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Abstract.
Sarcopenia, the loss of muscle mass and function, is a

common feature of aging and impacts on individual health

and quality of life. Several cellular mechanisms have been

involved in the pathogenesis of this syndrome, including

mitochondrial dysfunction, altered apoptotic and autophagic

signaling, and, more recently, trace metal dyshomeostasis.

Calorie restriction (CR) without malnutrition has been shown

to ameliorate the age-related loss of muscle mass in a

variety a species. Mechanisms of protection span from

preservation of mitochondrial functional and structural

integrity to mitochondrial biogenesis, reduction of oxidative

stress, and favorable modulation of apoptotic and

autophagic signaling pathways. Importantly, preliminary

evidence indicates that moderate CR may promote muscle

mitochondrial biogenesis in middle-aged human subjects.

Further research is warranted to investigate whether CR may

represent a safe and efficient strategy to delay the onset

and mitigate the progression of sarcopenia in older adults.
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1. Introduction

The age-related loss of muscle mass and function, referred
to as sarcopenia, is a universal characteristic of the aging
process, documented in several species, from worms to
humans [1]. In older individuals, compromised muscle func-
tion is highly predictive of falls [2], disability [3], and all-
cause mortality [4]. Moreover, mobility disability resulting
from muscle loss is associated with poor quality of life and
increased social and health care needs in older adults [5].
The age-dependent loss of muscle mass is often accompa-
nied by a parallel gain in fat mass, leading to a phenotype
called ‘‘sarcopenic obesity’’ [6]. The coexistence of these
conditions is thought to promote a vicious cycle in which the
decline in muscle mass reduces resting metabolic rate and
physical activity, leading to increased deposition of adipose
tissue [6]. The accumulation of fat mass, in turn, accelerates

the loss of muscle mass via the secretion of catabolic cyto-
kines (i.e., TNF-a) and insulin resistance.

The etiology of sarcopenia is complex and character-
ized by the contribution of multiple factors, including loss of
a-motor neurons [7], increased contraction-induced injury
[8], impaired satellite cell function [9], altered hormonal sta-
tus (e.g., decline of growth hormone and testosterone lev-
els) [10], increased production of catabolic cytokines [11],
inadequate nutrition [12], and decreased physical activity
[10].

Histologically, the aged muscle is characterized by a
decline of both the number and size of muscle fibers, with a
preferential loss of type II (fast-twitch) fibers [13]. Increased
fiber size variability and accumulation of nongrouping, scat-
tered, and angulated fibers have also been described in old
rodent muscles [14]. In addition, advanced age is associated
with increases in the extracellular space and deposition of
protein aggregates within the interstitial matrix [15]. The
subsequent disruption of muscle architecture contributes to
muscle fatigability and decreased force production observed
with age [16]. Studies have shown that sarcopenic changes
may be the consequence of accumulating oxidative damage
to muscle constituents [17,18], which is thought to stem
from altered mitochondrial function [19]. With regards to the
actual mechanism responsible for the loss of muscle fibers,
several reports have indicated that it may reside in a defec-
tive regulation of myocyte apoptotic signaling, as evidenced
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by the increased occurrence of myonuclear apoptotic DNA
fragmentation in aged muscles [17,20–25]. In this context, it
is noteworthy that mitochondria, besides their role as
energy suppliers, are also centrally involved in the regula-
tion of the apoptotic program [17].

Calorie restriction (CR) without malnutrition is currently
considered the most powerful anti-aging intervention, owing
to its ability of extending both mean and maximum lifespan in
a variety of species. With regards to skeletal muscle, consist-
ent evidence has shown that CR is able to retard the onset
and impede the progression of sarcopenia by acting at several
critical control points, ranging from mitochondrial function to
oxidative stress, muscle architecture, and myonuclear apopto-
sis. In addition, recent experimental evidence from our labora-
tory suggests that CR might positively modulate autophagy in
myocytes, a cellular housekeeping process that becomes dys-
functional over the course of aging (unpublished results).

