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Abstract

Purpose of review—We set out to review the current state of science in neuroprediction, using 

biological measures of brain function, with task based fMRI to prospectively predict response to a 

variety of treatments.

Recent findings—Task-based fMRI neuroprediction studies are balanced between whole brain 

and ROI specific analyses. The predominant tasks are emotion processing, with ROIs based upon 

amygdala and subgenual anterior cingulate gyrus, both within the salience and emotion network. 

A rapidly emerging new area of neuroprediction is of disease course and illness recurrence. 

Concerns include use of open-label and single arm studies, lack of consideration of placebo 

effects, unbalanced adjustments for multiple comparisons (over focus on type I error), small 

sample sizes, unreported effect sizes, overreliance on ROI studies.

Summary—There is a need to adjust neuroprediction study reporting so that greater coherence 

can facilitate meta analyses, and increased funding for more multiarm studies in neuroprediction.
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Introduction

A. The State of Neuroscience and Clinical Care in MDD

Major Depressive Disorder (MDD) is a brain disease, or heterogeneous set of brain diseases. 

It can lead to temporary or permanent disruptions in emotions, problem solving, attention, 

motivation, and sleep. MDD also has a high prevalence, now with lifetime estimates at 

nearly 20% (1). Indeed, the majority who experience a depressive episode will re-experience 

the illness within 2 years, with some estimates at 80% recurrence (2–4). Moreover, it is 

becoming increasingly clear that environmental and “endogenous” risk factors for MDD 
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become evident in childhood, even if the majority of individuals who have these risk factors 

do not express illness.

It is surprising, then, that so little knowledge exists about how to prevent or treat MDD. The 

research expenditure for MDD has paled in comparison to other diseases that are rarer and 

less costly – MDD is estimated to result in a 500 million dollar loss of productivity and 

earnings per year in the US alone. Current treatments for MDD have limited success, and no 

clinical predictors of treatment response exist that could be used on the individual patient 

level. Unfortunately, longitudinal studies that might better illustrate the risk and expression 

factors for MDD are expensive and difficult to maintain using standard extramural funding 

cycles, so only a limited number of studies have followed samples longitudinally.

One particular challenge for treatment identification and prediction is that MDD is a highly 

heterogeneous condition that can present with any number and severity of symptoms for 

treatment identification and prediction. For example, one of the best-studied mechanisms for 

mood disorders is the Hypothalamic Pituitary Adrenal (HPA) access. Yet even this well-

established model has led to a highly heterogeneous set of reports, and recent failure of 

multiple clinical trials for HPA axis modifiers (5–13). To this end, one could consider MDD 

as a multidimensional condition, as the neural underpinnings of any of the symptoms are (a) 

shared with many other conditions, and (b) supported by unique and integrated neural 

circuits (14). The Research Domain Criteria (RDoC) is one framework by which the field 

has begun to deconstruct the substrates that are potential risks for MDD, or that might be 

adversely affected by MDD.

A related challenge is that treatment for MDD has almost uniformly consisted of repurposed 

treatments for alternative conditions, or accidental findings. Of these treatments, there is not 

a clear understanding of the mechanisms by which they work. For example, SSRI action 

happens over the course of hours, whereas the treatment effect is not evident for weeks (15). 

More recently, alternative treatments like repetitive TMS, magnetic seizure therapy, and 

ketamine have enabled us to imagine and test different pathways and mechanisms for MDD 

(16, 17). Furthermore, large clinical trials like I-SPOT have solidified some pathways on 

treatment response (18, 19), and EMBARC holds promise for new insights (20). It is perhaps 

a time for some critical reflection and discussion.

B. The Promise of Neuroprediction in MDD

Given the many challenges toward understanding factors involved in risk for and expression 

of MDD, neuroscientists have designed experiments as bottom-up tests of response in MDD. 

