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Abstract

Recent large-scale genome-wide association studies have identified tens of genetic loci

robustly associated with Body Mass Index (BMI). Gene expression profiles were also found

to be associated with BMI. However, accurate prediction of obesity risk utilizing genetic data

remains challenging. In a cohort of 75 individuals, we integrated 27 BMI-associated SNPs

and obesity-associated gene expression profiles. Genetic risk score was computed by add-

ing BMI-increasing alleles. The genetic risk score was significantly correlated with BMI

when an optimization algorithm was used that excluded some SNPs. Linear regression and

support vector machine models were built to predict obesity risk using gene expression pro-

files and the genetic risk score. An adjusted R2 of 0.556 and accuracy of 76% was achieved

for the linear regression and support vector machine models, respectively. In this paper, we

report a new mathematical method to predict obesity genetic risk. We constructed obesity

prediction models based on genetic information for a small cohort. Our computational frame-

work serves as an example for using genetic information to predict obesity risk for specific

cohorts.

Introduction

Overweight and obesity, which are often indicated by high Body Mass Index (BMI), are grow-

ing significant health problems with significant public health and economic implications [1].

It is known that hereditary factors play a role in the development of obesity and increase the

risk of many diseases such as cardiovascular disease and diabetes [2, 3]. In the clinical setting,

risk assessment plays a pivotal role in the development of individualized prevention strategies

and therapy for obesity and other associated metabolic diseases. In addition, recent recogni-

tion of obesity as a disease calls for change on how such complex issues are addressed by clini-

cians [4]. Therefore, it is important that efforts to personalize health in this area expand

beyond assessment of the traditional risk factor categories (e.g., age, sex, physical activity) [5].

Use of a single gene variant to predict risk for diseases such as diabetes and obesity may be

challenging because more than one gene may contribute toward the additive risk [6].
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In the past five years, large genome wide association studies have identified novel genetic

factors associated with obesity. Genome wide scans have generated data that help researchers

better understand why some people are more predisposed to obesity than others. Thus, this

project supports the application of translational genomics. To that end, the Genetic Investiga-

tion of Anthropometric Traits (GIANT) consortium has focused on identifying genetic loci

that regulate human body size and shape, including height and measures of obesity, and have

generated significant results [7]. A GWAS study conducted by this group identified 18 new

loci with 32 Single Nucleotide Polymorphisms (SNPs) associated with obesity [8], and a more

recent study identified an additional 11 new loci for anthropometric traits [9].

The availability of BMI-associated SNPs has enabled prediction of BMI or obesity based on

genetic information. In addition to linear regression models using BMI-associated SNPs as

variables, another common approach is to compute a genetic risk score [10], which sums up

the number of BMI-increased alleles in any genome, and correlate the genetic risk score with

obesity risks. However, existing prediction models do not achieve predictive accuracy high

enough for clinical diagnosis or treatment decision making [11, 12].

Human genomes are complex, and ancestral differences in genetic variants may confound

the effects of BMI-associated SNPs. For example, Zhu et al. concluded that BMI-associated

SNPs tend to show lower effects in Han Chinese than in Europeans [12]. One reason for this

observation maybe due to identified BMI-associated SNPs that may function differently in dif-

ferent ethnic groups. Such subtle differences have not been adequately investigated or quanti-

tatively demonstrated. It may be necessary to assign different weights to these BMI-associated

SNPs for generating an overall genetic risk score for obesity.

Functional genomic features such as gene expression profiling are also critical for under-

standing how genes perform biological functions that may further lead to diseases [13]. Recent

studies suggest that some genes and biological pathways are associated with obesity risk [14,

15].Thus, it is possible that obesity risk could be more accurately predicted if BMI-associated

SNPs are carefully selected to suit the structure of the investigated population and functional

genomics features are included in the prediction models. In this study, we built predictive

models for BMI by integrating the genotypes of BMI-associated SNPs and gene expression

profiles.

Materials and methods

Ethics statement

This study was conducted in accordance with the Declaration of Helsinki of the World Medi-

cal Association. All study participants provided written informed consent. The research was

reviewed and approved by the Institutional Review Board and the Office of Human Subjects

Research at the National Institutes of Health (NIH). Written consent was obtained from

adults. Children (ages 13–18) with the ability to read and understand assessment question-

naires provided assent in addition to parental consent.

