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Abstract

Predicting the spatial distribution of animals is an important and widely used tool with 

applications in wildlife management, conservation, and population health. Wildlife telemetry 

technology coupled with the availability of spatial data and GIS software have facilitated 

advancements in species distribution modeling. There are also challenges related to these 

advancements including the accurate and appropriate implementation of species distribution 

modeling methodology. Resource Selection Function (RSF) modeling is a commonly used 

approach for understanding species distributions and habitat usage, and mapping the RSF results 

can enhance study findings and make them more accessible to researchers and wildlife managers. 

Currently, there is no consensus in the literature on the most appropriate method for mapping RSF 

results, methods are frequently not described, and mapping approaches are not always related to 

accuracy metrics. We conducted a systematic review of the RSF literature to summarize the 

methods used to map RSF outputs, discuss the relationship between mapping approaches and 

accuracy metrics, performed a case study on the implications of employing different mapping 

methods, and provide recommendations as to appropriate mapping techniques for RSF studies. We 

found extensive variability in methodology for mapping RSF results. Our case study revealed that 

the most commonly used approaches for mapping RSF results led to notable differences in the 

visual interpretation of RSF results, and there is a concerning disconnect between accuracy metrics 

and mapping methods. We make 5 recommendations for researchers mapping the results of RSF 

studies, which are focused on carefully selecting and describing the method used to map RSF 

studies, and relating mapping approaches to accuracy metrics.
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1. Introduction

Understanding the spaced used by animals is an important component to wildlife 

management, conservation and population health. For example, predicting a species’ 

distribution has been used to inform endangered species management and habitat 

conservation efforts (Dzialak et al., 2013; Dzialak, Olson, Harju, Webb, & Winstead, 2012; 

Fortin, Courtois, Etcheverry, Dussault, & Gingras, 2008; Richardson, Stirling, & Hik, 2005; 

Roever, Van Aarde, & Leggett, 2013). As one example, such modeling has been employed to 

address concerns including the evaluation of conservation networks for African elephants 

(Loxodonta africana oxyotis;(Roever et al., 2013). Predicting species distributions has also 

been used to evaluate anthropogenic effects on wildlife distribution (Bleich, Davis, Marshal, 

Torres, & Gonzales, 2009; Mark Hebblewhite & Merrill, 2008; Jiang, Ma, Zhang, & Stott, 

2009; Johnson et al., 2005; Merkle, Krausman, Decesare, & Jonkel, 2011; Seip, Johnson, & 

Watts, 2007). For example, Johnson et al. (2005) modeled the potential distribution for three 

arctic species and evaluated the effect of mineral exploration on habitat suitability in an 

effort to inform management. Species distribution modeling is also an important tool for 

evaluating the effect of environmental and climatic changes on habitat use (Alamgir, Mukul, 

& Turton, 2015; Ramirez-Villegas et al., 2014). Additionally, predicting the spatial 

distribution of a species has also played a role in understanding the distribution of important 

animal diseases (Brook & McLachlan, 2009; Dugal, Beest, Wal, & Brook, 2013; Morris, 

Proffitt, Asher, & Blackburn, 2015; Proffitt et al., 2011). For example, studies have modeled 

the interaction of disease reservoirs and susceptible hosts. Proffitt et al. (2011) identified 

regions where elk (Cervus elaphus) and livestock were at risk of commingling in a 

brucellosis endemic region, and Morris et al. (2015) predicted landscapes where elk 

distributions may overlap with an anthrax zone in the Greater Yellowstone Ecosystem.

Each of the examples above employed some form of species distribution modeling. 

Generally, these approaches aim to measure non-random relationships between locations 

that describe an animal’s position in space and environmental conditions. Recent 

advancements in the availability of spatial environmental data, wildlife telemetry 

technologies, and developments in modeling methods have transformed the realm of species 

distribution modeling (Elith & Leathwick, 2009). Digital elevation models of the earth 

surface, climate parameters, and remotely sensed imagery of land surface conditions are 

accessible for landscapes across the globe (in many cases at no cost), and software to 

integrate and analyze these data sets in a geographic information system (GIS) framework is 

widely available. Wildlife tracking has been transformed by the advent of satellite telemetry, 

which allows animals to be tracked 24 hours a day with global positioning system (GPS) 

locations recorded in rapid succession for extended periods of time. The implementation of 

