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Abstract

Although Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived 

genomes (71 with ants, reviewed elsewhere), these genomes do not capture the breadth of this very 

diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant 

families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 

2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. A 

more comprehensive catalogue of hymenopteran genomes is needed for research into the 

evolutionary processes underlying the expansive diversity in terms of ecology, behavior, and 

physiological traits within this group. Additional sequencing is needed to generate an assembly for 

even 0.05% of the estimated 1 million Hymenopteran species, with premier level assemblies for at 

least 0.1% of the >150,000 named species dispersed across the order. Given the haplodiploid sex 

determination in Hymenoptera, haploid male sequencing will help minimize genome assembly 

issues to enable higher quality genome assemblies.
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Introduction

The order Hymenoptera with fossils dating back to the Triassic [1], is both ancient and 

hyper-diverse, with over 150,000 described and one million estimated species [2,3]. One of 

the “big four” insect orders, Hymenoptera comprise diverse species including sawflies and 

wood wasps (“Symphyta”), parasitoid wasps (“Parasitica”), and stinging wasps (Aculeata), 

which includes the ubiquitous and ecologically dominant ants, bees and social wasps. With 

an astonishing diversity of biologically interesting traits Hymenoptera have significant 

economic impact (e.g. biological control and pollination) and thus was one of the first insect 

orders to benefit from genome sequencing[4]. Despite additional genomes sequenced (Table 

1) or in preparation (Figure 1, Table 2), genomic resources remain lacking for most major 

lineages, which comprise 28 superfamilies, 97 families, and 8,422 genera. Herein we discuss 

insights gained and opportunities for improvements for Hymenopteran genomics (noting that 

ants are reviewed separately).

State of Hymenopteran Genomic Resources

Features of Hymenopteran genomes

Hymenopteran genomes possess some notable and unique features. Hymenoptera are 

haplodiploid: unfertilized eggs produce haploid males and fertilized eggs produce diploid 

females [5]. Haplodiploidy engenders interesting biology related to sex determination[6], 

control of sex ratios, and relatedness[7], but is also useful for whole genome sequencing. 

Enough DNA can be extracted from a single large haploid male to provide material for 

whole genome sequencing without genetic variation (e.g. [8]). Another notable feature of 

some Hymenoptera is extremely high recombination rates, especially in social species such 

as the honey bee, where recombination rates are among the highest known for any 

organism[9].

Among sequenced examples, hymenopteran genomes are moderate in size (80% are between 

180–340Mb) with a few exceptions [10–12]. Most possess 12,000–20,000 genes (note 

counts are highly annotation-pipeline and assembly contiguity dependent[13]), with a 

relatively low content of repetitive and transposable elements. One unusual feature is low 
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GC content, which ranges from 30–45% depending on the species[8]. Although the reason 

for low GC content is not yet understood, it may be related to GC-biased gene conversion 

and high recombination rates[14]. Due to their relatively small size and simple structure, 

Hymenopteran genomes are readily assembled and highly tractable for genome 

sequencing[15].

Genomes Generate Biological Understanding

The Hymenoptera include everything from herbivores to pollinators to predators to parasites, 

and the species filling each of these ecological roles are endowed with a complex set of 

physiological and behavioral adaptations. Genomic studies have informed applied questions 

related to pollinator health[16] and biological control using parasitoid wasps[17]. 

Comparative genomics approaches have unlocked some understanding of the molecular 

evolutionary basis for these adaptations, including the evolution of eusociality[8,12,18], 

social parasitism[19,20], venom function[19–22], and behavioral host specificity[23,24].

Potential Genomic Insights into Hymenoptera Biology

Pollinator health and management research has greatly benefited from the availability of 

reference genomes for many important pollinators (Table 1). Genomic approaches to 

pollinator health allow us to screen for disease, elucidate the effects of parasites, and 

investigate the immune response to environmental stressors and pathogens. Examples 

include developing new biomarkers of honey bee colony health [25–29], characterizing 

environmental stress responses and optimal developmental temperature regimes for the 

alfalfa leafcutting bee (an intensively managed solitary pollinator) [30,31] and developing 

other genomic and transcriptomic indicators of health in wild and managed pollinators[32–

39]. Honey bee genomic nutrition research has been fruitful in generating insights into 

mechanisms of bee health [40–43]. Expanding this emerging field to native, unmanaged bees 

can provide a comparative perspective on how wild bee health is influenced by 

environmental diet restriction due to habitat loss[44]. This approach can also improve our 

understanding of innate and acquired immunity function among bees, which is critical for 

management and conservation efforts[45,46].