Design and setting

The clinical and genomics data of this study were originally obtained from 99 participants who

were recruited under a natural history protocol (Clinicaltrial.gov #NCT00824941) conducted

at the National Institutes of Health (NIH), Hatfield Clinical Research Center, in Bethesda,

MD, USA from January 2009 to December 2015. Blood samples were collected from fasting

participants during the first visit. BMI data were obtained for 90 participants. Baseline demo-

graphic characteristics are shown in Table 1.
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DNA extraction and genotyping OpenArray

Peripheral whole blood was collected from study participants and frozen immediately at -80˚C

until the time of extraction. DNA extraction was performed on 5 mL of blood using an Autop-

ure instrument using Puregene reagents (Qiagen, Valencia, CA). DNA concentration was

determined by NanoDrop™ 1000 spectrophotometer (ThermoScientific, Wilmington, DE)

and extracted DNA was stored at -20˚C prior to genotyping assay[16]. We genotyped 32 tag-

ging SNPs of which 27 were BMI-associated SNPs from Speliotes et al.[8]using the Applied

Biosystems TaqmanOpenArray genotyping platform following manufacture’s protocol (Life

Technologies, Carlsbad, USA). Samples (n = 94) were genotyped in duplicate and samples

with<80% call rate on the OpenArray platform were excluded. Genotypes were assigned using

ABI’s Genotyper software for OpenArrayTaqman data.

RNA isolation, amplification

Blood samples (2.5 mL) from each participant were collected using PAXgeneTM RNA (Qiagen,

Valencia, CA) tubes the morning after an overnight fast and frozen at -80˚C. Total RNA was

extracted and purified from each blood sample using an RNA PAXgene kit (Qiagen, Valencia,

CA) according to the manufacturer’s protocol and stored at-80˚C. The RNA quantity, purity,

and integrity were assessed via spectrometry and by using the RNA 6000 Nano LabChip kit on

a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Samples in which total RNA

passed quality control criteria were used for microarray [17].

Microarray data processing and annotation

Microarrays were processed by one technician at the Laboratory of Molecular Technology,

National Cancer Institute (NIH, Frederick, MD), following standard protocol to minimize

non-biologic technical bias. A total of 90 whole blood samples were assayed by Affymetrix

GeneChip Human Genome U133 Plus 2.0 Array in two batches: 30 samples in the first batch

and 60 samples in the second batch. Quality control (QC) was performed on the CEL files of

each batch using array QualityMetrics. The software provided six QC metrics, including out-

lier detection by 1) distances between arrays, 2) boxplots, 3) relative log expression, 4) normal-

ized unscaled standard error, 5) MA plots, and 6) spatial distribution of M. Any sample that

failed three or more QC metrics was removed from analysis, resulting in a total of 84 samples

with valid gene expression data.

Expression data within each batch were generated by the RMA approach [17], available in

the Bioconductor “Affy” package. Then, microarray expression data from the two batches

Table 1. Baseline demographic characteristics of the 90 participants with BMI data.

Characteristic Values

Sex, n (%)

Male 44 (48.89)

Female 46 (51.11)

Age, y, mean (range) 28.16 (13─45)

BMI, mean (range) 26.21 (18.65─46.66)

Race, n (%)

Asian 14 (15.56)

Black or African American 23 (25.56)

White 46 (51.11)

Other 7 (7.78)

https://doi.org/10.1371/journal.pone.0197843.t001
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were merged and normalized using quantile normalization [16].Then, the Combat software

[18] was implemented to remove the batch effects in the microarray expression data. To

remove the effects of cross-hybridization the microarray expression data, we selected only the

probe sets whose probes were mapped to a unique transcript of the UCSC known gene dataset

[19]. We used BLASTN to map each probe sequence to the database of exons. Only perfect

BLASTN hits (100% identify and 25 alignment length) were kept. We selected the probe sets if

all of their probes were mapped to the same transcript. A list of 20,300 probe sets was gener-

ated. For the genes with multiple probe sets, we chose the probe set with the highest average

expression level. A total of 13,276 gene expression profiles were analyzed in this study.

Correction for multiple testing

Multiple testing was corrected using the Benjamin-Hochberg (BH) or False Discovery Rate

(FDR) method [20].

Additional quality control procedure

SNP data were carefully processed to account for missing genotypes. If a sample had 20% or

more missing genotypes, it was removed from the analysis. Thus, a total of 87 samples were

kept from the 94 participants. Out of the 87 samples, eight samples without BMI information

were further removed. Out of the 79 samples, four samples did not have valid gene expression

data. The total number of samples for integrating gene expression, SNP and BMI data was 75.

Computing the genetic risk score

For each sample, a genetic risk score was computed. If the genotype of an SNP was homozy-

gous for the "affect allele," a value of 2 was assigned for that SNP. If the genotype was heterozy-

gous for the "affect allele/other allele," a value of 1 was assigned. If the genotype was

homozygous for the "other allele," a value of 0 was assigned. The genetic risk score was the

summation of the values of included SNPs divided by the number of included SNPs.