The idea was to understand what neural mechanisms and pathways mediate or predict 

(neuroprediction) response for some individuals, so that specific treatments could be 

targeted for certain individuals. First, there was a hope that neuroprediction might illuminate 

the mechanisms by which standard treatments effect change in MDD, and for whom. 

Second, there was also hope that different treatments might have different predictive 

capacity based upon regions and networks (21). Indeed, there is mounting evidence that 

brain activity is better than standard clinical measures at predicting treatment outcome (19, 

22, 23). Unfortunately, neither of those hypotheses has led to any clear breakthroughs as of 
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yet – what makes for significant prediction at the group level may not be specific enough to 

transfer to the individual patient (24).

In addition, in many studies, samples that are eligible for MDD imaging trials tend to be 

younger, more highly educated, less severely ill, absent many other medical and clinical 

comorbidities, and with lower body mass index. Each of these factors alone, and in 

combination, results in a far greater likelihood of a better treatment response (25). In 

contrast, studies of treatment resistant depression (TRD) are plagued by variable definitions 

of MDD treatment resistance, and more heterogeneous, chronic representations of the illness 

(26–30). How might we integrate these disparate results?

C. Predicting Treatment Response in MDD

By our reckoning, there are well over 60 studies that have attempted to use neuroimaging 

measures to predict treatment response (See Table 1 for a subset of just task-based fMRI 

studies). The majority of these studies have been open-label, unblinded medication trials, 

many of which are discussed in two separate meta analyses (31, 32) and three recent review 

articles (33–35). These studies include a near term prediction of reduction or resolution of 

depressive symptoms, typically over 4–16 weeks.

Prediction studies fall into four broad categories of RDoC domains – negative valence 

processing (e.g., emotion reactivity, attentional bias), positive valence processing (e.g., 

reward), cognitive control and working memory (e.g., inhibitory control), and resting. In 

addition, the methodologies for measurement of brain function are multifaceted, including 

EEG, MRI, fMRI (also including ASL, rs-fMRI, ALFF, ICA techniques), PET, SPECT, and 

fNRIS. We focus in this review on task-based fMRI, the predominant strategy, especially 

since other reviews have included PET, ASL, EEG, and rs-fMRI. One of the main 

differences across studies is whether whole brain vs region of interest analyses were used. 

Moreover, different studies have used different thresholds for significance, which, when 

combined with variable and often small sample sizes (see below) results in an investigator/

team effect outside the effects of measurement. Finally, though, the median number of 

subjects is about 20 (see Table 1), which limits the nature of accuracy in regression models 

(24, 36). Or for example, in t test comparisons of responders vs non-responders, for 

example, if a majority of those enrolled will be treatment “responders” then the clinically 

more meaningful group (non-responders) are underweighted within the model. Overall, 

these considerations and variations render integration and interpretation challenging.

D. Existing Studies and Networks in Treatment Prediction in MDD

Some early studies, reviews, and meta-analyses have honed in on key neural circuits 

involved in neuroprediction of treatment response (31–34), and we will only briefly retouch 

upon these here, offering a network-based framework for interpretation. The utility of a “key 

region” (KR) predictive model is balanced by the reality of the level of precision in the data 

(smoothness), the nature of network-based functioning, and realizations that there is more 

scanner noise in a given region, particularly for fMRI. For example, the ability to replicate 

an exact KR is not the same as replicating a performance or self-report predictor in the 

standard sense of replication. Differences in scanners, software, preprocessing pipelines 
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(including choices made regarding realignment, slice-timing, normalization, standard 

templates, smoothing kernel), and quality control procedures, substantially adds to 

variability in 3D coordinate system replication, beyond the assessment of the effect size. An 

alternative strategy might be to employ some additional smoothing function when a meta 

analytic tool, such as GingerAle, is employed. As a result, here we organize the regions by 

virtue of recent network parcellations. For simplicity, we focus on the three-network model 

of Menon and colleagues (see Table 1), while acknowledging that other researchers choose 

to parcellate networks and subnetworks differently (37).