GPS telemetry has led to extensive datasets and the accompanying development of 

quantitative methods for their analysis (Mark Hebblewhite & Haydon, 2010). The 

integration of detailed environmental information and fine spatial-temporal scale wildlife 

location data provides an exciting opportunity to address critical questions related to wildlife 

conservation and management through species distribution modeling. The notable increase 

in studies employing species distribution modeling in recent years reflects the importance of 

these models and their applicability to a wide range of ecological, management and 
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conservation objectives. At the same time, the expansive data sets and complexities 

associated with modeling approaches raises important concerns about the accurate and 

appropriate implementation of modeling approaches (Cagnacci, Boitani, Powell, & Boyce, 

2010; Mark Hebblewhite & Haydon, 2010).

There are several methods that are frequently used to model wildlife and livestock 

distributions across multiple scales from local to global. Ecological niche modeling (ENM) 

approaches include a suite of methods (Peterson, 2011) that identify the potential 

distribution of species or communities (Alvarado-Serrano & Knowles, 2014; Ferrier & 

Guisan, 2006). ENM approaches can evaluate presence only, presence absence, or presence 

pseudo-absence occurrence data. Commonly, presence only modeling approaches capitalize 

on idiosyncratic data from field surveys, natural history collections, published ranges, and 

public databases for occurrence data for ENM models (Alvarado-Serrano & Knowles, 2014). 

These approaches often result in range-wide estimates of a species’ distribution (Blackburn, 

2010), though several studies have developed local scale niche-based geographic 

predictions.

Smaller scale, local studies often aim to model resources preferred or avoided by a 

population using resource selection function (RSF) modeling of wildlife telemetry data. One 

approach to RSF modeling is to compare the environmental or landscape attributes of used 

locations to the attributes of a set of available locations (Manly, McDonald, Thomas, 

McDonald, & Erickson, 2002). Used locations are frequently represented by telemetry fixes 

(e.g. GPS fixes or VHF relocations) or survey observations and available locations are 

defined by the researcher based on the spatial-temporal scale and scope of the research 

question. RSF model outputs are used to predict wildlife distributions; however, methods of 

mapping distributions from RSF model outputs are variable and often poorly described. The 

focus of this review is on the appropriate methods for mapping predicted species 

distributions from RSF outputs.

There has recently been an increased demand for mapped products in the fields of 

conservation and land management (Elith & Leathwick, 2009), which includes RSF studies. 

Mapping RSF outputs may make model results more accessible and relevant to managers 

(Johnson, Nielsen, Merrill, McDonald, & Boyce, 2006). For example, a map identifying the 

predicted resource selection of male elk during the anthrax season is likely more informative 

than reporting the sign and significance of model covariates for a manager implementing 

disease surveillance efforts (Morris et al., 2015). Maps illustrating predicted resource 

selection can provide an important tool to managers, highlighting the need for easily 

interpretable and accurate maps.

Presently, there is not a consensus in the literature on the most appropriate method for 

mapping RSF outputs. There are multiple challenges associated with RSF mapping and 

interpretation and the methods for mapping RSF results onto the landscape are variable and 

inconsistent across studies. For example, splitting RSF values into bins (e.g. (Morris et al., 

2015), converting RSF values into a binary variable (Oehlers, Bowyer, Huettmann, Person, 

& Kessler, 2011), and employing a linear stretch on RSF values rescaled from 0 to 1 (Mark 

Hebblewhite & Merrill, 2008) have all been employed to map RSF outputs derived from the 
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same modeling approach. There are also a large number of studies where methods for 

mapping RSF outputs are not reported (Proffitt et al., 2011), or map legends are nonexistent 

or uninformative. Even with appropriate map legends, interpreting RSF values is 

challenging, as these values are not equivalent to the true probability of selection (Keating & 

Cherry, 2004). Harzel et al. (2006) suggested that displaying RSF results as a continuous 

surface can be misleading and RSF values should be reclassified, or binned, for map creation 

to provide honest and relevant predications. However, there has been minimal discussion on 

the most appropriate binning methods, and displaying RSF values as a continuous surface 

remains common (Brook & McLachlan, 2009; Dellinger, Proctor, Steury, Kelly, & Vaughan, 

2013; Dugal et al., 2013; Fortin et al., 2008; Horne et al., 2014; Teichman, Cristescu, & 

Nielsen, 2013).

