), suggest-

ing the potential for common genetic risk profiles between

SCC and actinic keratosis. Since actinic keratosis is a

known precursor for squamous cell carcinoma,46 our

approach indicated that it is possible to identify pheno-

typic risk factors through phenome-wide association scans

and careful follow-up investigation of primary and second-

ary diagnoses.

Finally, we found an attenuated association between

increasing thyroid cancer PRS and reduced risk for

hypothyroidism: within all 25,681 samples R 30 years of

age, the difference between bottom and top decile was

D ¼ �3.5% ([95% CI, �5.4 to �1.6%]; 15.1% versus

11.5%; p ¼ 2.5 3 10�4) and after excluding 452 thyroid

cancer case subjects, it increased to D ¼ �5.3% ([95%

CI, �7.1 to �3.5%]; 14.4% versus 9.1%; p ¼ 4.5 3 10�9)

(Table S10). Several studies previously reported genetic

overlap of a subset of thyroid cancer risk variants and var-

iants associated with serum levels of thyroid stimulating

hormone (TSH), which matches the current observed

association between thyroid cancer risk and risk for hypo-

thyroidism.44,45

To further our understanding of the observed secondary

associations, we take advantage of the temporally resolved

electronic health records data and explore the temporal or-

der in which the diagnoses appear. Figure 4 shows that

actinic keratosis diagnosis mostly precedes the diagnosis

of squamous cell carcinoma, sometimes by even 10 years.

Erectile dysfunction or hypothyroidism, known side ef-

fects of treatment of prostate and thyroid cancer (respec-
The America
tively), are mostly identified within a short time frame of

primary cancer diagnosis. In contrast, elevated PSA, used

as a screening tool for prostate cancer with known shared

genetic correlation, is observed mostly prior to a prostate

cancer diagnosis and also after treatment as a prognostic

marker. Having access to the electronic health records en-

ables us to explore these temporally ordered data patterns

and understand the explanation behind these secondary

associations.
Discussion

Integration of large-scale biorepositories such as genetic

data with EHRs are becoming increasingly common and

indispensable for next-generation etiology studies. In this

paper, we proposed, demonstrated, and tested trait-specific

PRS that summarize the results of large population-based

GWASs toward cancer risk prediction in an actual academic

medical center population managed by Michigan Medi-

cine. Data repositories like MGI allow us to explore many

traits simultaneously whereas population-based case-

control studies focus on one specific trait. It is indeed

encouraging that the results of population-based studies

corroborate with the phenotypes computed from EHR

data. We found improved trait prediction power of the

composite PRS compared to single-SNP analyses. We also

replicated cataloged associations of SNPs for some cancer

traits, observed excellent correspondence of effect esti-

mates, and discovered secondary trait associations with

cancer PRS that were not driven by the primary cancer

diagnoses.

In this comprehensive PRS PheWAS that focused on can-

cer, we introduced a sequence of analytic strategies. We

presented a principled framework and quality-control

pipeline to create a PRS from a large curated, public data-

base and to perform PRS PheWASs in a potentially biased

sample. We introduced a primary PheWAS using Firth’s

bias-reduced logistic regression, which has the advantage

of resolving the problem of separation in logistic regression

and providing well-controlled type I error rates for unbal-

anced case-control studies with relatively small sample

counts (see Logistf in Web Resources).31,47 These issues

are often present in large EHR-based phenomes where con-

trol subjects are frequently hundredfold more abundant

than case subjects. In addition, we conducted thorough

sensitivity analyses to check the robustness of our findings

by using PheWASs with unweighted risk allele counts, ad-

justing for 20 PCs and PRS PheWASs based on matched

control subjects. All our reported results remained robust

under these sensitivity analyses.

To distinguish PRS-trait associations that truly derive

from a shared genetic risk profile from secondary associa-

tions that are potentially driven by the primary trait (for

example urinary incontinence or erectile dysfunction

following prostate cancer treatment), we further intro-

duced a modified PRS PheWAS approach that excludes
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Figure 4. Temporal Order of Diagnoses
Order was as follows: (A) elevated PSA levels (ePSA) and PCa in 452 individuals with PCa and ePSA, (B) erectile dysfunction (ED) and
prostate cancer (PCa) in 575 individuals with ED and PCa, (C) actinic keratosis (AK) and squamous cell carcinoma (SCC) in 286 individ-
uals with AK and SCC, and (D) hypothyrodism (HT) and thyroid cancer (TCa) in 298 individuals with HT and TC. The time of the first
non-cancer diagnosis relative to the cancer diagnosis is shown in weeks, before (blue) and after (red) the cancer diagnosis.
the PRS’s underlying cancer traits. While reducing overall

sample size, this ‘‘exclusion PRS PheWAS’’ approach is sta-

tistically preferable in contrast to a PRS PheWAS that con-

ditions on the primary cancer trait. A conditional PheWAS

approach is often affected by unilaterally applied exclusion

criteria of control subjects that occur during the phenome

construction, e.g., PCa case subjects were excluded from

being eligible control subjects for elevated PSA levels and

vice versa. Our approach could directly discard trait associ-

ations driven by the primary cancer diagnosis and has the

potential to identify clinically useful diagnostic traits

among many that are conveniently measured in panel

tests of biomarkers. When an association with a secondary

trait disappears by removing the primary cancer cases in

an exclusion PheWAS, there can be several alternative ex-

planations: truly shared genetic correlation, intensified
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screening/examination due to detection of an initial can-