Salience and Emotion Network—Within the concept of a three-network model, there is 

one network that prioritizes processing and reacting to information that has a high salience 

level, including self-relevant and often emotionally-laden stimuli. As a result, it can be 

difficult to dissociate what could be considered emotional and not salient, and even more 

challenging to segregate out those experiences that might be self-relevant but somehow not 

salient. One can imagine, then, that these categorizations do not lend themselves to a 

transparent set of questions or answers within neuroimaging research. As such, we combine 

these two highly overlapping concepts into one broad network. The key nodes involved in 

this broad network are amygdala, subgenual cingulate, dorsal cingulate, ventral striatum, and 

anterior insula (possibly more ventral). The rostral and subgenual anterior cingulate have 

been implicated in prediction studies across modality and task (24, 25, 31, 34, 38, 39). The 

amygdala has been a much trickier region to study (more heavily targeted, but inconsistent 

results) in prediction of response (19, 40–42). The insula has also been observed in a few 

task paradigms (32, 43, 44). Within studies of reward, ROI approaches have been very 

common, with hypoactivation in ventral striatum and subgenual cingulate as predictors of 

poor treatment response (45–47).

Cognitive Control Network—The cognitive control network (CCN), is thought to be a 

large subnetwork within the “task-positive” network. It is thought to prioritize processing of 

information in relation to planning, organization, sequencing, stopping and starting, and 

processing of mental operations. Key nodes are the dorso-lateral prefrontal cortex (DLPFC), 

the inferior parietal lobule, and dorsal anterior cingulate. Of the few studies that have 

employed cognitive control or working memory studies, the importance of the right DLPFC 

in treatment prediction has been reported in several studies, primarily cognitive control and 

working memory tasks (18, 24, 38, 48). Notably, many negative valence studies have also 

reported DLPFC activation as a predictor of treatment response (39, 49–52). It is possible 

and even likely that emotion regulation engages cognitive control regions to aid in managing 

the emotional response, even if it is somewhat unclear about the level of volitional control a 

particular patient or control participant might have over such regions.

Default Mode Network (DMN)—The DMN is a distributed neural network encompassing 

a large amount of medial cortex, proximal to both anterior and posterior aspects of the 

medial prefrontal cortex. It also includes nodes within medial and lateral temporal and 

parietal cortex. It is thought to represent a host of functions including memory, self-

referential thought, theory of mind (37). Because DMN is a task-negative network, it has 

been relatively understudied in task domains, yet it does routinely activate in prediction of 
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treatment response for affective paradigms (34, 50, 53–55). The medial prefrontal cortex is a 

frequently reported predictor in fMRI task-based studies, and includes/extends into rostral 

cingulate, mostly for emotion perception/processing studies, primarily in emotion 

perception, processing and regulation tasks (50, 51). The most ventral aspect of the posterior 

cingulate, extending into posterior hippocampus, is a reported predictor for both cognitive 

and affective paradigms (50, 55, 56). The anterior hippocampus, has also been reported as a 

predictor, primarily in emotion processing studies (49).

Other Regions—Surprisingly, visual cortex and cerebellum appear also in such task-based 

fMRI studies, irrespective of mechanism (24, 31, 34, 38, 49). Not surprisingly, these results 

are often underspecified and under-discussed. Potentially due to the lack of theory regarding 

the potential contributions of these regions to MDD, such findings nevertheless cause us to 

pause in making assumptions about network or KR specificity in neuroprediction, and 

require further study.

Recent studies have even looked at comparative and integrative prediction of different 

neuroimaging approaches (24, 57). The goal is to obtain a treatment prediction accuracy of 

>95% (binary question of whether this particular patient will achieve remission) so that such 

predictors could be used in treatment prescriptive studies. More importantly, using 

combined/comparative treatment studies could identify highly accurate moderators and 

mediators of treatment response, so that a prescriptive clinical imaging design could be 

planned. The results of such studies could inform newer guided clinical trials where the key 

outcome is time to remission. If we could reduce the median time to wellness by weeks or 

even months, a considerable degree of the “burden” of depression could be reversed.