In contrast to the sparse discussion of RSF mapping methods, approaches for testing the 

predictive accuracy of RSF models have been discussed at length in the literature (Boyce, 

Vernier, Nielsen, & Schmiegelow, 2002; Fortin & Fortin, 2009; Hirzel et al., 2006; Johnson 

et al., 2006; Keating & Cherry, 2004; Manly et al., 2002; Wiens, Dale, Boyce, & Kershaw, 

2008). Wiens et al. (2008) advise that the failure to appropriately test the predictive accuracy 

of RSF models could lead to management errors resulting in grave consequences for the 

species of concern. Mapping approaches are not discussed as a component of accuracy 

metrics, which suggests that RSF maps might not be displaying accurate information. Our 

objectives were to 1) summarize the methods used to map RSF outputs, 2) discuss the 

relationship between mapping approaches and accuracy metrics, 3) conduct a case study on 

the implications of employing different mapping methods, and 4) provide recommendations 

as to appropriate mapping techniques for RSF studies.

2. Methods

2.1 Literature Review

We performed a literature review using the Google Scholar and Web of Science search 

engines to identify RSF studies with a mapping component. In Google Scholar, we searched 

for the exact phrase “resource selection function” and the word “map” found anywhere in 

the article. We inspected the articles resulting from this search for 1) peer-reviewed journal 

sources; 2) a logistic RSF modeling approach the employs a use-verses-availability design 

(Manly et al., 2002),3) The inclusion of a map representing RSF results. In Web of Science 

we searched for “resource selection function and map” found anywhere in the article. A 

filter to include only peer-reviewed journal articles, and fields of study related to wildlife 

were applied. We inspected Web of Science results for 1) a logistic RSF modeling approach 

and 2) the inclusion of a map representing RSF outputs. We did not include RSF’s with a 

Bayesian framework, or studies that solved a resource selection probability function (RSPF) 

where the true probability was estimated. For each article that met the above criteria, we 

classified the method used to map RSF outputs and the method to test model predictive 

accuracy. We were specifically interested in summarizing the relationship between the 

method for partitioning data and the method used to calculate accuracy metrics. We reported 

the percentages of papers included in the review that used each method. The following 

caveats apply to these methods: We assumed that Web of Science and Google Scholar were 
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unbiased sources. We assumed relevant literature would include the phrase “resource 

selection function” and the word “map”. We also limited our search to peer-reviewed journal 

articles in English.

The primary classifications were a stretched display of RSF results compared to a binned 

approach, which requires splitting continuous values into bins. A continuous surface can re-

scale values from 0 to 1, stretch from the minimum to maximum value, use standard 

deviations, or a histogram smoother. Commonly used binning approaches include quantiles, 

equal intervals, and equal area bins (Figure 1). A quantile classification splits values into 

groups that contain an equal number of values. An equal interval classification divides 

values into groups that contain an equal range of values. We also mapped our model 

following the most common method for mapping RSF values in predictive accuracy tests (10 

equal area bins; Figure 1). An equal area classification divides values into groups that cover 

the same amount of area on the landscape.

2.2 Case Study

To illustrate differences in the most commonly used mapping approaches from our literature 

review, we projected an existing RSF model onto a geographic landscape for several of these 

methods. We used an existing landscape-level RSF model for male elk during summer 

months in southwest Montana developed with a use-availability framework (Morris et al., 

2015). The model was developed using a generalized linear mixed effect model including 

fixed and random effects to estimate resource selection. Used points were derived from GPS 

telemetry fixes from 13 collared male elk tracked from June to August 2010–2012 and we 

generated five random points for each used point within a population-level minimum convex 

polygon (MCP) to represent availability. The dependent variable was a binary variable 

representing use verses availability.

