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Estimation of Genetic Correlation via Linkage
Disequilibrium Score Regression
and Genomic Restricted Maximum Likelihood

Guiyan Ni,1,2 Gerhard Moser,1,2 Schizophrenia Working Group of the Psychiatric Genomics
Consortium, Naomi R. Wray,3,4 and S. Hong Lee1,2,4,*

Genetic correlation is a key population parameter that describes the shared genetic architecture of complex traits and diseases. It can

be estimated by current state-of-art methods, i.e., linkage disequilibrium score regression (LDSC) and genomic restricted maximum likeli-

hood (GREML). Themassively reduced computing burden of LDSC compared to GREMLmakes it an attractive tool, although the accuracy

(i.e., magnitude of standard errors) of LDSC estimates has not been thoroughly studied. In simulation, we show that the accuracy of

GREML is generally higher than that of LDSC. When there is genetic heterogeneity between the actual sample and reference data

from which LD scores are estimated, the accuracy of LDSC decreases further. In real data analyses estimating the genetic correlation

between schizophrenia (SCZ) and bodymass index, we show that GREML estimates based on�150,000 individuals give a higher accuracy

than LDSC estimates based on�400,000 individuals (from combinedmeta-data). A GREML genomic partitioning analysis reveals that the

genetic correlation between SCZ and height is significantly negative for regulatory regions, which whole genome or LDSC approach has

less power to detect. We conclude that LDSC estimates should be carefully interpreted as there can be uncertainty about homogeneity

among combinedmeta-datasets.We suggest that any interesting findings frommassive LDSC analysis for a large number of complex traits

should be followed up, where possible, with more detailed analyses with GREML methods, even if sample sizes are lesser.
Genetic correlation is a key population parameter that de-

scribes the shared genetic architecture of complex

traits and diseases.1–3 The genetic correlation is the additive

genetic covariance between two traits scaled by the square

root of the product of the genetic variance for each trait

(i.e., the geometric mean of the trait variances). The sign

of the correlation shows the direction of sharing, and

the parameter definition is based on genetic variants

across the allelic spectrum. Methods to estimate genetic

correlation based on genetic covariance structure are well

established for both quantitative and disease traits, e.g.,

(restricted) maximum likelihood for linear mixed models

(LMM).4–6 Genetic covariance structure can be derived

from phenotypic records using pedigree information in

twin or family-based designs.7 Recently, genome-wide

single-nucleotide polymorphism (SNP) data have been

used to construct a genomic relationship matrix for

the genetic covariance structure in LMM that captures the

contribution of causal variants that are in linkage disequilib-

rium (LD) with the genotyped SNPs.4,8,9 Such estimates

assume that the genetic correlation estimated from

common SNPs is representative of the parameter that

depends on all genetic variants; this seems like a reasonable

assumption.

In contrast to the genomic restricted maximum likeli-

hood (GREML) approach, a linkage disequilibrium score

regression (LDSC)10,11 method does not require individ-

ual-level genotype data but instead uses GWAS summary

statistics, regressing association test statistics of SNPs on
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their LD scores. The LD score of a SNP is the sum of LD

r2 measured with all other SNPs and can be calculated in

a reference sample of the same ethnicity when individual

genotype data are not available for the GWAS sample, un-

der the assumption that the GWAS sample has been drawn

from the same ethnic population as the reference sample

used to calculate the LD scores. The method exploits the

relationship between association test statistic and LD score

expected under polygenicity. Because of this simplicity,

and the massively reduced computing burden in terms of

memory and time, it is feasible for LDSC to be applied to

a large number of multiple traits, e.g., Bulik-Sullivan

et al.,11 Zheng et al.,12 Finucane et al.13

Given the attractiveness of LDSC for a massive analysis

of many sets of GWAS summary statistics, it has been

widely used in the community. However, genetic correla-

tions estimated by LDSC are often reported without

caution although the approach is known to be less accu-

rate, compared to GREML.11 In fact, the accuracies of

LDSC estimates have not been thoroughly studied.

