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There is a limited understanding about the impact of rare protein-truncating variants acrossmultiple phenotypes.We explore the impact

of this class of variants on 13 quantitative traits and 10 diseases using whole-exome sequencing data from 100,296 individuals. Protein-

truncating variants in genes intolerant to this class of mutations increased risk of autism, schizophrenia, bipolar disorder, intellectual

disability, and ADHD. In individuals without these disorders, there was an association with shorter height, lower education, increased

hospitalization, and reduced age at enrollment. Gene sets implicated fromGWASs did not show a significant protein-truncating variants

burden beyond what was captured by establishedMendelian genes. In conclusion, we provide a thorough investigation of the impact of

rare deleterious coding variants on complex traits, suggesting widespread pleiotropic risk.
Protein-truncating variants (PTVs) are likely to modify

gene function and have been linked to hundreds of Men-

delian disorders.1,2 However, the impact of PTVs on com-

plex traits has been limited by the available sample size

of whole-exome sequencing studies (WESs).3 Here, we

assembled whole-exome sequencing data from 100,296 in-

dividuals, drawing from a combination of cohort and case/

control disease studies with phenotypic information on a

total of 13 quantitative traits and 10 diseases (Tables

S1–S3). We used a common pipeline to process, annotate,

and analyze the data (see Supplemental Material and
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Methods and Figure S1 for principal components plots).

Ethical committees for each study approved all procedures

and all subjects provided written informed consent (or

legal guardian consent and subject assent).

We began by focusing our analysis on PTVs that occur in

a set of 3,172 PTV-intolerant (PI) genes (see Table S4 for all

gene sets used in this study). Our motivation for focusing

on the PI-PTVs was two-fold. First, this gene class was iden-

tified through an unbiased approach that leveraged

the observed frequency distribution in ExAC4 without

relying on information from model organisms or in vitro
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Figure 1. Variants Frequency Distribution across Different Ethnic Group and Gene Sets
(A) Average number of variants per individual in n ¼ 83,439 participants without neurodevelopmental/psychiatric disorders. We report
the results separately for each ethnic group.
(B) Ratio between PTV/Synonymous for each ethnic group.
Abbreviations: Afr, African American; Eas, East Asian; Sas, South Asian; Amr, Latinos; Nfe, non-Finnish European; Asj, Ashkenazi Jewish;
Fin, Finnish.
experiments. Second, PI-PTVs have been shown to asso-

ciate with early-onset neurodevelopmental and psychiatric

disorders and are likely to result in reproductively disad-

vantageous phenotypes.5–7 To focus on those variants

that are most likely to be subject to purifying selection,

we considered only rare (allele frequency < 0.1%) and ul-

tra-rare (observed in fewer than 1 in 201,176 individuals)

variants (Supplemental Material and Methods).

After excluding participants diagnosed with a psychiat-

ric or neurodevelopmental disorder, we observed an

average of 7.72 and 0.30 rare PTVs per individual, across

all genes and in PI genes, respectively (Figure 1A); one or

more ultra-rare PI-PTV was observed in 11% of the individ-

uals. The number and frequency of rare variants differs

across populations, reflecting the degree of selection com-

pounded by recent demography, including bottlenecks,

split times, and migration between populations.8 The ratio

of deleterious to neutral alleles per individual increases as

humans migrated out of Africa, consistent with less effi-

cient negative selection against deleterious variants and se-

rial founder effects that reduce the effective population
The America
size.9 Conditional on a variant being ultra-rare, we observe

a higher ratio of PTVs to synonymous variants (Figure 1B);

recently arisen ultra-rare variants have had less time to be

purged by negative selection, which is further magnified

in populations that have undergone a recent bottleneck.