We created an a priori model list composed of all subsets of environmentally meaningful 

variables extracted from the literature. We selected the most parsimonious model using 

Akaike’s Information Criterion (AIC). Environmental covariates considered in model 

development included two land cover types: forested and non-forested (2010 Montana 

Spatial Data Infrastructure land cover dataset; http://geoinfo.montanastatelibrary.org/data/

msdi/landuse/), elevation (national elevation dataset; http://ned.usgs.gov/), slope, aspect 

categorized as southerly (134 – 224°) and not southerly (0 – 135°, 225 – 360°), distance to 

primary, secondary and tertiary roads following Montgomery et al. (2013), and wolf 

predation. We standardized all continuous variables to allow for a direct comparison 

between model coefficients. We fit a generalized linear fixed effect model to each model in 

the list using the lme4 package in R (Bates, Maechler, Bolker, & Walker, 2014). We 

projected the final model results onto the landscape by solving the logistic equation:

w(x) = exp (β0 + β1X1 + ⋯ + βiXi)

where w(x) is the relative probability of a pixel being selected, β0 is the intercept, and β1 is 

the estimated coefficient for variable X1. If β > 1 a preference for that resource is indicated, 

and a β < 1 indicates avoidance of that resource (Manly et al. 2002). The logistic equation 
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for our final model was solved using unstandardized model coefficients in raster calculator 

in ArcGIS 10.1 (ESRI, Redlands, CA), which resulted in a raster-based continuous RSF 

surface across our study area. We used the three most commonly found methods for 

displaying RSF outputs, derived from our literature review, to create maps of our model (0 to 

1 continuous surface, 5 quantiles, 4 equal intervals, and 10 equal area bins; Figure 1).

We validated the RSF model by dividing our dataset of used elk GPS fixes into 5 groups of 

25% testing, and 75% training and employing a k-fold cross validation approach described 

by Boyce et al. (2002). The model was fit with each of the training datasets and projected 

onto the study area. The resulting RSF surface was split into bins following the three most 

common mapping methods that used binning as identified in the literature review (5 

quantiles, 4 equal intervals) and the most common binning method employed for predictive 

accuracy metrics following Boyce et al. (2002) (10 equal area bins). The lowest bin rank (1) 

corresponded to the lowest probability of selection and the highest bin rank (10) 

corresponded to the highest probability of selection.

To quantify differences in map results we calculated the percentage of the study area 

landscape that was made up of the top 50% estimate for each map approach. We calculated 

the percentage of the study area with linear values ≥ 0.5, quantile bins 3 through 5, equal 

interval bins 3 and 4, and equal area bins 5 through 10. To test the relationship between 

predicted selection and use for each binning approach, testing data were overlaid on each 

model and the number of testing points falling in each bin was calculated. A spearman rank 

correlation coefficient between bin rank and number of points per bin was calculated. A 

strong, positive correlation coefficient is indicative of a strong relationship between used 

locations and predicted selection. The average correlation coefficient for all 5 folds was 

calculated for each mapping approach.

3. Results

3.1 Literature Review

Our Google Scholar search had 906 results, and our Web of Science search had 283 results. 

101 peer-reviewed articles met our criteria and were included in the literature review. We 

identified two primary mapping approaches: stretched displays (34 studies, ~34% reviewed 

studies) and binned displays (68 studies, ~66% reviewed studies). We found 5 different 

stretched display approaches (Table 1). Stretching values from 0 to 1 (15 studies, ~44% 

stretched display studies) and stretching values from low to high (14 studies, ~41% stretched 

display studies) were the most common methods using a stretched display. Stretching values 

from the minimum to maximum values (3 studies, ~9% stretched display studies), using a 

histogram smoother (1 study, ~3% stretched display studies), and standard deviations (1 

study, ~3% stretched display studies) were also used to generate stretched displays.

We found 9 primary RSF mapping methods using a binned approach (Table 2). Splitting 

RSF values into quantiles (28 studies, ~41% binned display studies) was the most common 

binned method. The number of quantile bins ranged from 2 to 20, and 5 (9 studies) bins was 

the most common approach. Approximately 19% of studies using a binned approach split 

RSF values into equal interval bins. The number of equal interval bins ranged from 3 to 10, 
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and 4 bins was the most common approach (4 studies). Approximately 9% of studies using a 

binned approach split RSF values into categorical bins (e.g. high, medium, low), and did not 

report how bins were defined. Approximately 7% of studies using a binned approach used 

standard deviations to define bin breaks. Approximately 6% of studies using a binned 

approach split the study area into 5 or 10 equal areas based on RSF values. Approximately 

6% of studies using a binned approach used observed data to define break points, and 4 

different methods were found for this approach. Approximately 3% of studies using a binned 

approach rescaled RSF values from 0–1 and split values into bins with arbitrary cutoffs. 