Feature selection algorithm for SNP data

An optimization algorithm was designed to find the subset of SNPs whose genetic risk scores

significantly correlated with BMI, based on the 81 samples with both SNP and BMI data. More

specifically, the novel pipeline for the predictive modeling algorithm started with including all

SNPs, and then implemented an iteration procedure. At each iteration, each SNP was assessed

whether excluding this SNP would lead to higher correlation between BMI and the genetic risk

score. The SNP with the highest correlation increase was chosen for exclusion at each iteration.

The iteration procedure stopped when the correlation could not be increased.

Feature selection algorithm for microarray data

An algorithm was designed to identify the gene expression profiles that were associated with

BMI, based on the 84 samples with both gene expression and BMI data. First, each gene

expression profile was assessed for its correlation with BMI and the corresponding P-value.

Then, the P-values of all genes were adjusted for multiple testing, and the genes with adjusted

P-value<0.5 were selected. However, not all the significant gene expression profiles were used

because there may be dependency among these genes. To exclude the dependency among the

significant genes, the following procedure was implemented:

1. The significant genes were ranked by the increasing of P-values.
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2. An empty feature set was initiated.

3. The top associated (lowest P-value) gene was added to the feature set.

4. For the second to the last significant gene, it was assessed whether the gene could be added

to the feature set. If the gene was not significantly correlated with any gene from the feature

set, the gene was added to the feature set. Otherwise, it was excluded.

Predictive modeling

Integrated prediction models for either the quantitative trait BMI or binary trait weight status

were built based on the relevant features selected from microarray data and SNP data. We

used multi-variable linear regression to predict BMI and support vector machine to predict

weight status. Note that not all selected features from the microarray data were used to con-

struct the integrated prediction model, as in the linear regression model, the fourth and fifth

gene expression profiles were insignificant when all variables were included. The final linear

regression model included six gene expression profiles and the genetic risk score from the

selected SNPs.

BMIi ¼ a0 þ a1Ei1 þ a2Ei2 þ a3Ei3 þ a4Ei4 þ a5Ei5þa6Ei6 þ bGi þ εi

A prediction model for binary weight status was built using the support vector machine

algorithm. The SVM software used was LibSVM [21]. The predictors were the same as the lin-

ear regression model. Different kernels were tested to generate the best performance. Five-fold

cross-validation was used to ameliorate the overfitting problem.

Results

Study data

Whole-blood samples were assayed for gene expression using microarrays and genotyped for

BMI-associated SNPs. Sample processing was previously described [16] and microarray data

were batch corrected. A total of 27 BMI-associated SNPs from Speliotes et al. [8] were geno-

typed. Description of these SNPs is shown in S1 Table. After quality control was implemented

(see Methods), a total of 84 samples were used to relate gene expression data to BMI (S1 Data-

set), 79 samples were used to relate SNPs to BMI (S2 Dataset), while 75 samples (i.e. the over-

lap of the above two sets) were used to integrate gene expression, SNP and BMI data. The

phenotype is either BMI (quantitative) or weight status (normal weight or overweight), deter-

mined by a BMI threshold of 25 for overweight).

Validation analysis of microarray and SNP data by allelic-specific

expression analysis

SNPs and gene expression are often related [22, 23].SNPs located in non-coding regions may

affect the functionality or efficiency of cis-elements, and SNPs located in coding regions, espe-

cially in non-synonymous sites, may affect the functionality or structure of coded proteins.

These relationships also provide an opportunity to validate whether SNP and microarray data

for the same samples are reasonable and reflect biological phenomenon. To this end, we

assessed potential allele-specific expression from the SNP and microarray data. For each SNP,

we used the Analysis of Variance (ANOVA) model to examine whether the gene expression

levels of its nearby gene were different depending on different genotypes of the SNP. After cor-

recting for multiple testing, we detected five SNPs which rendered allelic specific expression
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(Table 2). All five SNPs are regulatory SNPs that are located either in intronic or intergenic

regions. This analysis validates an integrative analysis of SNP and microarray data. We

searched the GTEx database for possible eQTLs among the five SNP-gene pairs in the whole

blood tissue and found a strong eQTL (P = 4.6x10-9, effect size = 0.32) for the fourth pair, i.e.

rs2815752 and NEGR1.