One recent study by our group combined behavioral, task-fMRI, and task-fMRI with 

independent component analysis in an integrative predictive model that achieved 89% 

accuracy in prediction of treatment response, including steps with cross validation (24). 

Medial and lateral prefrontal cortex synchronization of activation during errors was a 

positive predictor of degree of treatment responsiveness, and accuracy of prediction 

significantly increased when combined with poorer behavioral inhibitory control and 

increased activation in several prefrontal regions. In addition, one of the I-SPOT reports 

suggested that hypo-reactivity in emotional stimuli within the amygdala was successful in 

predicting treatment response with 75% accuracy (19).

E. Predicting Risk and Disease Course

Another potential use of neuroimaging studies in MDD is to predict disease course or 

recurrence of illness. Of the studies that have been conducted, initial results are interesting 

and potentially promising. However, there are relatively few studies of this type. The 

distinction between risk and disease course studies, is that they study individuals over a 

longer period of time (e.g., 6 months up through decades of follow-up), and the goal is to 

predict a distant event. The likelihood that such studies will yield a positive predictor is quite 

modest. In fact, this weakened predictive capacity is compounded by attrition, and further 

limited by the tendency for negative studies to go unpublished (58), and the difficulty in 

publishing replication studies (see below for more details).
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A prior review identified biological markers of vulnerability in at-risk youth (59). Despite 

the many challenges of publishing longitudinal data, investigator variability in task/

physiological/measurement probes that were used, and the marked cost of longitudinal 

studies, this review noted that there were a significant number of biological predictors that 

were reported by more than one group. For example, EEG measured alpha band power, 

P300, and frontal asymmetry all demonstrated some degree of hereditary convergence. 

Studies that use fMRI measures to predict outcome are few and far between. Recently, the 

longitudinal assessment of manic symptoms (LAMS) multisite group suggested that self-

report and neuroimaging markers could account for 28% of variance in future manic 

symptoms (60). This study followed 78 at risk youth for an average of 15 months and using 

cingulum connectivity and connectivity from the ventral striatum to the parietal cortex as 

predictors. Another study used cross-hemispheric connectivity from subgenual anterior 

cingulate seeds within a psychophysiological interaction analysis during a self-blame task. 

Surprisingly, though, the resilient group (no MDD recurrence) was different from the 

healthy control group, whereas the group with recurrent MDD did not noticeably differ from 

the HC group (61). Recurrence was predicted with 75% accuracy in this sample. A final 

example of the utility of fMRI in the prediction of treatment response comes from a study of 

anterior cingulate volume, which predicted 52% of variance in future depression scores, 

along with other relevant clinical data (62). While these studies are encouraging, more are 

needed. As an example of what might be conducted in future studies, a recent paper used 

discrete-time Markov Chain with finite states (based upon 1 year of monthly self report 

questionnaires) to define latent symptom classes in 209 adults with bipolar disorder (63). 

These repeated measures type analyses with MDD combined with biological measures in 

patients with MDD could be very helpful for predictive future states and course of illness.

F. Open Label Studies, Placebo Response and the Specificity of Clinical Prediction

The majority of predictive studies in MDD with fMRI have been open label studies. Those 

who have longstanding interest in clinical trials have questioned the internal validity of open 

label, one-arm predictive studies, because there is no comparison treatment, the treatment is 

not blinded, and there is no placebo control. We agree that single arm studies have 

challenges for specificity of prediction – but if replicated these studies still may offer some 

prescriptive value. We highlight the importance of the control group to evaluate effects of 

time and maturation independent of the treatment condition (64).