In this report, we compare both the bias (difference be-

tween the simulated true value and estimated value) and

accuracy (magnitude of the standard error of an estimate

[SE]) between GREML and LDSC for estimation of genetic

correlation. We find that both methods show little evi-

dence of bias. However, LDSC is less accurate as reported

in Bulik Sullivan et al.,11 with SE at least more than 1.5-

fold higher than that of GREML regardless of the number

of samples in data used to estimate the genetic correlation.
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Figure 1. The Ratio of SE of LDSC
Estimate to that of GREML Estimate
using Simulated Phenotypes Based on UK
Biobank Genotypes
Bars are 95% CI based on 100 replicates.
The unit for the number of SNPs is
thousands. This result was based on 858K
SNPs (after QC) and 10,000 individuals
that were randomly selected from UK
Biobank. SNPs in each bin were randomly
drawn from the 858K SNPs independently.
The number of causal SNPs was 10,000 that
were randomly selected in each bin. The
true simulated value for the genetic correla-
tion was 0.6 and that for the heritability
was 0.5 for both traits. Overlap (0%, 10%,
and 20%) stands for the percentage of over-
lapping individuals in the first and second
traits.
When decreasing the number of SNPs, the accuracy

of LDSC decreases further. When increasing the degree of

genetic heterogeneity between the actual sample and refer-

ence data from which LD scores are estimated, the SE of

LDSC estimates are up to 3-fold larger than those of the

GREML estimates. We also show that GREML is more accu-

rate in genomic partitioning analyses over LDSC or strati-

fied LDSC (sLDSC). In genomic partitioning analyses, the

genetic parameters are estimated for genomic subsets

defined by user-specified annotations. In analyses of real

data, we show that GREML is more accurate and powerful,

e.g., GREML estimates based on �150,000 individuals give

a higher accuracy than LDSC estimates based on 400,000

individuals in estimating genetic correlation between

schizophrenia (SCZ) and body mass index (BMI) (�0.136

[SE ¼ 0.017] and p value ¼ 4.54E�15 for GREML versus

�0.087 [SE ¼ 0.019] and p value ¼ 4.91E�06 for LDSC).

In these analyses, the GREML estimate is based on UK sam-

ple only whereas the LDSC estimate is based on combined

meta-datasets among which there is uncertainty about
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homogeneity. Furthermore, a GREML

genomic partitioning analysis reveals

that the genetic correlation between

SCZ and height is significantly nega-

tive for regulatory regions, which is

less obvious by LDSC when using

both whole-genome and partitioned

estimates of genetic correlation.

In the main methods, we

used GREML14,15 and LDSC10,11 to

compare their estimates of genetic

correlation using simulated as well as

real data. Simulations were based on

UK Biobank imputed genotype data

(UKBB16) after stringent quality

control (QC) (see Supplemental

Methods). We calculated a ratio of

empirical SE and its 95% confidence

interval (CI) to assess the accuracy of
the methods for each set of simulated data. The 95% CIs

of SE were estimated based on the delta method.17

When estimating genetic correlation using simulated phe-

notypes based on UKBB genotype data, we found that the

estimates were unbiased for both GREML and LDSC

(Figure S1), but the SE of GREML was at least 1.5 times

smaller than that of LDSC (Figure 1). The ratio of the

empirical SE from LDSC to GREML was increased up to

3.5-fold when using a smaller number of SNPs (Figure 1).

All values of the ratio were significantly different from 1.

It is notable that the SE of GREML estimates showed

almost no difference across different numbers of SNPs

whereas that of LDSC estimates gradually increased with

a smaller number of SNPs (Figure S2). The ratio was

invariant to sample size (Figure S3). As expected, when us-

ing the intercept constrained to zero, LDSC estimates were

substantially biased when there were overlapping samples

(Figure S4). We also explored alternative genetic architec-

tures (Figure S5), which consistently showed that GREML

gives a smaller SE than LDSC in any scenario.



Table 1. Correlation between LD Scores Estimated Based on the
HapMap3 SNPs using the 1KG CEU Reference Sample and that from
Different Target Populations

Correlation Nr.SNPs

UKBBa 0.946 858,991

UKBBrb 0.720 123,615c

WTCCC2 0.899 421,035c

GERA 0.661 238,089c

aUKBB was imputed to the combined data of the 1KG reference and
UK10K data.
bUKBBr was based on the raw genotype data of UK Biobank data.
cThe number of SNPs reduced further from the set of the QCed SNPs because
of using only SNPs matched with the HapMap3 SNPs used in calculating
LD scores.