2. CR mitigates age-related
mitochondrial functional decline and
oxidative stress in skeletal muscle

Mitochondrial functional decline is considered as a central
mechanism driving the aging process [19]. Given the high
reliance of skeletal myocytes on ATP provision, the impact of
mitochondrial functional loss is particularly pronounced in
skeletal muscle, leading to impaired strength and endurance
[26]. Past experimental evidence has indicated that mito-
chondrial oxidative phosphorylation capacity declines in
muscles over the course of aging [27,28]. Notably, deletions
and point-mutations in mitochondrial DNA (mtDNA) have
been found to accumulate in aged muscles and to colocalize
with electron transport chain (ETC) abnormalities and fiber
atrophy [29–31]. MtDNA is particularly vulnerable to oxida-
tive damage because of its proximity to the ETC (the main
cellular source of oxidants) and the lack of protective histo-
nes [26]. Moreover, because of the compactness of mito-
chondrial genome (i.e., lack of intrones), each mutation is
likely to affect gene integrity. Furthermore, the efficiency of
the main pathway for the removal of small mtDNA base
modifications (base excision repair, BER) declines at differ-
ent levels with aging [32]. Mitochondrial production of reac-
tive oxygen species (ROS) has been shown to increase in
skeletal muscle over the course of aging [33], which may be
responsible for the accumulation of mtDNA mutations. The
relevance of mtDNA damage to sarcopenia is evidenced by
decreased activity of complex I, and IV of the ETC observed
in aged skeletal muscles of various species [29,30,34–36]. In
contrast, content of complex II (succinate dehydrogenase),
which is entirely encoded by nuclear DNA, increases in mus-
cle fibers from old animals, probably as a result of compen-
satory upregulation of mitochondrial biogenesis. Notably,
fibers harboring high levels of mtDNA deletions and ETC
abnormalities often display morphological aberrations,
including segmental atrophy, fiber splitting, and breakage
[29–31,37]. Importantly, CR was shown to reduce the preva-
lence of mtDNA deletion mutations as well as the abundance

of fiber displaying ETC abnormalities in old laboratory
rodents [38,39].

Preservation of mitochondrial structural and functional
integrity by CR is believed to result from the attenuation of
oxidative damage promoted by the dietary intervention. In
this context, it has been reported that CR reduces mitochon-
drial proton leak and ROS generation in skeletal muscle
[27,40–42] and increases the expression of genes involved
in ROS scavenging functions [43]. Additionally, it has been
reported that CR may alter mitochondrial membrane fatty
acid composition, making it more resistant to lipid peroxida-
tion and less prone to proton leak [44,45]. Lass et al. [46]
have also demonstrated that CR counteracts the age-associ-
ated increase in superoxide anion radical generation, lipid
peroxidation, and mitochondrial protein damage in murine
skeletal muscle. Moreover, Drew et al. [27] reported reduced
levels of oxidative damage to mtDNA in the gastrocnemius
muscle of old CR rats compared with ad libitum fed (AL) con-
trols. Interestingly, in a very recent study, 6-month 25% CR
increased skeletal muscle mitochondrial biogenesis and
reduced DNA damage in healthy, middle-aged, overweight
human subjects [47]. The increase in mitochondrial number
may be interpreted as positive adaptation promoted by CR,
as a larger mitochondrial mass imposes a reduced workload
per unit mitochondria, thus limiting oxidant generation [48].

In conclusion, mitochondrial dysfunction appears as a
prominent contributing factor to age-related muscle atrophy.
CR limits the severity of mitochondrial alterations with age
by inducing positive adaptations, which ultimately result in
the maintenance of healthy mitochondria with high bioener-
genetic capacity and reduced propensity toward oxidant pro-
duction (Fig. 1).