Placebo-controlled designs have several challenges and merits, as there are opportunities in 

these designs to distinguish treatment specific and more generic effects of help-seeking and 

return to wellness. The role of placebo responding is an important consideration in treatment 

prediction modeling. Many studies suggest that placebo responding can be nearly as good as 

the effects of an active treatment (20, 65). These studies have led to concerns about the 

biological specificity and clarity of diagnoses and treatments, including with MDD. They 

have also led to broader concerns with specificity of treatments for MDD.

More recently, our group has focused on whether placebo responding is in fact distinct in 

any way from response to a standard psychiatric medication (66). Notably, the individuals 

who are most responsive to a suggestive placebo effect are also the ones who show the 
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greatest responsiveness to a psychoactive treatment had greater u-opioid release during 

placebo in the nucleus accumbens. The EMBARC study should also be able to address this 

question in some detail.

Psychometric considerations beyond placebo include natural resolution of illness, regression 

to the mean, and the close links between hopefulness, behavioral activation, and placebo 

responding (65). Continued innovation is needed to better understand placebo response, and 

perhaps how placebo might be marshaled to facilitate, enhance or extend the effects of 

psychoactive medications and psychotherapies. In summary, although we agree that single 

arm studies clearly have challenges for specificity of prediction, if replicated these studies 

still may offer some prescriptive value.

G. Power, Clinical Significance, Effect Sizes, and Adjustments for Multiple Comparisons

There is continued misunderstanding within the imaging field (although it is not relegated 

solely to imaging studies) about the role of statistical adjustment of accepted type I error 

rate, the relationships of statistical threshold adjustment to chances for replication, and 

whether such one-off studies can actually diminish the type I error without negatively 

compromising a scientific line of inquiry. Statisticians often counsel on the careful selection 

of a p value to balance out the nature of a false positive, type I error, vs a type II, negative 

error (36, 67). In addition, the concept of meaningfulness of a significant effect – does it 

help us to understand illness, treatment with a reasonable degree of precision and effect size, 

is often lost in the discussion (64, 68). We hope to illustrate that the concerns about type I 

error are valid, but that they have mislead reviewers and the field into a p value war that can 

only sacrifice type II error, clinical significance - and will very likely reduce the capability 

of time tested strategies like replication and meta-analysis. Figure 1, Panel A is an actual 

illustration of the relationship between sample size and statistical significance using 

GPower. We set alpha at .005, as our experience suggests that this threshold has a balance 

between statistical stringency and clinical significance. To achieve significance with an 

alpha of .005 and power of .80, an effect size of 1.25 (very large) is needed with equal 

samples of 20. This means that many comparison studies are underpowered for large and 

medium effect sizes, they would have a higher likelihood for non-significant in this scenario 

(type II error). This is particularly troubling, as the vast majority of medical treatments have 

small to moderate effect sizes (Figure 1, Panel B). So, would we counsel throwing away the 

baby with the bathwater?

This illustration enables us to see what types of effect sizes would be significant with a given 

sample size. This is compounded by the reality that large effect sizes may be no more or less 

likely to replicate than very large effect sizes. This creates an unhealthy tension between 

whole brain analyses and ROI analyses. There may be a temptation to only report ROI 

analyses to avoid undergoing adjustments for multiple comparisons. Including ROI only 

analyses - limits the ability to conduct meaningful meta-analyses across many studies. This 

challenge is compounded, because few groups are capable and motivated toward carrying 

out treatment studies with biological markers.

A brief comment on adjustments for multiple comparisons. We contend that the unbalanced 

concern about p value adjustments, with multiple comparisons in mind, has created a 
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mindset in authors, reviewers and editors that is not conducive to evaluating the relative 

merits of false positives vs true negatives. There is already a tremendous bias against 

publication of negative results, often referred to as the file drawer effect. Well-funded labs 

are left to resort to publishing in paid journals, if they choose to publish the findings at all. 

Less-well funded labs resort to planting summary results in chapters and reviews, with 

sparse and under-evaluated methods. No matter the outcome, the lack of published negative 

studies substantially limits the benefits of meta analytic and qualitative review techniques.