For example, we observed a higher ratio among Ashkenazi

Jewish and Finnish populations as compared to non-

Finnish Europeans, reflecting the more recent popula-

tion-specific bottlenecks.10,11

We tested the association between a burden of PI-PTVs

and the 13 traits and 10 disease diagnoses (Figure 2) by per-

forming study-specific and ethnicity-specific linear or

logistic regression analysis adjusting for potential con-

founders such as overall mutation rate (Table S5). The re-

sults of these separate analyses were then meta-analyzed

(Supplemental Material and Methods). We used an experi-

ment-wise p value threshold of 2 3 10�3 to account for

multiple testing (0.05/23 traits tested). Among the quanti-

tative traits, we found that carriers of at least one rare

PI-PTV had fewer years of education (�2.2 months, p ¼
4 3 10�4), as we have previously reported,12 were shorter
n Journal of Human Genetics 102, 1204–1211, June 7, 2018 1205
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Figure 2. Association Analysis for Rare and Ultra-rare Variant Burden
(A) Association between PI-PTV burden and continuous traits. We reported the association in standard deviations (SD) to allow for com-
parison across traits. In parentheses, we reported the number of individual included in the analysis for each trait. The p values are re-
ported only for experiment-wise significant results (p < 2 3 10�3), highlighted in red. Bars indicate 95% confidence intervals. All the
results are obtained from meta-analyzing study and ethnicity-specific associations.
(B) Odds ratio for association between PI-PTV burden and dichotomous traits. In brackets, we reported the number of case and control
subjects.
(�0.2 cm, p ¼ 3 3 10�4), and were younger (�3.7 months,

p ¼ 2 3 10�7).

To ensure the robustness of the age (at enrollment)

result, we performed a series of quality control analyses

to guard against the impact of technical confounders or

specific study designs that might bias the results. We first

confirm that the signal was not observed among PTVs in

non-PI genes and synonymous variants in PI genes, our

negative controls (Figure S2). We further found that the ef-

fect was consistent across ethnicities and study cohorts

(Figure S3), when INDELs and SNPs were considered sepa-

rately, when mutations possibly caused by cytosine deam-

ination (C>T or G>A) were excluded, and when a highly

stringent QC was used (Figure S4). Similarly, the associa-

tion did not change after adjusting for eight QC metrics

capturing most of the sample properties (Figure S5).

Although we could not exclude the impact of unmeasured

confounder, we find this result consistent with reduced

survival, detrimental health, or decreased study participa-

tion over time among PI-PTVs carriers. If reduced survival

or detrimental health effects drive this association, we

see it as a signature of viability selection, overall in the pop-

ulation. Analyses with time at death as the outcome will be

needed to confirm the interpretation of this finding.

We then focused on dichotomous traits (Figure 2). We

observed significant associations with all psychiatric disor-
1206 The American Journal of Human Genetics 102, 1204–1211, Jun
ders that were tested: intellectual disability (ID) (odds ratio

[OR]¼ 1.7, p¼ 43 10�8), autism (OR¼ 1.3, p¼ 13 10�14),

schizophrenia (OR ¼ 1.2, p ¼ 5 3 10�8), ADHD (OR ¼ 1.2,

p ¼ 5 3 10�10), and bipolar disorder (OR ¼ 1.2, p ¼ 8 3

10�4). We did not, however, find PI-PTV burden to be asso-

ciated with later-onset, non-brain-related diseases such as

type 2 diabetes, early-onset myocardial infarction, inflam-

matory bowel disease, ulcerative colitis, or Crohn disease.

Across all significantly associated phenotypes, the effect

size was stronger among the subset of ultra-rare PI-PTV car-

riers, confirming that rarer PTVs are, on average, more

deleterious.

The association with these five neurodevelopmental/

psychiatric disorders and three quantitative traits was

observed only for PI-PTVs and not for PTVs in non-PI genes

nor for synonymous variants in PI genes. These results sug-

gest that the association to PI-PTVs is not driven by popu-

lation stratification or technical bias (Figure S6).

Our approach so far focuses on assuming that all PI-PTVs

act on the phenotype in the same direction, that is, they

are all either protective or risk conferring. We relaxed

this hypothesis, allowing rare PI-PTVs to have different di-

rections as well as different magnitudes of effects, and

repeated these tests using SKAT.13 We did not identify

any additional associations (Figure S7), suggesting that

PI genes do not account for a substantial fraction of
e 7, 2018



variability in the traits for which no PTV burden was iden-

tified. Further, the observed burden of PI-PTVs for neurode-

velopmental/psychiatric disorders, height, educational

attainment, and age suggests that the majority of those

PI genes that have an effect, do so in the same direction.

Although case ascertainment bias reduces the power of de-

tecting protective variants, this is not the case for contin-

uous traits like height.