Approximately 3% of studies using a binned approach used geometric means to define bin 

breaks. Approximately 2% of studies using a binned approach created a binary variable from 

RSF values by defining a threshold for high verse low probability.

We identified 4 methods for testing the predictive accuracy of RSF models (Table 3), and 

~18% of studies did not report a method for testing predictive accuracy. All of the reported 

methods required splitting RSF values into bins. Approximately 50% of studies employed k-

fold cross validation using spearman rank correlation coefficient between bin number and 

number of testing points per bin. The number of bins ranged from 3 to 20 and binning 

methods included quantiles, equal area bins, and undefined methods. The most common 

binning approach was to split RSF values into 10 equal area bins. Approximately 15% of 

studies used receiver operating characteristics (ROC; (McNyset, 2005)) or area under the 

curve (AUC; (McNyset, 2005)) approaches. The AUC and ROC approaches both require 

defining an arbitrary cutoff to create a binary variable that defines presence and absence. 

Approximately 14% of studies used regression to compare bin rank and expected number of 

points per bin following (Johnson et al., 2006). The number of bins ranged from 5 to 20, and 

methods for binning included quantiles, equal area bins, and undefined methods. The most 

common bin method was 10 equal area bins. Approximately 3% of studies reported the 

spearman rank correlation coefficient of used verses random points within each strata 

following the methods of Fortin et al. (2009), which is an accuracy approach for discrete 

choice RSF’s. Both studies used equal area bins and the number of bins ranged from 10 to 

21.

We found 11 studies that used unique predictive accuracy metrics. Some of these approaches 

included visual comparison of an RSF map and used points (Mashintonio, Pimm, Harris, van 

Aarde, & Russell, 2014), generating a contingency table (Mace, Waller, Manley, Ake, & 

Wittinger, 1999), calculating a correlation between two RSF surfaces built with different 

data (Brook & McLachlan, 2009), and reporting the percentage of location data in 5 equal 

sized bins (Webb, Dzialak, Kosciuch, & Winstead, 2013). Multiple studies employed more 

than one approach to testing predictive accuracy, which is why the methods we describe do 

not sum to the total number of studies reviewed (101).

3.2 Case Study

The most parsimonious RSF model for male elk during summer months indicated elk 

selection for areas in closer proximity to tertiary roads, further proximity to secondary roads, 

forested land cover (compared to shrubland and grasslands), gentler slopes, and lower 

elevations (see Table 4 (Morris et al., 2015)). There appeared to be drastic differences in the 
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visual interpretation between the four mapping approaches employed to map our RSF output 

(0 to 1 linear stretch, 5 quantiles, and 4 equal intervals, 10 equal area bins; Figure 2). Linear 

stretch values > 0.5 covered ~6.4 % of the study area. Bins 3 through 5 for the quantile 

classification made up 59.78% of the study area. The top two bins using the linear stretch 

classification composed ~6.4% of the study area. The top 5 bins using the 10 equal area bin 

classification was ~63% of the study area.

The spearman rank correlation coefficient between bin number and number of points per bin 

for the 5 quantile map ranged from 0.7 to 0.9 with an average of 0.86, and 4 out of 5 folds 

were significant at 90% confidence. The spearman rank correlation coefficient between bin 

number and number of points per bin for the 4 equal interval map was −0.8 across all 5 

folds, which suggests there were more testing points in lower ranked bins, but the 

relationship was not significant at 90%. The Spearman rank correlation coefficient between 

bin number, and number of points per bin for the 10 equal area bins ranged from 0.733 to 

0.927 with an average of 0.847 across the five iterations. All correlations were significant 

with 90% confidence. The linear stretch map was difficult to validate, as all methods 

described in the literature for a use - availability approach required binning RSF values. A 

visual inspection of used points overlaid on the map surface suggested that the model was 

not successfully predicting used points as higher probability of selection (Figure 1).

