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Abstract

Spleen volume estimation using automated image segmentation technique may be used to detect 

splenomegaly (abnormally enlarged spleen) on Magnetic Resonance Imaging (MRI) scans. In 

recent years, Deep Convolutional Neural Networks (DCNN) segmentation methods have 

demonstrated advantages for abdominal organ segmentation. However, variations in both size and 

shape of the spleen on MRI images may result in large false positive and false negative labeling 

when deploying DCNN based methods. In this paper, we propose the Splenomegaly Segmentation 

Network (SSNet) to address spatial variations when segmenting extraordinarily large spleens. 

SSNet was designed based on the framework of image-to-image conditional generative adversarial 

networks (cGAN). Specifically, the Global Convolutional Network (GCN) was used as the 

generator to reduce false negatives, while the Markovian discriminator (PatchGAN) was used to 

alleviate false positives. A cohort of clinically acquired 3D MRI scans (both T1 weighted and T2 

weighted) from patients with splenomegaly were used to train and test the networks. The 

experimental results demonstrated that a mean Dice coefficient of 0.9260 and a median Dice 

coefficient of 0.9262 using SSNet on independently tested MRI volumes of patients with 

splenomegaly.

1. INTRODUCTION

Spleen volume estimation is essential in detecting splenomegaly (abnormal enlargement of 

the spleen), which is a clinical biomarker for spleen and liver diseases [1, 2]. Manual tracing 

on medical images has been regarded as gold standard of spleen volume estimation. To 

replace the tedious and time consuming manual delineation, many previous works have been 

proposed to perform automatic spleen segmentation on ultrasound [3–5], computed 

tomography (CT) [6–10] or magnetic resonance imaging (MRI) [11–14]. In recent years, 

deep learning methods have shown their advantages on automatic spleen segmentation 

compared with traditional medical image processing methods [15]. However, the existing 

deep learning methods are typically deployed on CT images collected from healthy 
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populations (e.g., spleen size < 500 cubic centimeter (cc)). When dealing with splenomegaly 

MRI segmentation (e.g., spleen size > 500 cc), we need to overcome two major challenges: 

(1) the large inhomogeneity on intensities of clinical acquired MR images (e.g., T1 weighted 

(T1w), T2 weighted (T2w) etc.), and (2) the large variations on shape and size of spleen for 

splenomegaly patients [13]. Recently, global convolutional network (GCN) have shown 

advantages in sematic segmentation on natural images with large variations by using larger 

convolutional kernels [16]. Meanwhile, adversarial networks have proven able to refine the 

semantic segmentation results [17].

In this paper, we propose a new Splenomegaly Segmentation Network (SSNet) to perform 

the splenomegaly MRI segmentation under the image-to-image framework with the end-to-

end training. In SSNet, the GCN is used as the generator while the conditional adversarial 

network (cGAN) is employed as the discriminator [18]. To evaluate the performance of 

SSNet, the widely validated Unet [19] and GCN were employed as benchmark methods. 

Sixty clinical acquired MRI scans (32 T1w and 28 T2w) were used as the experimental 

cohort to test the robustness of the proposed SSNet on the multi-contrast scenario. The 

experimental results demonstrated that the SSNet achieved more accurate and more robust 

segmentation performance compared with benchmark methods.

2. METHODS

The SSNet was designed under the GAN framework, which consisted of both a generator 

and discriminator (Figure 1). In this section, we introduce each component in the SSNet.

2.1 Generator of SSNet

The GCN was employed as the generator in SSNet for the image-to-image segmentation, 

where the input and output images had the same resolution 512 × 512. Each training image 

was sent to a convolutional layer (kernel size = 1, channels = 64, stride = 2, padding = 3). 