We also evaluated whether damaging missense variants,

which are on average more common and less severely dele-

terious than PTVs, showed a similar signal. Damaging

missense variants have been associated with complex dis-

orders such as coronary heart disease and inflammatory

bowel disease.14,15 We found an independent signal for

damaging missense variants in PI genes for all disorders

and traits that were also associated with PI-PTVs. Further-

more, the strength of the association increased as a

function of the number of prediction algorithms that

confidently classified a missense variant as ‘‘damaging’’

(Figure S8), suggesting that these missense mutations are

similar to PTVs in biological effect, potentially abrogating

gene function. We note that this effect was particularly

strong for ultra-rare variants, reinforcing the observation

that variant frequency is a marker of selection and aids in

the identification of pathogenic damaging missense varia-

tion.16,17

Given the high degree of shared comorbidities across

neurodevelopmental/psychiatric disorders, we leveraged

information from the Danish National Psychiatric registry

to evaluate whether the signal was driven by a specific dis-

order or shared across multiple disorders. Individuals with

multiple neurodevelopmental/psychiatric disorders, and

especially those with ID, showed a stronger enrichment

of PI-PTVs (Figure S9). Nevertheless, among those without

comorbidities, the signal remained significant and remark-

ably similar across disorders (OR¼ 1.12, 1.15, 1.21, 1.18 for

schizophrenia, bipolar, autism, and ADHD, respectively;

Cochran’s Q test for heterogeneity p ¼ 0.282). We further

found that carriers of ultra-rare PI-PTVs had earlier onset

of ADHD (�4.0 months, p ¼ 0.008; Table S6). However,

this was partially explained by the fact that individuals

with earlier diagnosis of ADHD were also more likely to

be diagnosed with ID (14.7 versus 15.5 years for individ-

uals with ADHD with and without ID, t test p value ¼
0.009). Indeed, when we considered ADHD-affected case

subjects without major comorbidities, the effect was atten-

uated (�2.9 months, p ¼ 0.12). Finally, in control subjects

with none of these psychiatric diagnoses, we still observed

a significant association with the broader ICD-10 category

of mental, behavioral, and neurodevelopmental disorders,

suggesting that PI-PTVs influence the broader cognitive

spectrum (Table S7).

Since previous studies have shown a higher rate of PI de

novo PTVs in autism-affected females as compared to

males,18,19 we wondered whether sex played a role here.

In this study, however, we did not have parent-offspring

subjects needed to distinguish de novo variants from those
The America
that have recently arisen in the population, the latter being

the majority of observed rare variants. This would poten-

tially dilute the sex-specific effect if it is in fact a property

of de novo variants but not of rare variants more generally.

We found both weak and insignificant differences between

males and females in the effect of PI-PTVs on four neurode-

velopmental/psychiatric disorders (Table S8). Interestingly,

we did not observe differences in ADHD-affected males

and females, in contrast with the hypothesis that affected

females might be enriched for rare deleterious variants.20

We cannot exclude that differences in the diagnostic

criteria used in these European studies compared to those

of previous studies, which were mostly conducted in the

U.S., might explain these results.

We also assessed whether the observed burden of PTVs

was specific to PI genes or whether such a burden could

be identified for other gene sets that are likely to contain

functionally relevant genes. First, we examined other

experimental and literature-based gene sets linked to se-

vere phenotypes. Specifically, we considered all genes

(1) reported in ClinVar,2 (2) that resulted in lethal or subvi-

able phenotypes in mice,21 (3) that were required for pro-

liferation and survival in a human cancer cell line,22 and

(4) were categorized as haploinsufficient by ClinGen

(Table S4 and Supplemental Material andMethods). Except

for the haploinsufficient genes, which showed a signifi-

cantly stronger association with autism alone, none of

the other gene sets tested showed the PTV burden that

was captured by PI genes (Figure S10). This suggests that

the degree of natural selection against PTVs in a gene is

indeed an important indicator of whether such PTVs are

likely to be implicated as strong effects for neurodevelop-

mental/psychiatric disorders, height, educational attain-

ment, and age. It also highlights that observed associations

are not simply reflecting an aggregate signal from known

Mendelian disorders. Indeed, we could not detect signifi-

cant association for any of the traits considered in this

analysis when focusing on just ClinVar genes.

We reasoned that a single variant approach, rather than

a gene-based test, might provide increased resolution. We

considered all high-quality ClinVar variants (0.76 on

average per individual) and a set of variants deemed to

be recessive lethal (0.03) (Supplemental Material and

Methods). Carriers of these variants were not enriched in

any of the disorders or traits examined here (Table S9).