Selection of BMI-associated SNPs using an optimization procedure

Genetic risk score for obesity was computed by adding BMI-increasing alleles. We computed

the correlation between the genetic risk score of 27 BMI-associated SNPs and BMI for the

entire investigated cohort but found the correlation coefficient was not significant (Pearson’s

r = 0.089, P = 0.436; or Spearman’s r = 0.082, P = 0.473). However, because the BMI-associated

SNPs were found to have different effect sizes in different populations, it is possible that not all

the pre-selected BMI-associated SNPs may have actual effects for a cohort with specific popu-

lation structure. Thus, we designed a feature selection procedure that excludes BMI-associated

SNPs one by one to achieve an optimal correlation between genetic risk score and BMI, deter-

mined by the convergence of the correlation. We examined the effectiveness of this procedure

by applying it to the cohort of 81 samples. The correlations corresponding to different num-

bers of excluded SNPs were listed (Table 3). Based on Spearman’s correlation, the correlation

coefficient reached convergence when 18 SNPs were excluded, while this number was 16 using

Pearson’s correlation. The optimal correlation coefficients were 0.527 (P = 6.0×10−7) and 0.478

(P = 8.5×10−6) for Spearman and Pearson’s correlations, respectively, with both being statisti-

cally significant. This analysis suggests that the correlation can be optimized when some SNPs

are excluded, also indicating that the genetic risk score may be significantly correlated with

BMI when proper SNPs are selected.

Predictive modeling for obesity risks

Gene expression levels can be another layer of genetic information for predicting obesity risks.

We designed a feature selection procedure to select several uncorrelated gene expression pro-

files from BMI-associated gene expression profiles (see Methods). Expression profiles were sig-

nificantly correlated with BMI using Pearson’s correlation coefficient. However, 52 expression

profiles were found to be correlated with BMI using Spearman’s correlation coefficient. A total

of six independent expression profiles including ADPGK, RIOK3, CEP41, ZFP57, HOXA3 and

CXorf27, and three independent expression profiles including ICAM4, SLC30A3and HER-
PUD1 were selected for Pearson’s and Spearman’s correlation coefficients respectively, using

the feature selection algorithm described in the Methods. Next, we built linear regression mod-

els for BMI using expression profiles for the cohort of 77 samples with gene expression, SNP

and BMI data. We found that the coefficients of the six genes chosen according to Pearson’s

correlation coefficient were significant, resulting in a maximum adjusted R2 of 0.527 (P =

1.0×10−10) when all of the six genes were included. In contrast, using Spearman’s correlation

Table 2. Identified SNP (genotype) and expression associations by ANOVA model.

SNP Gene Ensembl annotation P-value Adjusted P-value

rs13078807 CADM2 Intron variant 0.0126 0.077

rs10938397 GNPDA2 Intergenic variant 0.0243 0.0855

rs571312 MC4R Intergenic variant 0.0252 0.0855

rs2815752 NEGR1 Intergenic variant 0.00373 0.0634

rs4929949 RPL27A Intron variant 0.0136 0.0772

https://doi.org/10.1371/journal.pone.0197843.t002
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coefficient, the maximum adjusted R2was only 0.291 when all of the three genes were included.

Thus, we decided to use the genes and SNPs chosen based on Pearson’s correlation coefficient

for subsequent analysis. Then, we examined linear regression models involving both genetic

risk score and gene expression profiles. As described above, a total of 11 SNPs were selected

(16 were excluded). These SNPs includedrs7359397, rs9816226, rs29941, rs543874, rs987237,

rs713586, rs1514175, rs887912, rs13078807, rs1555543 and rs206936. The coefficient of genetic

risk score was significant (P = 2.3×10−2), and the linear regression models generated an ad-

justed R2 of 0.556 (P = 3.5×10−11), which is higher than the R2 (0.527) obtained without inclu-

sion of the genetic risk score. Detailed variable selection procedure and parameter estimates

are shown in S1 File. This analysis indicates that the genetic risk score can significantly

improve the obesity prediction model when the SNPs for computing the score are properly

selected. Further, we asked whether potential interaction effects among gene expression pro-

files and genetic risk score could improve explanation of BMI. We added an interaction term

in the linear regression model of BMI and assessed all pair-wise combinations among the six

gene expression profiles and genetic risk score. However, after adjusting for multiple testing,

none interaction term was statistically significant (S1 File). This analysis suggests that the pri-

mary effects among the six gene expression profiles and genetic risk score are additive effects.

The data for the final linear regression model are deposited in S3 dataset.

Then, a machine learning model based on SVM was built for the binary weight status using

the aforementioned six gene expression profiles and the genetic risk score. Using five-fold

cross-validation and the linear SVM, the model yielded an accuracy of 76%. This accuracy is

moderate, which is consistent with the moderate adjusted R2 of the linear regression model.