3. CR hinders muscle tissue iron
accumulation with age

Iron (Fe) is an essential metal required for the proper func-
tioning of many cellular processes including oxygen and
electron transport, drug metabolism and steroid and DNA
biosynthesis [49,50]. It is a cofactor for many enzymes
because of its ability to fluctuate between the ferric (Fe3þ,
oxidized) and ferrous (reduced, Fe2þ) state. Approximately
70% of total body Fe is associated with hemoglobin, with
most of the remaining Fe stored in the liver as ferritin or as
myoglobin in muscle cells. Fe deficiency is a high prevalent
condition among older adults, contributing to the develop-
ment of anemia and its detrimental consequences. However,
evidence is accumulating indicating that age-related tissue
Fe overload may be involved in the pathogenesis of several
degenerative conditions, including Alzheimer’s disease [51],
Parkinson’s disease [52], and possibly sarcopenia [18,53–56].

Fe is a highly redox active metal capable of converting
oxidant intermediates, such as hydrogen peroxide into harm-
ful free radical species (e.g., hydroxyl radical). Additionally, Fe
has been shown to catalyze the nitration of tyrosine residues
resulting in protein damage [57]. Because of the potential tox-
icity of Fe, its homeostasis is strictly regulated by a multitude
of sensors, transporters, and storage proteins [58].
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Excess Fe has been associated with muscular atrophy
due to disuse [18] and aging [18,54,55], likely through the
exacerbation of oxidative damage to muscle constituents.
The importance of Fe overload in muscle atrophy was first
demonstrated by Kondo et al. [59], who reported mitigation
of oxidative damage and muscle mass loss following admin-
istration of the Fe chelator deferoxamine to hind limb immo-
bilized rats. Importantly, Hofer et al. [18] demonstrated that
Fe accumulated in atrophied rather than normal fibers, sug-
gesting a causal relation between Fe overload and loss of
muscle mass. Furthermore, a recent study from our laboratory
showed that advanced age was associated with increased Fe
content within skeletal muscle mitochondria [56]. Notably, Fe
accumulated to a higher extent in subsarcolemmal than in
intermyofibrillar mitochondria and impacted on mtRNA oxida-
tion and permeability transition pore (mPTP) opening suscep-
tibility [56]. Importantly, mPTP opening can lead to cell death
via necrosis or apoptosis [60]. Therefore, facilitation of perme-
ability transition by Fe overload may represent a crucial mech-
anism underlying skeletal myocyte loss with age.

Evidence on the effects of CR on Fe accumulation with
aging is scarce and conflicting. CR has been shown to miti-
gate Fe accumulation and oxidative damage in kidneys of
aged rats [61]. Conversely, in the same study, old animals
subjected to dietary restriction displayed higher Fe levels in
liver and brain compared with age-matched ad libitum fed
controls [61]. Further, CR was found to exacerbate the age-
related accumulation of chelatable and non-heme Fe in
mouse liver and kidney [62]. The same study reported no CR
protection against age-dependent Fe accumulation in heart,

striatum, hippocampus, midbrain, and cerebellum. Likewise,
Borten et al. [63] showed that CR was unable to prevent age-
related Fe accumulation in rat dorsal hippocampus of rats.

With regard to skeletal muscle, Xu et al. [54] recently
reported an amelioration of age-associated accumulation of
Fe and nucleic acid oxidative damage in the gastrocnemius
muscle of CR rats. Interestingly, preservation of iron homeo-
stasis by CR was positively correlated with forelimb grip
strength, suggesting that Fe accumulation in aged muscle
may contribute to the loss of function. The lack of a general
consensus regarding the impact of CR on Fe homeostasis
may result from tissue and species-specific effects of the di-
etary intervention. Additionally, the literature is void of stud-
ies investigating the effect of CR on Fe transport and storage
mechanisms in skeletal muscle. In conclusion, the available
evidence points toward a detrimental effect of age-related
Fe accumulation in skeletal muscle, which appears to impact
on both muscular mass and function. Mitigation of muscle
Fe overload by CR may therefore be regarded as an addi-
tional means whereby the dietary intervention protects
against sarcopenia.