Second, we examined whether results from GWASs con-

ducted on the same phenotypes as those included in this

study could implicate genes containing an aggregate PTV

burden. We used DEPICT23 to link genome-wide signifi-

cant hits to candidate genes (Table S10 and Supplemental

Material and Methods) and, within each GWAS-derived

gene set, we studied the association between rare PTVs

and the phenotypes using the SKAT test. GWAS-derived

gene-sets captured associations between rare PTVs and

different classes of lipids (Figure 3 and Table S11). For

example, the association between rare PTVs and HDL

cholesterol was captured by gene sets derived from GWASs
n Journal of Human Genetics 102, 1204–1211, June 7, 2018 1207
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Figure 3. Signal Overlap between Rare Variants and GWAS-Derived Gene Sets
(A) Association (SKAT test p value) in GWAS-derived gene sets (y axis) between rare PTVs and the phenotypes reported on the x axis. Each
gene set is obtained using DEPICT to link SNPs derived from GWAS with p value < 53 10�8 and a candidate gene. In brackets we report
the number of genes with at least one PTV in our dataset. p values are reported only for experiment-wise associations (p < 0.0003).
(B) Association (SKAT test p value) in GWAS-derived gene sets (y axis) between rare PTVs þ damaging missense and the phenotypes re-
ported on the x axis.
of HDL (p¼ 23 10�9), total cholesterol (p¼ 33 10�8), and

triglycerides (p ¼ 4 3 10�9), but not by those of coronary

heart diseases (p¼ 0.25), consistent with previous observa-

tions about non-causality of HDL cholesterol on coronary

heart diseases.24 The inclusion of both rare damaging

missense and PTVs resulted in additional signal co-localiza-

tion between inflammatory bowel disease, early-onset

myocardial infarction, and the corresponding GWAS-

derived gene sets. However, it appeared that all these

signals were being driven by well-known genes, involved

in rare familial forms of these diseases. Specifically, when

Mendelian lipid genes and NOD2 were removed from

the cardiovascular and inflammatory bowel disease-

related GWAS gene sets, respectively, no signal remained

(Figure S11). This might reflect a lack of power (despite

this being the largest WES study for the majority of the

traits), inaccurate links between genome-wide significant

hits and the corresponding candidate genes or PTVs, and

common variants acting on partially distinct pathways.

Nevertheless, we observed similar results when including

SNPs below genome-wide significance to increase power

and when using different methods to link SNPs with corre-

sponding candidate genes to increase precision, including

gene-based testing25 and eQTL mapping (Figure S11 and

Supplemental Material and Methods).

The choice of the 10 diseases and 13 quantitative traits

included in the main analysis was driven by data availabil-

ity and power considerations but was not truly unbiased.

Therefore, we leveraged national population health regis-

tries to increase the scope of disorders we could examine.

Thesewell-studied and validated registries26,27 include diag-

nostic codes from 14,117 individuals (n ¼ 8,493 from
1208 The American Journal of Human Genetics 102, 1204–1211, Jun
Finland and 5,624 from Sweden), recorded between 1968

and 2015 (Table S12). Individuals with psychiatric disorders

were excluded from our analyses. To maximize the validity

of the diagnoses, we used a curated list of disease definitions

aggregating related ICD codes (Table S13). We studied the

association between rare PI-PTVs and 101 diseases with

at least 50 case subjects, using a survival analysis model.

We identified an association (multi-testing significance

threshold¼ 0.05/101; 53 10�4) with chronic kidney failure

(hazard ratio¼ 1.9, p¼ 33 10�6; number of case subjects¼
120; Figure S12). The association was strong among the

Finnish data and only significant when considering ultra-

rare PI-PTVs in the Swedish data (Table S14).

We speculated that this association might reflect a

burden of underlying comorbidities that were too rare to

be included in this analysis. To evaluate epidemiological

associations, we extended our analysis to 28,709 Finnish

individuals that were not exome sequenced but were

linked to the registries. We found that individuals with

chronic kidney failure also have a higher rate of cardiovas-

cular-related comorbidities, as well as skin infections, kid-

ney cancer, and other abnormalities of the renal system

(Table S15). Therefore, it is challenging to determine

whether it is the chronic kidney failure or some more

rare comorbid condition that drives the association with

PI-PTVs. Nevertheless, five PI-PTVs in Finnish individuals

with chronic kidney failure were in genes involved inMen-

delian-type disorders characterized by renal or endocrine

abnormalities (ARNT2, COL4A1, DMXL2, FBN1, and

NNT; Supplemental Material and Methods).