4. Discussion

Currently, there is not a consensus in the literature on the most appropriate method for 

mapping RSF results, the mapping methods are not reported or are difficult to interpret, and 

maps do not reflect methods that were used to test predictive accuracy for many studies. 

These findings are concerning, as the spatial predictions resulting from RSF studies are an 

invaluable tool in animal conservation and wildlife management. Our results show that 

methods for mapping RSF outputs must be clearly defined and carefully selected.

We found a high degree of variability across studies in approaches for mapping RSF outputs, 

and 38 different approaches were found for the 101 studies reviewed. Displaying RSF values 

as a continuous surface (~34%), and splitting RSF values into bins (~66%) were the two 

primary approaches used for mapping. The display of a continuous RSF surface is a popular 

mapping approach despite recommendations from Hirzel et al. (2006) that a continuous RSF 

surface can be misleading. The majority of binning approaches grouped RSF values based 

on the number of values in each group, which included quantiles, equal area, and geometric 

mean classifications. These classification schemes successfully manage outliers and convert 

non-normal distributions into ranked bins where the relative probability of selection is 

clearly defined. The alternative binning approaches involve splitting the range of values 

without considering the number of data points in each break, which include equal interval, 

and standard deviation classifications. These approaches are more sensitive to outliers and 

non-normal distributions. Several studies, including many of the equal interval 

classifications, rescaled RSF values from 0 to 1. A RSF predicts the relative probability of 

selection, and is not equivalent to a true probability (Keating & Cherry, 2004); therefore, 

rescaling values is not necessary for RSF results (Boyce et al., 2002).
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In addition to variability in mapping approaches, we identified a lack of detail in methods 

descriptions. The methods section of a publication is arguably the most important 

component, as it provides the necessary information for the reader to determine the validity 

of the results and associated conclusion (Azevedo et al., 2011). Reported methods should 

also provide enough detail for the reader to replicate the analysis (Azevedo et al., 2011). For 

many studies included in this review, the methods for mapping RSF outputs were not clearly 

described, or were not replicable for multiple studies in our review. For example, ~14% of 

studies displayed a continuous RSF surface labeled as low to high without describing how 

the surface was derived, which could be indicative of multiple methods including a 

histogram smoother, standard deviation display, and a low to high display. An additional 

~6% of studies displayed categorical bins (e.g. low, medium, high), but did not describe the 

categorization procedure, which makes it impossible for the approach to be replicated. This 

lack of detail also makes the interpretation of maps difficult, as classifying bins using 

quantiles has a different interpretation than an equal interval classification. For example, the 

results of our case study reflect that the method selected for mapping RSF predictions has an 

impact on the resulting map. The stretched map and 4 equal interval classifications were 

similar to each other, but significantly different from the 5 quantile and 10 equal area binned 

maps. The number of bins also appeared to affect the amount of detail that could be derived 

from the map, and the 10 equal area bins appeared to be more informative than the 5 

quantile bins. These results suggest that mapping methods are not interchangeable and 

should be carefully selected.

In addition to variability in RSF mapping methodologies, we found a concerning disconnect 

between methods used to test the predictive accuracy of RSF predictions and methods used 

to display predictions of resource selection. The usefulness of RSF models is dependent on 

their accuracy (Boyce et al., 2002) and the results of these studies are frequently summarized 

in maps. Therefore, for a map to provide useful information it is important to integrate 

accuracy metrics and mapping methods. However, we found that the binning method for 

map production did not align with the method used to test productive accuracy for the 

majority of studies reviewed. For example, the primary methods used for accuracy metrics, 

accounting for ~50% of reviewed studies, suggest splitting RSF values into 10 equal area 

bins (Boyce et al., 2002); however, ~34% of studies displayed maps as a continuous surface. 

Approximately 30% of studies split RSF values into 10 equal area bins to test predictive 

accuracy, and only ~3% of studies displayed a map with 10 equal area bins. These findings 

suggest that the majority of RSF papers are displaying maps with a classification scheme 

that has not been tested for accuracy.