Table 2. The Ratio of SE of LDSC Estimate to That of GREML
Estimate using Simulated Phenotypes Based on UKBB, WTCCC2,
GERA, and UKBBr Genotypes in the Scenarios without Overlapping
Individuals

800k 400k 200k 100k

UKBB 1.60 (0.15) 1.70 (0.18) 1.85 (0.25) 2.04 (0.33)

WTCCC2 NA 2.15 (0.31) 2.35 (0.43) 2.68 (0.61)

GERA NA NA 2.87 (0.56) 3.31 (1.17)

UKBBr NA NA NA 3.74 (0.79)
To explore the stability of the accuracy for both

methods, we used two additional genotype datasets

without imputation, Wellcome Trust Case Control

Consortium 2 (WTCCC218–21) and genetic epidemiology

research on adult health and aging cohort (GERA22,23),

which are publicly available (see Supplemental Methods

for detailed data descriptions). We also used UKBB raw

(non-imputed) genotype data (UKBBr). We calculated the

correlation between the LD scores for the HapMap3 SNPs

estimated based on the 1KG CEU reference sample (see

Web Resources) and those based on in-sample genotype

data, i.e., UKBB, WTCCC2, GERA, and UKBBr dataset

(Table 1). We found that the WTCCC2, GERA, and UKBBr

(raw) genotypes were less similar to the 1KG reference ge-

notypes, compared to the UKBB (imputed) genotypes

(noting that UKBB samples had been imputed to the com-

bined data of 1KG reference and UK10K data). Table 2

shows that the SE ratio of LDSC estimate to GREML esti-

mate was higher for WTCCC2, GERA, and UKBBr than

that for UKBB. Figure 2 shows that the accuracy of GREML

was consistent across different datasets, whereas that of

LDSC was decreased for WTCCC2, GERA, or UKBBr,

compared to UKBB dataset. This was probably due to

higher (or lower) correlation between LD scores based on

the 1KG reference and the in-sample genotype datasets

(Table 1) which might positively or (negatively) affect the

accuracy of LDSC estimates. For WTCCC2, GERA, and

UKBBr data, the SE ratio of LDSC to GREML based on

different number of individuals is shown in Figures S6–S8.

Genome partitioning analyses are an emerging tool to

estimate the genetic variance and covariance explained

by functional categories (e.g., DNase I hypersensitive sites

[DHS] and non-DHS24). Currently, genomic partitioning

analyses focus on SNP-heritability enrichment analyses,

formally testing for enrichment of signal compared to

the expectation that the estimates are proportional to the

number of SNPs allocated to each annotation. Considering

genomic partitioning in cross-disorder analyses is a natural

extension to identify regions where genetic correlations

between disorders are highest and lowest. Here, we as-

sessed the performance of the methods in the context of

genome partitioning analyses using simulated phenotypes
The America
based on UKBB genotype data. A better LDSC approach to

estimate genetic correlation for each category might be

sLDSC, stratifying by genomic annotation; however, this

method is currently under development (i.e., there is soft-

ware [see Web Resources], but there is no published docu-

ment or paper verifying the method). Nonetheless, since

the sLDSC is available to the research community, we

applied both LDSC and sLDSC to estimate partitioned ge-

netic correlations for the simulated data (Supplemental

Methods). For genome partitioning analyses, we showed

that LDSC estimates of genetic correlation were biased

whether using LD scores estimated from the 1KG reference

or in-sample data (UKBB) while GREML estimates gave

unbiased estimates for each functional category (Figure 3).