cer, a screening biomarker/pre-cancer phenotype, or sim-

ply post treatment effects. We used the temporal ordering

of the diagnoses to understand which of the above expla-

nations appear plausible for a given scenario. Further

exploration of our findings in larger biobank studies, like

the UK Biobank study, is warranted and will empower a

deeper understanding of relevant pre-cancer traits.48

There are several limitations to the current study. We

decided to rely on the associations reported in the

NHGRI-EBI GWAS Catalog instead of focusing on the latest

and largest GWAS specific for each cancer trait. Our ratio-

nale for choosing the NHGRI-EBI GWAS Catalog as our

source for extracting summary statistics were primarily

three-fold. (1) Data quality: Summary statistics in the

GWAS Catalog underwent a detailed expert curation and
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harmonization28,49 that avoids redundancy and allows

reliable SNP position extraction and most importantly

ancestry matching. We wanted to use a database that is

publicly accessible and applies the same set of criteria to

update reported results across a wide variety of pheno-

types. (2) Reproducibility: We provided detailed instruc-

tions on how to extract and filter GWAS Catalog summary

statistics to construct PRS. This will allow interested readers

to easily apply our approach to the regularly updated

GWAS catalog versions or to a different ancestry group

and/or broad set of disease categories without requiring

detailed and deep literature searches that could be some-

what subjective. (3) Scalability to multiple phenotypes:

One can construct PRS for specific cancers of primary inter-

est from the latest GWASmeta-analyses following the same

prescriptions we provided. Using the latest GWAS result is

likely to enhance power of a PRS PheWAS. Similarly, using

a PRS that is based on a truly polygenic model with many

more variant (or the entire genome) instead of considering

the GWAS hits may reveal new associations.

We restricted our analysis to GWAS results from studies

of broad European ancestry to match them to our cohort

of predominantly European ancestry and to allow an extra

filtering of potential swaps in directionality of risk allele in

published GWASs that otherwise could have negatively

affected the correlative properties of our constructed PRS.

One could modify or extend construction of PRS based

on global ancestry, functionality of the variant, and use

of other weighting schemes. Stratifying the present anal-

ysis by young-onset cancers, metastatic/aggressive cancers,

or tumor subtype will shed further insight into cancer

biology, cancer genetics, and specificity of the PRS-

cancer association. We have mostly ignored the temporal

ordering in the diagnoses codes by defining dichotomous

phenotypes of interest. Exploring the time-stamped data

in greater detail may be instrumental in understanding

the secondary associations like the negative association be-

tween hypothyroidism and thyroid cancer PRS.

Though we note some very encouraging and promising

results for the cancer traits with modest number of case

and control subjects and with a larger number of variants

reported in the NHGRI-EBI GWAS catalog, we also note

that the correlation of effect estimates or the PRS-

cancer association was not very strong for some cancers

(Table 2). This could be due to limited sample size/power,

heterogeneity in the definition of the cancer phenotype,

incomplete specification of PRS, differences in allele fre-

quencies in the MGI population, or misclassification of

ICD9 codes. To address concerns with misclassification,

we conducted detailed chart review of 50 randomly

sampled case subjects with at least one cancer PheWAS

code and verified their primary and secondary cancer

diagnosis. We could verify 149 of the 151 diagnoses and

found 49/50 patients to have accurate record of their can-

cer diagnosis. Based on this we conclude that the rate of

misclassification will likely be low for ICD9 codes associ-

ated with cancer.
The America
In this paper, we have focused on cancer traits. The low

misclassification rate of cancer traits, typical within aca-

demic health and cancer centers, along with effective

sensitivity analyses partly protect the results against impre-

cise case definitions and confounding. For non-cancer

disease traits, more stringent ICD9-defined cases, e.g., by

repeated ICD9 diagnoses, of adequate sample sizes might

alleviate the biases from casemisclassification. Future anal-

ysis will need to control for potentially different levels of

misclassification error across phenotypes.

Our phenome comprised a total of 1,711 ICD9-based

phenotypes and by its implemented design of hierarchical

phenotypes with different levels of specificity induce a

certain degree of redundancy. While we applied the multi-

ple testing correction for 1,711 performed tests, we

acknowledge that this threshold might be too conserva-

tive. For example, we estimated a maximal set of 1,452

phenotypes with all pairwise correlations r2 < 0.5 before

applying any exclusion criteria to the control subjects. In

addition, the PheWAS approach often applies similar

exclusion criteria to related phenotypes and thereby

further reduces the observable independence of case-con-

trol studies. Future studies are needed to determine the

effective number of independent tests in such a phe-

nome-wide analysis.

Besides the ICD9 codes used for case and control defini-

tions, EHR databases generally contain vast amount of

additional patient information including ICD10 codes,

temporal laboratory tests, drug prescriptions, inpatient

and outpatient records, etc. Future analyses that leverage

these heterogeneous data sources that might be predictive

of disease outcomes could further improve disease risk

predictions. It will be interesting to study whether PRS

for cancer risk behaviors like smoking, alcohol, and obesity

predict cancer phenotypes. Tailored and validated models

capable of integrating multiple sources of molecular and

environmental data for predicting risks of disease will be

crucial.
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