Then, the “encoder” portion (left side of GCN) extracted the feature maps from the 

convolutional layer using four hierarchical residual blocks, which were the same as the 

ResNet [20]. Then, five GCN units [16] were used to transfer the feature maps for each layer 

to two channels using the large convolutional kernels. The equivalent kernel size was the 

resolution of the feature map by assembling two 1D orthogonal kernels [16]. The new 

feature maps with large reception field were further sent to the boundary refinement layer 

that is defined in [16]. Next, the refined feature maps were added to the up-sampled feature 

maps from the “decoder” portion (right side of GCN). Finally, the added maps were further 

refined by boundary refinement layer and deconvolved to the final segmentations. In Figure 

1, the number of channels of each encoder was shown in the green boxes, while the number 

of channels of each decoder was two. The image resolution for each level was shown on the 

left side of Figure 1.

2.2 Descriminator of SSNet

In SSNet, the conditional GAN (cGAN) was used to further refine the segmentation results 

in the end-to-end training[18]. Briefly, estimated segmentation, manual segmentation and 

input images were used under the conditional manner. For the true segmentation, the ground 
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truth for the cGAN was “true.” For the segmentation from the generator, the ground truth for 

the cGAN was “false.” The PatchGAN [18] was used as the classifier for the cGAN, which 

was a compromise solution between classifying the whole image and classifying each pixel.

2.3 Loss Function and Optimization

The loss function of SSNet was defined as LossSSNet in the following equation.

LossSSNet = LossDice + λ · LossGAN (1)

LossDice represents the Dice loss, which was the negative Dice similarity coefficient (DSC) 

score between the segmentation from the generator and the manual segmentation. The 

LossGAN indicated the GAN loss, which was the binary cross entropy (BCE) loss between 

the cGAN estimations and true classes. The λ was a constant value that decided the weights 

when adding the two losses. In our study, the λ was empirically set to 100. The Adam 

optimization [21] was used as the optimization function (learning rate = 0.00001).

3. EXPERIMENTS

3.1 Data

We used 60 clinically acquired abdominal MRI scans (32 T1w / 28 T2w) from splenomegaly 

patients to evaluate the performance of different deep convolutional networks. Images were 

acquired after informed consent and the study was monitored by an approved institutional 

review board. The data accessed in this study was de-identified. Among the entire cohort, 45 

scans (24 T1w / 21 T2w) were used as training data, while the remaining 15 scans (8 T1w / 

7 T2w) were employed as independent validation data. For each scan, the MRI volume was 

resampled to 512 × 512 × 512 resolution to obtain 512 axial, 512 coronal as well as 512 

sagittal 2D images. The manual segmentations of spleens were traced by an experienced 

rater using the Medical Image Processing Analysis and Visualization (MIPAV) software 

[22]. From the manual segmentations, the minimum size of spleen is 368 cubic centimeter 

(cc), the maximum size is 5670 cc, the mean spleen volume is 1881 cc, and the standard 

deviation is 1219 cc.

3.2 Experiments

Two sets of the experiments were performed to compare the performance of the proposed 

SSNet with Unet and GCN benchmarks. Since it was a 2D segmentation problem, we used 

the ImageNet [23] pertained model as the initialization for each network when the pertained 

model was available. The first set of the experiments only used the axial images as both 

training and testing images. Then, the 3D volumetric spleen segmentations were derived by 

assembling the testing images slice by slice from the same testing scan. For the second set, 

all axial, coronal and sagittal images were used as both training and testing images by 

training three independent networks (for axial, coronal and sagittal). Then a single 3D 

volumetric spleen segmentation was derived from each network. Finally, the three 3D 

volumetric segmentations were fused to one final segmentation by (1) merging three 
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segmentations from different views to a single segmentation using “union” operation, (2) 

performing open morphological operations to smooth the boundaries, and (3) performing 

close morphological operations to fill the holes.

3.3 Validation Metrics

The Dice similarity coefficient (DSC) values relative to the manual segmentation were used 

as the metrics to evaluate the performance of different segmentation methods. All statistical 

significance tests were made using a Wilcoxon signed rank test (p<0.01).

4. RESULTS

Figure 2 presents the testing accuracy of different methods and experimental strategies as 

median DSC curves for ten epochs. The y axial indicated the mean Dice similarity 

coefficients (DSC) on all testing volumes, while the x axial presented the epoch number. The 

dashed curves were the testing accuracy for the case that only axial images were used as 

training and testing images. The solid curves were the testing accuracy for the case that all 

axial, coronal and sagittal view images were used in both training and testing processing. 