sLDSC estimates were unbiased only when using LD scores

from the in-sample data, and their SEs are relatively larger

than those of GREML or LDSC (Figure 3). This was prob-

ably due to the fact that the different distribution of causal

variants and their effects between DHS and non-DHS

regions were better captured by an explicit covariance

structure fitted in GREML. We also applied the methods

to a range of simulation scenarios and found similar results

in that GREML performed better than LDSC or sLDSC

(Figure S9 and Table S1), which was consistent with the

previous results (Figures 1 and 2). It is notable that in a

deliberately severe scenario (e.g., causal variants are simu-

lated only within few kb of a boundary), GREML could

give biased estimation of genetic correlation.13,24

While focusing on the accuracy of genetic correlation es-

timates, there is an important implication for the bias in

SNP-heritability estimates for both GREML and LDSC

(Figure S10). When using the WTCCC2, GERA, and UKBBr

data, which were less similar to the 1KG reference geno-

types, compared to the UKBB data, LDSC estimates were

substantially biased whereas GREML estimates were close

to the true value in estimation of SNP heritability

(Figure S10). However, this result is well known and

LDSC was not recommended for SNP heritability by the

original authors,10 but rather only for relative enrichment

analysis. Despite this, LDSC is widely used for SNP-herita-

bility estimation (because it is quick and simple). Thus, for

completeness we include analyses for different scenarios to

quantify the properties of the methods. When reducing

the number of SNPs, estimated SNP heritabilities from

LDSC were consistently unbiased; however, those from

GREML were proportionally underestimated (Figure S11).
n Journal of Human Genetics 102, 1185–1194, June 7, 2018 1187



Figure 2. Estimated Genetic Correlation
with GREML and LDSC (without Constrain
to the Intercept) Based on Different
Genetic Datasets
Simulation was based on 10,000 individ-
uals that were randomly selected from
UKBB, WTCCC2, GERA, and UKBBr (the
raw genotype of UKBB), with 858K, 432K,
239K, and 124K SNPs, respectively. Bars
are 95%CI based on 100 replicates. Overlap
(0%, 10%, and 20%) stands for the percent-
age of overlapping individuals in the first
and second traits. The gray dashed line
stands for the true simulated genetic corre-
lation 0.6.
When using non-HapMap3 SNPs, LDSC estimates were

consistently biased (Figure S12) and less accurate,

compared to GREML estimates (Figures S13 and S14),

which probably explains why LDSC is implemented using

only HapMap3 SNPs. Although the genetic correlation is

robust to such biasedness,4,11 SNP heritability itself should

be carefully interpreted for both GREML and LDSC. We

also noted that LDSC and sLDSC estimates for SNP herita-

bility were biased in the genome partitioning analysis

(Figure S15) although the estimated enrichment was close

to the true value when using sLDSC and in-sample LD

scores (Figure S15).

We used real phenotype and individual genotype data

from the Psychiatric Genomics Consortium (PGC) and

UKBB to estimate genetic variance and covariance between

SCZ and BMI using LDSC and GREML (Table 3 and

Figure S16). We also used publicly available GWAS sum-
1188 The American Journal of Human Genetics 102, 1185–1194, June 7, 2018
mary statistics for LDSC to see how

much the SE of estimates could be

reduced by increasing the number of

samples and number of SNPs. For

real data analyses, we obtained theo-

retical SE to assess the accuracy of

the methods. GREML and LDSC esti-

mates for the SNP heritability were

0.192 (SE 0.004) and 0.280 (SE 0.016)

for SCZ and 0.184 (SE 0.004)

and 0.255 (SE 0.014) for BMI. The

notable difference between GREML

and LDSC was probably because of a

relatively small number of SNPs

(500K) that might result in underesti-

mated GREML SNP heritability (see

Figure S11). This is one of the caveats

of using GREML with real data that

usually comprise multiple cohorts

genotyped on different platforms,

such that, even with imputation, the

overlapping set of SNPs imputed

with high confidence may be limited.

The estimated genetic correlation for

GREML and LDSC was �0.136
(SE 0.017) and �0.173 (SE 0.031). This indicated that the

GREML estimate was 3.5 and 1.8 times more precise than

LDSC estimates for the SNP heritability and genetic corre-

lation, respectively. For LDSC, we also considered using

additional GWAS summary statistics from publicly avail-

able resources.25,26 The sample sizes used for additional

LDSC analyses (LDSC-meta) are summarized in Table 3.