We also examined whether the association between PI-

PTVs and diminished cognition and detrimental health
e 7, 2018



would result in a higher number of hospital visits, count-

ing the number of in-patient visits associated with a

unique ICD codes. In both the Swedish and Finnish data-

sets, we observed a significant increase in the rate of hospi-

tal visits with a greater burden of PI-PTVs (þ7.6% per addi-

tional PI-PTV, p ¼ 0.0002). We used different strategies to

model the outcome and observed similar results (Table

S16 and Figure S13).

By aggregating WES data on more than 100,000 individ-

uals for 23 different traits and disorders, we have gained

insight into the role of PTVs in conferring risk for these

conditions. First, PTVs occurring in PI genes had a remark-

ably similar effect on autism, schizophrenia, bipolar disor-

der, and ADHD. The majority of this signal was driven by

ultra-rare PI-PTVs and we observed only a marginal addi-

tional contribution of non-ultra-rare PTVs with allele

frequency < 0.1% (Figure S14). The observed effects of

PI-PTVs on psychiatric disorders were not driven by major

underlying comorbidities. This suggests that these PI-PTVs

as a whole are likely to be pleiotropic, influencing some

core intermediate phenotypes that relate to risk across

many psychiatric disorders. Nevertheless, we could

consider only ‘‘bulk’’ pleiotropy, which is the combined

impact of PTVs in PI genes, and we are not powered to

detect whether single variants have disease-specific effects.

Further, this burden suggests that individual PI genes will

be eventually discovered conclusively for each of these dis-

orders, not just autism, but that such associations will need

to be interpreted in the light of this shared effect across dis-

orders. The strong enrichment of PI-PTVs in individuals

with neurodevelopmental/psychiatric disorders does not

exclude the existence of non-PI genes involved in the eti-

ology of these disorders. These genes, however, are more

likely to have weaker and, possibly, trait-specific effect.

Second, we detected a significant association between

PI-PTVs and decreased human height. In contrast to

this, a recent large-scale study using the exome chip has

shown a similar numbers of height-increasing and

height-decreasing rare variants.28 This discrepancy could

be because, by using a more stringent frequency cut-off

and focusing on a subset of genes likely to cause early-

onset severe disease, we effectively considered variants

related to a burden of (incompletely) penetrant Mende-

lian-type disorders, often characterized by reduced

growth. Such an interpretation is consistent with a tighter

link to directional selection on stronger impact mutations

for human height.

Third, we systematically compared the co-localization

of signal between GWAS-candidate genes and rare PTVs.

We found few overlaps (cardiovascular-related traits, in-

flammatory bowel disease) which, we revealed, were

entirely driven by a few genes previously identified by

both GWASs and WES studies. Other traits did not show

any overlap. Schizophrenia, for example, which is highly

enriched for PI-PTVs, did not show overlap with GWAS

candidate genes. Even among traits where genes with

low-frequency coding variants have been previously iden-
The America
tified by exome-chip-based studies, such as height and

systolic blood pressure, we found no substantial rare

PTVs enrichment. These results suggest that the relation-

ship between GWAS signal and rare coding variants is

not always straightforward, and that, when interpreting

WES data, other complementary approaches such as those

that integrate population genetic models and large sample

resources might be more suitable to nominate gene sets of

interest. The degree of overlap, and therefore the most

effective strategy to identify pathogenic variants, is likely

to depend on the selective pressure shaping the genetic ar-

chitecture of the trait under investigation. Moreover, it

cannot be overlooked that individuals carrying rare PTVs

in genes implicated by common variant-based approaches

might present phenotypic outcomes that deviate from

those under investigation. Finally, it is interesting to

notice that, while PTVs tend to have a consistent direc-

tional effect within a PI gene, this is not the case for

GWAS-derived gene sets, where most of signals could be

captured only by assuming heterogeneity in effect direc-

tion (Supplemental Material and Methods).

In conclusion, in this large WES study, we showed that

PI genes are well suited to capture the impact of rare to ul-

tra-rare PTVs on the cognitive, behavioral, and develop-

mental spectra. This is less the case for major later-onset

complex traits with modest effect on reproductive fitness.

Strategies to prioritize gene sets relevant for these traits

would need to consider the role that relaxed selective pres-

sure has been playing in shaping the frequency distribu-

tion of disease-causing PTVs.
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11. Lim, E.T., Würtz, P., Havulinna, A.S., Palta, P., Tukiainen, T.,
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