The results of our case study reflect that there are clear differences between commonly used 

mapping approaches in terms of visual interpretation and accuracy metrics. For example, the 

equal interval classification did not successfully predict locations used by elk, and predicted 

more elk locations in RSF bins with a lower relative probability of selection. The same 

model divided into quantile or equal area bins successfully predicted more testing points in 

bins with a higher probability of selection. Using one of these classification schemes for 

accuracy metrics, and the other for map display is misleading. In our case study, the 

objective of developing our RSF map was to inform anthrax disease risk management in a 

high risk elk population (Morris et al., 2015), and selecting a mapping approach that had 
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been tested for accuracy was important for accurately informing surveillance efforts. Boyce 

et al. (2002) define a good RSF model as one that reliably predicts the location of organisms, 

and we advise that the classification used to test the relationship between selection and use 

should also be used to map RSF outputs to ensure maps reflect accurate information on 

predicted resource selection.

5. Conclusion

We make the following recommendations for RSF studies with a mapping component:

1. Methods employed to create RSF maps and binning classifications should be 

clearly and explicitly described. We suggest that vague language, such as “equal 

bins”, leads to challenges in interpretation, and advocate the use of detailed 

descriptions, such as “equal area” or “equal interval”.

2. Map legends should be informative and enhance the interpretation of RSF 

results. Predictions shown as low to high, and categorical classifications without 

further description of methods do not provide a meaningful or accurate 

representation of RSF results.

3. We recommend avoiding the display of continuous RSF surfaces, as there is not 

an established method in the RSF literature for testing the predictive accuracy of 

a continuous RSF surface.

4. The classification for mapped RSF bins should be in line with the classification 

employed for accuracy metrics. For example, if 10 equal bins are used to test the 

predictive accuracy of an RSF model, 10 equal area bins should also be used to 

map the predicted resource selection.

5. The bin classification technique should be selected based on the method with the 

highest predictive accuracy. Johnson et al. (2006) recommend trying a different 

binning technique if predictive accuracy is low, and we suggest that exploring the 

accuracy associated with multiple binning classifications is an important 

component to producing accurate maps. RSF binning classifications have been 

described in multiple studies (Boyce et al., 2002; Hirzel et al., 2006; Wiens et al., 

2008).
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• Methods for mapping the results of resource selection functions in wildlife 

studies are not clearly defined in many studies, and there is a high degree of 

variability in methods across studies.

• The method used for mapping frequently does not consider accuracy metrics.

• The method employed for mapping resource selection results has a notable 

effect on the visual interpretation of results.

• The method for mapping the results of resource selection studies should be 

explicitly stated, and selected based on accuracy metrics.
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Figure 1. 
Using slope to exemplify the most commonly used display schemes and binning 

classifications in resource selection function studies: stretched display from low to high 

(panel A), equal area bins (panel B), quantile bins (panel C), and equal interval bins (panel 

D). The number of minimum and maximum slope value, and the number of pixels in each 

classification are reported for methods using binning.
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Figure 2. 
Male elk resource selection function in southwest Montana, USA using location data from 

June to August 2010 – 2012. Resource selection function results were mapped following the 

primary methods extracted from our literature review. Telemetry GPS points for bull elk 

used in model development are shown in panel A, and each individual elk is a unique color. 

RSF results were mapped using 4 methods: rescaled 0 to 1with a stretched display (panel A), 

5 quantile bins (panel B), 4 equal interval bins (panel C), and 10 equal area bins (panel D).
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Table 2

Summary of methods for mapping resource selection function model results that employ binned displays 

based on a review of the literature. The number of studies, percentage of studies, are references to the specific 

studies are reported.

Bin Method # studies
% studies 

using 
bins

References

Quantiles 28 41.18%

2 bins 1 (Kunkel, Atwood, Ruth, Pletscher, & Hornocker, 2013)

3 bins 1 (Carroll, Noss, & Paquet, 2001)

4 bins 7
(Beckmann, Murray, Seidler, & Berger, 2012; Clark et al., 2014; Coe et al., 
2011; Hodder, Johnson, Rea, & Zedrosser, 2014; Jiang et al., 2009; Johnson 

et al., 2005; Loring et al., 2014)

5 bins 9

(Costello, Cain, Nielson, Servheen, & Schwartz, 2013; Doherty, Naugle, & 
Walker, 2010; Dzialak et al., 2013, 2012; Harju, Olson, Dzialak, Mudd, & 

Winstead, 2013; Lewis et al., 2011; Smith, Kirol, Beck, & Blomquist, 2014; 
Webb et al., 2013; White et al., n.d.)