The estimated SNP heritability was 0.259 (SE 0.019) for

SCZ and 0.121 (SE 0.007) for BMI, and the estimated ge-

netic correlation was �0.087 (SE 0.019). Although sample

size was increased 2.7-fold, the SE of LDSC estimate was

not smaller than that for GREML estimate (SE ¼ 0.017

versus 0.019, and p value ¼ 4.54E�15 versus 4.91E�06

for GREML versus LDSC) (Table 3). It should be noted

that GREML estimates used a homogeneous population

(within UK and after stringent QC excluding population

outliers) whereas LDSC-meta1 and -meta2 were based on



Figure 3. Estimated Genetic Correlation
of Simulated Data Based on a Genomic
Partitioning Model
Simulation was based on 10,000 individuals
that were randomly selected from UKBB
with 858K SNP. Based on Gusev et al.,24 the
858K SNPs across the genomewere stratified
as two categories: DHS (194K SNPs with
2,268 causal SNPs) and non-DHS (664K
SNPs with 7,732 causal SNPs). The genetic
correlation for the simulatedphenotypesbe-
tween the first and second traits was 0.6 and
�0.6 in DHS and non-DHS region, respec-
tively. Bars are 95% CI based on 100 repli-
cates. LDSC-CEU: Using LD-scores esti-
mated from 1KG reference data. LDSC-
OWN: Using LD-scores estimated from
UKBB. sLDSC-CEU: Using stratified LD-
scores estimated from 1KG reference data.
sLDSC-OWN:Using stratified LD-scores esti-
mated from UKBB. The presented results
were based on 0% overlapping samples be-
tween the first and second traits and those
based on other scenarios (e.g., 10% and
20%) are presented in Table S1.
combined meta-datasets consisting of �80 different

studies for which there is much more uncertainty about

homogeneity than when using a single study cohort

such as UKBB. The large difference of the estimates

between LDSC and LDSC-meta1 (or -meta2) was probably

due to the fact that heterogeneity among the 80 different

studies resulted in underestimation of the common

genetic variance and covariance, and that the difference

of LD scores between the target and 1KG reference data

would bias the LDSC estimates as shown in Figure S10.

We also analyzed height data27 and found a similar

pattern in that GREML estimates were more accurate

than LDSC estimates whether using the same data or using

additional GWAS summary statistics for LDSC (Figure S17

and Table S2).

In the real data analyses, we carried out a functional

category analysis partitioning the genome into regulatory,

DHS, intronic, and intergenic regions using GREML

(Figure 4 for SCZ/height and Figure S18 for SCZ/BMI).

For SCZ and height, the genetic correlation for the regula-

tory region was negative and significantly different from 0

(p value ¼ 0.0028; Figure 4). We also compared the results

with the LDSC genetic correlation estimation (Figures S19
The American Journal of Human Ge
and S20), and show that the estimates

were similar between LDSC and

GREML. However, GREML had a

lower p value (0.0028 in Figure 4)

than LDSC using LD scores from the

1KG reference data (p value ¼ 0.04)

or using LD scores from the in-sample

data (p value ¼ 0.007). We note that

current sLDSC software does not pro-

vide a SE of estimated partitioned

genetic correlation for each category;
therefore, we did not attempt using the software for

the real data analysis. For SNP-heritability estimation,

the SE of the estimate for each category was much lower

for GREML than sLDSC, ranging from 2.2- to 5.9-fold

(Table S3).

LDSC and GREML are the methods that have been

widely used in estimating genetic correlation, shedding

light on the shared genetic architecture of complex traits,

based on genome-wide SNPs. Two critical parameters for

assessing methods are bias (whether the estimates over

replicated analyses differ from the true value) and accuracy

(reflected by the standard error of the estimate). Although

the property of the accuracy of GREML has been thor-

oughly studied and tested,29,30 that of LDSC has not

been sufficiently investigated. In this report, we compare

the accuracy of GREML and LDSC estimates based on

various scenarios using simulated as well as real datasets,

and draw simple but useful guidelines (Box 1).

Both GREML and LDSC are methods that aim to esti-

mate the same genetic correlation parameter based on

genetic variants across the allelic spectrum as defined

earlier and the definition is invariant across the methods.

The estimates from both GREML and LDSC are valid if all
netics 102, 1185–1194, June 7, 2018 1189



Table 3. Heritability and Genetic Correlation Based on Different Datasets

Method #SNPs Data

# Individuals h2 BMI h2 SCZ (Liability Scale) Genetic Correlation

Mean SD Estimate SE Estimate SE Estimate SE p

GREML 518,992 UKBBþSCZ(qced) 152,961 – 0.184 3.80E�03 0.192 4.39E�03 �0.136 1.74E�02 4.54E�15

LDSC 516,519 UKBBþSCZ(qced) 151,262 1,432.7 0.255 1.38E�02 0.280 1.63E�02 �0.173 3.08E�02 1.91E�08