The concordance between the two approaches suggests that our predictive modeling for obe-

sity risks is robust. Our predictive modeling improved the model and suggests that feature

selection of genetic markers may be necessary for building practical prediction models for

Table 3. Correlations between genetic risk score and BMI-associated SNPs.

Number of excluded SNPs Pearson Spearman

P r P r

1 0.248 0.131 0.250 0.131

2 0.103 0.185 0.113 0.180

3 0.050 0.221 0.058 0.215

4 0.023 0.255 0.017 0.269

5 0.011 0.285 7.8×10−3 0.297

6 4.8×10−3 0.314 1.4×10−3 0.354

7 2.0×10−3 0.343 5.6×10−4 0.380

8 8.4×10−4 0.368 1.0×10−4 0.423

9 3.5×10−4 0.393 5.3×10−5 0.438

10 1.7×10−4 0.410 2.7×10−5 0.453

11 6.9×10−5 0.432 1.5×10−5 0.466

12 2.8×10−5 0.453 7.6×10−6 0.480

13 1.1×10−5 0.473 6.3×10−6 0.484

14 9.9×10−6 0.475 6.0×10−6 0.485

15 9.3×10−6 0.476 5.1×10−6 0.488

16 8.5×10−6 0.478 1.4×10−6 0.512

17 8.7×10−6 0.477 1.2×10−6 0.515

18 7.0×10−6 0.482 6.0×10−7 0.527

19 7.6×10−6 0.480 6.0×10−7 0.527

20 1.1×10−5 0.472 8.8×10−7 0.521

https://doi.org/10.1371/journal.pone.0197843.t003
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obesity risk. Then, using ToppFun function in ToppGene Suite https://toppgene.cchmc.org

[24] to generate a gene list functional enrichment analysis to find links of our results to prior

studies in the literature, phenotype and disease (see, Table 4). We found that the top human

phenotypes were obesity, increase adipose tissue, abnormal energy expenditure, abnormal

Table 4. Multiomic/Phenotype concordance of the 5 SNPs.

Reference Associated Phenotype Genes from input

Speliotes et al. 2010 [8] Body Mass Index MC4R

CAMD2

GNPDA2

NEGR1

RPL27A

Berndt et al. 2013 [9] Anthropometric traits MC4R

CAMD2

GNPDA2

NEGR1

RPL27A

Orkunoglu-Suer et al. 2011 [25] Body Mass Index MC4R

GNPDA2

NEGR1

Elks et al. 2010 [26] Weight gain and growth MC4R

GNPDA2

NEGR1

Renstrom et al. 2009 [27] Obesity MC4R

GNPDA2

NEGR1

https://doi.org/10.1371/journal.pone.0197843.t004

Fig 1. Flow charts for the computational procedures. A) Flow chart of the entire procedure of data processing and analysis. B) Flow chart of the feature

selection algorithm for SNP data. C) Flow chart of the feature selection algorithm for microarray data.

https://doi.org/10.1371/journal.pone.0197843.g001
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homeostasis, acanthosis nigricans, polyphagia, and eating disorders. The gene-disease associa-

tions were primarily from previously reported Genome-wide Association Studies (GWAS)

and the Database of Human disease-associated genes and variants (DisGeNET).

Discussion

There are different approaches to assess genetic associations between SNPs and quantitative

traits. Individual SNPs were also assessed whether their genotypes were associated with BMI.

The genotypes were coded by 0 (homozygous for the other allele), 1 (heterozygous), and 2

(homozygous for the affect allele). Three approaches for association testing were applied: cor-

relation, linear regression, and ANOVA. Fig 1 depicts the algorithms used for gene correlation,

SNP selection and the genetic risk scoring process. The code used for generating the genetic

risk scores can be found in https://github.com/wyp1125/compute-grs. After adjustment for

multiple testing, none of these methods yielded significant associations. In addition, individual

SNPs were also assessed for Quantitative Trait Locus (QTLs) for BMI, using the R/qtl package

[28]. Both single-locus and interval mapping based on expectation–maximization, Haley-

Knott, and interference message passing algorithms were assessed. However, no QTL was

detected. These results suggest that these obesity-associated SNPs are functional in an additive

mode, which rationalizes the usage of the genetic risk score. As shown in Table 4 our results

were validated externally with prior studies. All 5 genes generated by allelic-specific expression

analysis has been associated with weight-related disorders. Notably, NEGR1 and MC4R are—

found to be associated with obesity across multiple lines of evidence. This suggests a potential

mechanistic basis for the regulation of those SNPs that may affect gene expression.
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(XLSX)
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