Finally, an unadjusted p value for a new treatment (exploratory) should be viewed differently 

than an unadjusted value for a known treatment. There is currently a focus on rapid fail 

clinical trials at the NIMH. A strict evaluation of merit based upon adjusted p value may 

result in type II error – a promising treatment may be relegated to the dust heap. An 

evaluation based upon effect size with confidence estimates around the effect size, combined 

with rapid extension into a replication sample, can help balance type I vs type II error. 

Moreover, before the rapid extension to multisite trials, it is wise to require a semi-

independent replication at a separate site. An extension of R61 to R33, could be followed by 

a second R33 (or even concurrently run, perhaps a new R mechanism) in an independent lab 

with input from the PI and team from the R61/R33.

H. Neuroprediction in the RDoC Era: Current Directions and recommendations

The emergence of the RDoC era has placed the question of treatment effect sizes and 

specificity squarely in the cross-hairs. There are many non-specific effects of intervention; 

effects of therapeutic alliance, intervention time, effort toward change, regression to the 

mean, placebo effects, natural resolution of illness, etc. Each of these can contribute to 

significant “improvement” that is not related to the specific mechanisms of treatment (e.g., 

domain). RDoC highlights this tension because it shows how many diseases may have 

common and overlapping domains of illness – therefore they may also have common 

pathways to wellness (69–73). Anxiety and depression may share similar negative valence 

domain disruptions, whereas only depression might have positive valence domain 

dysfunction.

To date, the study of clinical predictors has tended to overly rely on a categorical-polythetic 

diagnostic nomenclature (e.g., DSM-IV) constricting tests to one disorder, often testing the 

therapeutic response in terms of rigid measures of symptom change – these are inevitably 

tied to categorical diagnostic systems. Given the heterogeneity of major depression and 

dimensional nature of symptomatology, neuropredictors of treatment response may elucidate 

distinct and shared pathways that interact with particular interventions. Therefore, testing the 

discriminant and construct validities of several RDoC domains and dimensions (e.g., reward, 

threat responding, loss, affect regulation) linked to circuits in experimental designs that 

examine response to interventions with different mechanisms of action (e.g., 

pharmacotherapy, psychotherapy, neuromodulation) can lead to new insights.

The convergence of anxiety and depression symptoms and effected domains suggests that 

there may be parallel predictors in treatment response. The RDoC initiative has encouraged 

us to frame our understanding of treatment mechanisms and predictors to have the broadest 

impact on the care of patients with major depression and other internalizing 
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psychopathologies (IPs (74)). More specifically, the RDoC framework is grounded on three 

postulates of high relevance to neuroprediction: 1) IPs as mental illnesses are disorders of 

brain circuits (e.g., amygdala-frontal circuitry); 2) tools of clinical neuroscience (e.g., 

functional neuroimaging, electrophysiology, etc.) can be used to test and advance 

biosignatures that will guide treatment; 3) brain-based predictors can be enhanced by a 

multimodal approach that incorporates different units of information that are likely to 

moderate or mediate neural predictors (75). This framework has the potential to catalyze 

research that will address knowledge gaps that have hindered progress in incorporating 

biological predictors into clinical practice.

Additionally, accumulating data from the literature and our teams suggest brain regions 

implicated in the brain pathophysiology of a disorder or even in treatment-mediated change 

may not be the same regions that predict treatment response (35, 76, 77). For example, those 

factors that contribute to risk of illness are thought of as endophenotypes. Those that 

mediate that treatment response are considered treatment targets. Those factors or biological 

markers that predict treatment response could be endophenotypes. They could also be 

treatment targets. They could, however be independent treatment predictors, and be 

unrelated to endophenotypes or treatment targets. RDoC studies with a focus on specific 

domains of dysfunction (e.g., treatment targets and/or endophenotypes), may in fact best 

highlight (or even expand) treatment predictors across multiple illnesses and domains. Thus, 

continued focus on mechanisms for endophenotypic risk is likely a different path than the 

advancement of biomarkers towards precision medicine (treatment targets or predictors).