6 bins 1 (Johnson & Gillingham, 2005)

7 bins 1 (Pigeon, Nielsen, Stenhouse, & Côté, 2014)

10 bins 7

(Dickson et al., 2014; Dzialak et al., 2013; Dzialak, Olson, Webb, Harju, & 
Winstead, 2015; Florkiewicz, Maraj, Hegel, & Waterreus, 2007; Northrup, 
Stenhouse, & Boyce, 2012; J. Polfus, Hebblewhite, & Heinemeyer, 2011; 

Takahata, Nishino, Kido, & Izumiyama, 2013)

20 bins 1 (Proffitt et al., 2011)

Equal Interval 13 19.12%

3 bins 3 (Chimeddorj, Buuveibaatar, Onon, Munkhtogtokh, & Reading, 2013; Enari 
& Sakamaki–Enari, 2013; Singleton, Lehmkuhl, Gaines, & Graham, 2010)

4 bins 4 (Campos, Gatica, & Bellis, 2015; Dillard, Russell, & Ford, 2008; Miller, 
Jhala, Jena, & Schmitz, 2015; Pedersen, Jepsen, Yoccoz, & Fuglei, 2007)

5 bins 3 (Girard, Bork, Nielsen, & Alexander, 2013; Gottschalk, Ekschmitt, 
İsfendiyaroglu, Gem, & Wolters, 2007; Shanley, Pyare, & Smith, 2013)

8 bins 1 (Shanley, Kofinas, & Pyare, 2013)

10 bins 2 (Shanley & Pyare, 2011; Speed, Woodin, Tømmervik, Tamstorf, & van der 
Wal, 2009)

categorical bins w/undefined 
methods 6 8.82%

3 bins 2 (Ciarniello, Boyce, Heard, & Seip, 2007; Ciarniello, Boyce, Seip, & Heard, 
2009)

4 bins 1 (Erickson, McDonald, & Skinner, 1998)

5 bins 2 (Elbroch, Lendrum, Newby, Quigley, & Craighead, 2013; Roever et al., 
2013)

4 to 9 bins 1 (Chetkiewicz & Boyce, 2009)

Standard deviations 5 7.35%

4 bins 2 (Bleich et al., 2009; May et al., 2008)

5 bins 2 (Beerens, Gawlik, Herring, & Cook, 2011; Nielsen et al., 2004)

6 bins 1 (Montgomery, Roloff, Millspaugh, & Nylen-Nemetchek, 2014)

Equal Area 4 5.88%

5 bins 1 (Matthews & Spooner, 2014)

10 bins 3 (Mark Hebblewhite, Miquelle, Murzin, Aramilev, & Pikunov, 2011; J. L. 
Polfus, Heinemeyer, & Hebblewhite, 2014; Roever et al., 2013)

Appl Geogr. Author manuscript; available in PMC 2018 June 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morris et al. Page 22

Bin Method # studies
% studies 

using 
bins

References

Breakpoint defined by observed 
data 4 5.88%

4 classes defined by true positive = 
true negative 1 (Kinley, Whittington, Dibb, & Newhouse, 2014)

Percentiles from observed data-10 1 (Seip et al., 2007)

binary based on minimum score for 
used home ranges 1 (Broman, Litvaitis, Ellingwood, Tate, & Reed, 2014)

4 bins based on predictive accuracy 1 (Jędrzejewski et al., 2008)

0 – 1 rescale with arbitrary bin 
breaks 2 2.94%

4 bins 1 (Sakuragi et al., 2003)

5 bins 1 (Tamstorf, Aastrup, & Cuyler, 2005)

Geometric Mean 3 4.41%

5 bins 1 (Masse, Tefft, & McWilliams, 2014)

8 bins 1 (Carpenter, Aldridge, & Boyce, 2010)

10 bins 1 (Aldridge, Saher, Childers, Stahlnecker, & Bowen, 2012)

binary cutoff 2 2.94%

threshold between .4 – .6 1 (Oehlers et al., 2011)

highest 10% values = high 
probability 1 (Bleich et al., 2008)

Total 68 100%
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