LDSC-meta1 477,163 UKBBþGIANTþPGCSCZ 422,499 20,226.0 0.111 8.10E�03 0.259 1.28E�02 �0.091 2.44E�02 1.95E�04

LDSC-meta2 1,011,748 UKBBþGIANTþPGCSCZ 414,707 32,697.8 0.121 6.50E�03 0.261 1.03E�02 �0.087 1.90E�02 4.91E�06

GREML: Analysis was based on quality controlled genetic data for BMI (from UK Biobank with 111,019 individuals and 518,992 SNPs) and schizophrenia
(from PGC with 41,630 individuals and 518,992 SNPs).
LDSC: The datasets used in LDSC were the same as in GREML.
LDSC-meta1: GWAS summary statistics for BMI were based on meta-analyzed GWAS results of UKBB individual-level genetic data (with 111,019 individuals
and 518,992 SNPs) and of GIANT (245,051 individuals and 477,163 SNPs). For SCZ, the GWAS summary statistics from the full PGC sample based on 77,096
individuals were used.
LDSC-meta2: The datasets used in LDSC-meta2 were the same as in LDSC-meta1 except the increased number of SNPs (1,011,748) with which its performance
was to check.
Mean and SD of #individuals: Due to different call rates of each SNP, number of individuals for each SNP used in GWAS were different.
required assumptions are met. GREML estimates variance/

covariance components based on genetic covariance struc-

ture estimated from available (in-sample) individual geno-

types, whereas LDSC estimates variance/covariance com-

ponents based on association test statistics corrected for

LD structure inferred from the markers in the reference

panel (e.g., 1KG of the same ethnicity). The underlying

assumption is that the samples generating the GWAS

summary statistics are drawn from the same population

as the samples generating the LDSC statistics, but

here we showed that there can be LD-structure (LD-scores)

differences between in-sample and reference data, which

impacts parameter estimations (Tables 1 and 2 and

Figure S10).

The reduced computing burden of LDSC over GREML

makes it the method of choice for generating a quick over-

view of the genetic relationship between disorders

(Table S4). However, our results suggest that important

associations could be overlooked. For example, Bulik-

Sullivan et al.11 reported a negative genetic correlation be-

tween BMI and SCZ estimated by LDSC (estimate ¼
�0.095, SE ¼ 0.025 with p value ¼ 1.75E�4), which was

not significant after Bonferroni correction for the multiple

testing. Because of the limited power from LDSC analysis,

the shared genetic architecture between BMI and SCZ,

perhaps, has had less attention than it is due.We confirmed

the negative genetic correlation between BMI and SCZwith

a greater confidence (estimate ¼ �0.136, p value ¼
4.54E�15) using GREML. A second example is in analyses

investigating the shared genetic architecture between

height and SCZ, in which epidemiological evidence points

to anegative association,31 supportedbygenetic analyses.32

However, there was no evidence of genetic correlation be-

tween height and SCZ in whole-genome level analyses of

Bulik-Sullivan et al.11 (estimate ¼ �0.002, SE ¼ 0.022). We

used a GREML genomic partitioning analysis and found a

significant negative genetic correlation between height

and SCZ for the regulatory region (Figure 4). It was noted

that the regulatory region was highly enriched for height

(estimate ¼ 0.094, p value ¼ 7.60E�92 in Table S3), which
1190 The American Journal of Human Genetics 102, 1185–1194, Jun
intuitively supports a significant genetic correlation with

SCZ for the region. As shown in Figures 3 and S15, the

GREML estimate was closer to the true values with a lower

SE than LDSC or sLDSC estimate in simulated data. For

the real data analyses (Table S3), GREML hadmore accurate

SNP-heritability estimates (lower SE) than sLDSC. More-

over, the sum of each category matched well with the esti-

mate of the whole genome for GREML whereas this was

not the case for sLDSC (Tables S3).