4. Modulation of skeletal muscle
apoptotic signaling by CR

Growing evidence indicates that progressive elimination of
myonuclei via an apoptosis-like process may represent a
fundamental mechanism driving the onset and progression
of sarcopenia [17,22,64–67]. Apoptosis is executed via spe-
cific signaling pathways, eventually leading to DNA fragmen-
tation, nuclear condensation, proteolysis, membrane bleb-
bing, and cell fragmentation, with formation of apoptotic
bodies, which are then engulfed by macrophages or neigh-
boring cells. Execution of apoptosis in skeletal muscle dis-
plays unique features, as myofibers are multinucleated.
Therefore, apoptosis may result in the elimination of individ-
ual myonuclei (myonuclear apoptosis) and the relative por-
tion of sarcoplasm, without demise of the entire fiber. With
respect to the final executioner of cell death, two distinct
pathways of apoptosis have been described, namely the cas-
pase-independent and the caspase-dependent apoptosis.
This latter pathway is carried out via sequential activation of
cysteine-dependent, aspartate-specific proteases (caspases)
[68]. The caspase-independent apoptotic pathway is exe-
cuted via mitochondrial release of mediators (e.g., apoptosis
inducing factor, AIF, and endonuclease G, EndoG) that are ca-
pable of directly producing DNA-fragmentation [69]. Mito-
chondria are considered a key center for the induction and
regulation of apoptosis. Noticeably, mitochondria can induce
apoptosis in both a caspase-dependent and independent
manner [69]. Upon apoptotic stimuli, mitochondrial outer
membrane permeabilization can occur, followed by release
of cytochrome c, which initiates the intrinsic pathway of apo-
ptosis. Once in the cytosol, cytochrome c promotes oligome-
rization of apoptosis protease activating factor-1 (Apaf-1) in
the presence of ATP/dATP. The resulting apoptosome acti-
vates caspase-9, which in turn engages caspase-3. This

Fig. 1. Age-related muscle mitochondrial dysfunction
results from multiple contributing factors and plays a
prominent role in the development of sarcopenia.
Calorie restriction preserves mitochondrial function in
the aged muscle, thus mitigating fiber atrophy and loss
of muscle mass.
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latter is responsible for the proteolytic events and DNA frag-
mentation (via caspase-activated DNase, CAD). In addition,
caspase-independent apoptogenic factors residing in the mi-
tochondrial intermembrane space, such as AIF and EndoG,
can be released into the cytosol, translocate to the nucleus
and cleave DNA independent of caspase activation. Our labo-
ratory has extensively investigated age-related changes in
apoptotic signaling transduction pathways in skeletal muscle
and their modulation by lifelong CR [23,70,71]. Our data indi-
cate that CR is able to mitigate the majority of the apoptotic
pathways involved in age-associated skeletal muscle loss.
We reported that myocyte expression of procaspase-3 and
cleaved caspase-3 as well as the extent of DNA fragmenta-
tion were elevated in the gastrocnemius muscle of aged rats
and were significantly reduced by CR [23,70,71]. In addition,
CR increased the cytosolic content of apoptosis repressor
with a caspase recruitment domain (ARC) in the gastrocne-
mius muscle of old rodents [70]. Furthermore, expression
levels of procaspase-12 were significantly lower in the gas-
trocnemius muscle of old CR rats compared with age-
matched AL animals, indicating that CR also has the poten-
tial of attenuating sarcoplasmic reticulum stress-mediated
apoptosis [70]. In the same study, we also reported a reduc-
tion in mitochondrial release of AIF in the plantaris muscle
of CR rodents [70]. Recently, we found that CR also counter-
acted myocyte apoptosis induced by the death-receptor
pathway triggered by TNF-a in aged rats [23,71]. Indeed,
myocyte expression of TNF-a in the superficial vastus latera-
lis (SVL) [23] and gastrocnemius [71] muscles was increased
in old rodents and prevented by the CR regimen. Further-
more, CR prevented the age-related elevation of cleaved cas-
pase-8 levels, downstream of TNF-a [23,72]. As a result, apo-
ptotic DNA fragmentation was significantly attenuated by the
dietary restriction in the SVL and gastrocnemius muscles of
old CR rats compared with age-matched AL controls.