From this figure, the mean testing accuracy plots were systematically increased when trained 

with more epochs. For most of the epochs, the proposed SSNet achieved more accurate 

testing results than GCN and Unet on both single view and multi-view training scenarios.

Figure 3 presents the qualitative results of different deep learning methods along with the 

manual segmentation. The upper, middle and lower rows were corresponding to the subjects 

with highest, median and lowest DSC values of SSNet using three views. The segmentation 

results of Unet, GCN and SSNet on using (1) only axial 2D images, and (2) all axial, coronal 

and sagittal 2D images were shown in the figure for different columns. The manual 

segmentation results for the same subjects were presented as the right-most column. In 

Figure 4 presents the quantitative results of different deep learning methods as box plots. All 

the other methods were compared with the proposed SSNet using three view images 

(“Ref.”). The proposed method achieved significantly better DSC results (p<0.01) than 

methods with “*” except the one with “N.S.”. The lowest DSC value of the SSNet is smaller 

than the benchmark methods. From Figure 3 and 4, the GCN outperformed the Unet by 

capturing the large spatial variation for the splenomegaly segmentation. By adding GAN 

supervision, the proposed method not only alleviated the outliers but also achieved the 

higher median DSC (0.9262) and mean DSC (0.9260) compared with baseline methods. 

Meanwhile, using richer training data on three imaging views leveraged the segmentation 

performance for a significant margin.

5. CONCLUSION AND DISCUSSION

We proposed the SSNet to perform the splenomegaly segmentation using MRI clinical 

acquired scans. From the experimental results, the proposed method provided us 0.9262 and 

0.9260 for the median and mean DSC, which was significantly better than the baseline 

methods when trained on the axial view. Richer training data in the form of 2-D triplanar 

sections improved all methods, but SSNet remained superior than GCN and had fewer 

outliers than Unet. From Figure 2, the proposed SSNet achieved generally better 
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performance on median DSC compared with benchmark methods on different epoch 

numbers. From Figure 3 and 4, the SSNet was shown to achieve more accurate (higher 

median DSC) and more robust (higher lowest DSC) segmentation performance compared 

with benchmark results. The results also demonstrated that using all axial, coronal and 

sagittal images as both training and testing data consistently provided us better segmentation 

performance than using single axial view.

The major limitation of this work was that the segmentation was performed on the 2D 

images, which might lose the 3D spatial information. In the future, it would be worth 

exploring 3D deep neural networks to conduct the splenomegaly segmentation. Another 

interesting direction could be to integrate the clinical diagnostic information to the image 

segmentation using the attention models [24].
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Figure 1. 
The proposed network structure of the Splenomegaly Segmentation Net (SSNet). The 

number of channels of each encoder is shown in the green boxes, while the number of 

channels of each decoder is two. The image (or feature map) resolution for each level is 

shown on the left side of this figure.
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Figure 2. 
The testing accuracy of different epochs was shown in this figure. The y axial indicated the 

mean Dice similarity coefficients (DSC) on all testing volumes, while the x axial presented 

the epoch number from one to ten. The dashed curves were the testing accuracy for the case 

that only axial images were used as training and testing images. The solid curves were the 

testing accuracy for the case that all axial, coronal and sagittal view images were used in 

both training and testing scenario.
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Figure 3. 
The qualitative results of different methods. The segmentation results of Unet, GCN and 

SSNet on using (1) only axial 2D images, and (2) all axial, coronal and sagittal 2D images 

are shown in the figure for different columns. The manual segmentation results for the same 

subjects are presented as well. The results of three subjects were selected from the highest, 

median and lowest DSC from the SSNet’s testing data.
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Figure 4. 
The quantitative results of different methods. The box plots in left panel indicate the results 

of using only axial view images, while the right panel presents the results of using all axial, 

coronal and sagittal images as in both training and testing. The Wilcoxon signed rank tests 

were employed as statistical analyses, where “Ref.” indicates the reference method. The “*” 

indicates the p<0.01 while the “NS” means not significant.
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