I. Conclusions and recommendations

We have attempted to cover a few important issues in neuroprediction studies in MDD. To 

our view, there are two few studies of the neurobiological predictors of and mechanisms 

involved in treatment response, even of accepted clinical treatments. Neuroprediction studies 

offer several windows into disease, illness expression, processes of recovery, and 

maintenance of wellness. We recommend that concerted effort be focused towards 

collections of patients with internalizing disorders, often referred to as repositories. These 

repositories of eligible and interested patients can then be tested with different RDoC 

paradigms, with sufficient sample sizes, using different treatment strategies, with the idea 

that accumulated knowledge will improve the matching of treatments to patients for optimal 

outcomes. In the meantime, a great deal will be learned about how our treatments work, and 

for whom.

We close with some additional recommendations for uniformity in reporting for 

neuroprediction studies (Table 2). These can be considered as additional and complementary 

to already existing reporting guidelines (e.g., COBIDAS (78)), with a specific focus on data 

that will assist in evaluating clinical specificity, meaningfulness, and can contribute to meta 

analyses. We highlight again, that such reporting guidelines do not and cannot protect 

against a failure to replicate. They can only guide better implementation of replication 

studies, increased rigor. Moreover, we add that replication studies should carefully consider 

challenges of overfitting, p-hacking, and spatial alignment challenges. A poorly executed 

replication study (by sample size, design, inclusion and exclusion criteria, treatment fidelity) 
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has the potential for great harm. As the number and types of therapies for internalizing 

disorders has expanded, including many different potential mechanisms, we harbor 

optimism that we will move the needle forward, toward better and more precise treatment 

matching.
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Figure 1. 
A. Illustrates the observed N needed to obtain power of .80 to reject the null hypothesis, in a 

given voxel, based upon alpha < .005. This is independent of adjustment for cluster size. A 

exponential fit line is include to illustrate the relationship between sample size and power.

B. Effect sizes for comparison with 1B. Most psychotherapies are moderate effect sizes, 

suggesting that a similar brain effect size would have adequate power with Ns of between 50 

and 109. The assumption is that the brain marker would have the same effect size as the 
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treatment. Brain effect sizes may be larger or smaller, as it is doubtful that they are 

parametrically linked. Effect sizes from Meyer et al., 2001 (69) and Leuck et al., 2013 (70).
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Table 2

Reporting Recommendations for Neuroprediction Studies

ROC curves Use of ROC curves enables a quick easy understanding of the clinical relevance of a prediction 
variable or model.

Effect sizes Reporting effect sizes can help translate to clinical meaningfulness (cohen’s d, or Z score, 
suggest including confidence intervals).

Standardization of treatment response Use of reliable change index or multiple measures (e.g., pre-to-post percent reduction on both 
self-report and clinician-report) standardizes reporting and interpretation

Validation of biomarkers Training-testing splits or cross-validation for internal validation; testing predictor performance 
on data sets collected from different laboratories for external validation

Omnibus, multimodal prediction strategies Newer prediction tools can adjust for the imbalance between number of predictors and number 
of subjects, adjust for the impact of non-normal distributions with outliers.

Reporting results at p < .005 with modest 
cluster size correction (e.g., k > 50)

Supplemental Tables with whole brain, partially adjusted results, guided by clinical effect sizes, 
not multiple corrections. These will enable users to integrate against a uniform standard for 
meta-analysis

Reporting total number of analyses 
conducted and family wise error

Report the number of a priori analyses and the adjusted Familywise Error rates. This allows to 
the reader to better integrate the likelihood of false positive errors.

Using comparison treatments that are 
expected to have a different mechanism of 
action

Even if the interaction between treatment arm and predictors is not significant, it can provide 
meaningful pilot information for future studies of differential mechanism and effectiveness 
trials.
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