Taken as a whole, our findings indicate that the proapop-
totic environment taking place in aged skeletal muscle may be
substantially attenuated by CR at several critical control points
(Fig. 2). Additionally, preliminary data from our laboratory indi-
cate that even mild CR (8%) might be effective in counteract-
ing the age-related acceleration of myocyte apoptosis in
rodents (unpublished results). Although mild CR may not
maximize the potential benefits, this approach appears to be
much more feasible for humans to maintain longterm.

5. CR stimulates autophagy: Possible
implications for sarcopenia

Oxidative damage to lipids, proteins, and DNA, especially in
postmitotic tissue of an aged organism, may be severe and
ultimately lead to apoptotic or necrotic cell death. However,
when the damage is less severe, autophagy-mediated cell
survival may prevail [72]. Autophagy literally means ‘‘self-
eating’’ and is a vital cellular process by which intracellular
components are degraded within lysosomes [73,74]. There
are three classifications of autophagy: (a) microautophagy,
in which lysosomes directly take up cytosol, inclusions, and

organelles for degradation; (b) chaperone-mediated autoph-
agy, in which soluble proteins with a particular pentapeptide
motif are recognized and transported across the lysosomal
membrane for degradation; and (c) macroautophagy, in
which a portion of cytoplasm including subcellular organ-
elles is sequestered within a double membrane-bound
vacuole that ultimately fuses with a lysosome [75]. Macroau-
tophagy (subsequently referred to as autophagy) is the pri-
mary cellular pathway for degradation of long-lived proteins
and organelles, and, importantly, the only mechanisms so
far attributed to the degradation of dysfunctional and dam-
aged mitochondria. It becomes apparent that autophagy is
critical to overall cellular health, because in some postmi-
totic tissues, progressive accumulation of damaged intracel-
lular components and potential lack of autophagic response
eventually result in cell death and loss of tissue function.
Accordingly, proper initiation and execution of autophagy
have been associated with life-span extension in worms and
flies [76–78]. A decline in autophagic activity during normal
aging has been described for invertebrates and higher
organisms [79–82], with the concomitant accumulation of
damaged cellular components, such as undegradable lyso-
some-bound lipofuscin, protein aggregates, and damaged
mitochondria [83]. However, it is the efficacy of autophagy
within a specific tissue or organ that affects cellular homeo-
stasis. Because the regulation and degree of autophagy are
highly organ dependent [84], it seems reasonable to assume
that age-related changes in autophagy are organ-specific as
well. Although the autophagic activity in liver declines with
age [81,82], data from our laboratory suggest that autophagy
is maintained in heart and skeletal muscle of aged rats ([85]
and unpublished data). Yet, the efficacy of autophagy in
heart and skeletal muscle might not be sufficient to cope
with the age-related magnitude of cellular damage. The con-
sequences of autophagy dysregulation in skeletal muscle
have mostly been studied with respect to myopathies, such
as Pompe and Danon disease, in which myofiber morphology
is altered and muscle function impaired [86,87]. However,
the effect of age on the regulation of autophagy in skeletal
muscle and the role of autophagy in sarcopenia have yet to
be fully characterized.