Here we focused on genetic correlation estimates and

did not consider a number of alternative approaches

that have been explored in detail for estimation of SNP

heritability, e.g., LDAK approach,33 weighted genomic

relationship matrix,34 MAF stratified,29 and LD-MAF strat-

ified approaches.35 It was beyond the scope of our study to

assess whether biasedness and accuracy can be improved

with these methods, although a general observation is

that biases in SNP-heritability estimation can ‘‘cancel’’ in

estimates of genetic correlations, as biases impact both

the numerator and denominator of the genetic correlation

quotient.4,11 We note that while under review, two new

methods to estimate stratified genetic correlations via

GWAS summary statistics36,37 have been published as

alternatives to sLDSC. Those approaches also need external

reference samples to infer LD structure in the actual sam-

ple, implying the same problem as for LDSC (4 and 5 in

Box 1). However, to partially address this problem, one

method36 achieves smaller standard errors than sLDSC

through a block diagonalization of the LD matrix. A

further study is needed to make explicit comparisons

with GREML.

In conclusion, LDSC may be the best tool for a massive

analysis of multiple sets of GWAS summary statistics in

estimating genetic correlation between complex traits,

because of its low computing burden and because

summary statistics may be available for much larger

sample sizes than those with individual genotype data.

However, LDSC estimates should be carefully interpreted,

considering the summary points (Box 1). Any interesting

findings from LDSC analyses should be followed up, where
e 7, 2018



Figure 4. Genetic Correlation between SCZ and Height and
Heritability Based on SNPs in Partitioned Genomic Regions Esti-
mated with GREML
A joint model was applied by fitting four genomic relationship
matrices simultaneously, each estimated based on the set of
SNPs belong to each of the functional categories (regulatory,
intron, intergene, and DHS). The bars are standard errors.
p value for the estimate significantly different from 0 was
0.0028, 0.52, 0.91, and 0.67 for regulatory, intronic, intergenic,
and DHS region, respectively.
possible, with more detailed analyses using individual

genotype data and with GREML methods, even though

sample sizes with individual genotype data may be smaller.
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Box 1. Summary Points

1. GREML and LDSC can both provide unbiased estimates of the genetic correlation between two traits. GREML

requires individual-level genotype data, while LDSC requires only association summary statistics and LD scores

per SNP. If LD scores have been calculated from the same sample as the association statistics, then GREML and

LDSC provide similar estimates of the genetic correlation. However, in practice LD scores are estimated from

external reference samples of the same broad ethnicity, which can lead to bias in the estimates (Figures S21

and S22). As a rule of thumb, when LDSC and GREML estimates are dissimilar, we recommend reporting the

estimate with a lower SE. The theoretical SE of the estimates is a reliable indicator to determine the better

estimator, which agrees well with the empirical SE (from simulation replicates) (Figure S23).

2. When combining multiple data sets to estimate genetic correlations between multiple traits, it is possible, in

practice, that the number of SNPs remaining after QC is relatively small. When the number of available

SNPs is small, the SE of LDSC estimates for genetic correlation can be increased relatively more, compared to

that of GREML estimates (Figure S2).

3. SNP heritability has a different property, compared to genetic correlation since the latter is robust to biased

estimation of genetic variance and covariance (presumably the biases occur in the numerator and denominator

and hence approximately cancel out).4,11 Especially when using a small number of SNPs (<500K) for GREML or

when using multiple meta-data sets for LDSC, estimated SNP heritability itself should be reported with caution

as both methods can give biased estimates.

4. When using a study cohort, it is desirable to measure heterogeneity between the cohort and 1KG reference data

(e.g., measuring the correlation between LD scores estimated based on the cohort and 1KG reference data as in

Table 1). If the correlation is not close to 1, LDSC estimates should be carefully interpreted. We recommend that

when GWAS summary statistics are provided, cohort-specific LD scores are provided also. It is also warranted

that an optimal approach to meta-analyze LD scores across multiple cohorts should be developed to improve

LDSC performance.28

5. When using extensive metadata that possibly include heterogeneous sources, there are two problems. Firstly,

the LD scores estimated from reference samples such 1KG reference may be a poor representation of the LD

scores of the heterogeneous metadata, such that the accuracy of LDSC decreases. Second, the distribution of

causal variants and pleiotropic effects may be different between heterogeneous sources such that the estimates

can be biased (capturing only common effects between heterogeneous sources). This implies that LDSC

estimates should be reported with caution when using extensive metadata sets (Table 3).

6. One of advantages of having access to individual-level genotype data comes when more detailed analyses are

required, such as genomic partitioning analyses. As shown in Figure 4, a GREML genomic partitioning analysis

reveals a significant negative genetic correlation between SCZ and height for the regulatory region, which

genome-wide GREML or LDSC approach has less power to detect.
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