Autophagy is a highly regulated process, with multiple
signaling pathways controlling the induction as well as the
formation and maturation of the autophagic vacuoles
[88,89]. Autophagy is suppressed by amino acids and growth
factors such as insulin [88,89]. However, dietary restriction is
a potent inducer of autophagy in many species [84,85,90,91].
Autophagy may in fact play an important role in mediating
CR’s beneficial effects, as, for instance, reduced activity of
autophagy genes in C. elegans suppressed the lifespan
extension promoted by inherent dietary restriction [77]. Dur-
ing CR, autophagy is induced via at least two of the signal-
ing pathways: activation of phosphoinositide 3-kinase class
III through complex formation with Beclin 1 and downregula-
tion of the nutrient-sensor mitochondrial target of rapamycin
(mTOR) (Fig. 3) [92–94]. Notably, mTOR deficiency extends
lifespan in worms [95], but whether this effect is, at least in
part, due to increased autophagy has yet to be confirmed.
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The autophagic response in skeletal muscle is clearly
inducible by CR [84]. Furthermore, findings from our labora-
tory indicate that the autophagic response to CR persists
even at old age (unpublished data). Although the beneficial
effects of autophagy on longevity and cellular homeostasis
have found broad support, it is yet unclear whether upregu-
lation of autophagy is always beneficial in skeletal muscle. It
needs to be identified whether a shift in the activity of regu-
latory proteins and autophagy-dependent degeneration of
cellular components might contribute to disruption of myo-
cyte function and muscle atrophy, or whether autophagic re-
moval of cellular waste overall promotes myocyte health.
Recent studies on mouse skeletal muscle [96–98] revealed a
pivotal role for the forkhead transcription factor FoxO3 and
its downstream targets atrogin 1 and MuRF1 in proteasome-
associated skeletal muscle atrophy. Furthermore, Mammucari
et al. [98] and Zhao et al. [99] demonstrated a link between
FoxO3 and autophagy, possibly via disuse or fasting-induced
transcription of BNIP3 and LC3, leading to unfavorable loss
of muscle mass due to autophagic proteolysis. On the other
hand, a recent study by Willcox et al. [100] identified FoxO3a
genotype as associated with longevity in humans.

On the basis of our findings in aging rat heart [85] and
skeletal muscle (unpublished data) and the emerging evi-
dence for autophagy as essential for cellular homeostasis,
we suggest that autophagy may be one mediator of the ben-
eficial effects of CR on the attenuation of sarcopenia. How-
ever, more work is required to conclusively define the role of
autophagy in age-related conditions such as sarcopenia.
Once the role of autophagy in aging muscle is characterized,

interventions to modulate this complex cellular process may
represent a promising therapeutic strategy to counteract the
detrimental accumulation of waste material in aging muscle.

6. Conclusions and future
perspectives

CR has been consistently shown to attenuate the rate of
functional decline and loss of muscle mass that occur with
age. Importantly, CR has been recently reported to mitigate
the severity of sarcopenia in non-human primates [101]. Ex-
perimental evidence indicates that these protective effects
stem from the ability of CR to reduce the incidence of mito-
chondrial abnormalities, attenuate oxidative stress, maintain
the proper functioning of autophagy, and counteract the
age-related elevation of proapoptotic signaling in skeletal
muscle. Importantly, moderate reduction in calorie intake
appears to protect against mitochondrial functional decline
also in human skeletal muscle. However, several reports
suggest that an excessive CR in humans may be accompa-
nied by a number of adverse effects, such as weakness, loss

Fig. 2. Overview of the apoptotic pathways involved in
age-related myocyte elimination and their modulation
by calorie restriction.

Fig. 3. Regulatory pathways of autophagy. Autophagy is
suppressed by amino acids and growth factors such as
insulin, which act through protein kinase B (Akt/PKB).
However, when cells are starved for amino acids
(Starvation), autophagy is activated via at least two
possible signaling pathways: mTor and class III
phosphoinositide 3-kinase (PI3K-III). Beclin interacts
with and presumably activates the PI3K-III thereby
promoting autophagy. This interaction can be inhibited
by Bcl2 or Bcl-XL, which directly interact with Beclin.
Recently, FoxO3 transcription factor has been
associated with increased ubiquitin-proteasome
mediated proteolysis, as well as increased autophagy.
FoxO is believed to stimulate autophagy via BNIP3 and
LC3.

32 BioFactors



of libido, infertility, amenorrhea, osteoporosis, depression
[102], which may limit its large-scale applicability to humans.
However, recent data indicate that even a slight reduction in
calorie intake (i.e., 8% restriction) combined with voluntary
exercise may retain the ability of counteracting sarcopenic
changes in old rodents [15]. Future studies will have to
investigate whether CR, alone or in combination with physi-
cal exercise, may represent a safe and efficient strategy to
delay the onset and mitigate the progression of sarcopenia
in older adults.
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