The vast majority of Hymenoptera species are parasitoids (green in Figure 1 and Table 2). 

The majority of insect species are attacked by at least one species of parasitic 

Hymenoptera[47–51], with complex and intimate host-parasitoid interactions [52] and 

narrow host ranges[53] which may drive ecological speciation[54,55]. Parasitoids are 

economically important as biological control agents of invasive pests, reducing pest 

abundance and impact, providing a safe, cost-effective alternative to insecticides [56], so 

understanding the genetic architecture and evolution of traits like climatic adaptation and 

host specificity is critical. Such research is revealing diverse mechanisms by which 

parasitoid wasps overcome the host immune system, including venoms, immunosuppressive 

factors such as polydnaviruses and virus-like particles, specialized embryonic cells 

(teratocytes), and larval secretions [57–59]. Parasitoids can also co-opt host endocrine 

systems, disrupting host development [60] or manipulating host behavior [61,62]. Recent 

findings have revealed evolutionary changes in some wasp lineages in association with 
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microbes that affect the interactions with their host, suggesting much remains to be 

discovered. Turnover of integrated viral genomes within Braconidae and Ichnuemonidae 

wasp genomes are more complex than once anticipated [63–65]. Genomes in progress for 

three parasitoids with a common host have revealed that each has separate mechanisms to 

overcome host immunity and other defenses (M. Strand, personal communication) 

demonstrating that comparative genomics can reveal more information than phylogeny alone 

as illulstrated by the rich collection of research stemming from genomes in the genus 

Nasonia (Pteromalidae; [66]introduces the collection), though annotation of these genomes 

leveraged the extensive history of research on Nasonia genetics[67]. Comparable research on 

species from other families will be needed to fully realize the potential of genomics for 

parasitic Hymenoptera.

Mechanisms and evolution of social behavior are an emphasis of Hymenoptera genomic 

research. Aculeata are known for sophisticated social behavior within colonies of some ants, 

bees, and wasps, with eusociality arising multiple times within this clade[68,69]. Glimpses 

into the molecular basis for this cooperative lifestyle were among the most anticipated 

findings from the initial sequencing of the honey bee genome [4] while more recent 

comparative genomic approaches have placed these initial findings within a broader 

phylogenetic context[8,12,18]. Comparative methods are particularly useful for 

understanding the molecular basis for hymenopteran behavior given the impressive diversity 

of social niches[70,71]. Although social wasps have been a model lineage for understanding 

the evolution of sociality[72], there are currently only two published genomes for this group, 

both within the paper wasp genus Polistes[8,18].

While most of the focus of hymenopteran genomics has been on social evolution, the 

Hymenoptera offer many opportunities to further investigate the molecular basis for other 

aspects of development and animal behavior including maternal care, social parasitism, and 

foraging/hunting behavior. In some cases, the conceptual framework and predictions are 

already in place (e.g., social parasitism[73], development[74–79]), others can be enhanced 

by those generated for other taxonomic groups (e.g., venom evolution in snakes[80], 

genomic basis of diet shifts[81,82]).

Taxa that are underrepresented in genomics

Given the deep evolutionary distances between major hymenopteran families[83], selecting 

appropriate taxa for comparison presents a substantial challenge. Crown-group Hymenoptera 

originated 250–300 mya and spans evolutionary distances more than 3-fold those of modern 

birds[1,83,84]. Bees shared a common ancestor ~100 mya, and bees+apioid wasps diverged 

from ants ~145 mya, similar to the split between marsupial and placental mammals (>160 

mya)[85]. Increasing the number of taxa sampled within each lineage, as well as the total 

number of lineages sampled will provide higher resolution to interpret genomic signatures of 

key phenotypes. In addition, we suggest specific groups that may be particularly appropriate 

for additional comparisons.

Expanding sampling of Hymenoptera genomes to include one or several genomes per family 

would provide a useful framework for future evolutionary studies within the order. Although 

significant recent progress has been made resolving higher-level phylogenetic relationships 
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[83,86–88], important uncertainties remain at the superfamily (Figure 1) and family levels, 

especially outside of the Aculeata. Having genomic data for all 97 families would help 

overcome common phylogenetic problems, such as insufficient data, incomplete lineages 

sorting, base composition bias, and long-branch attraction. Multiple carefully chosen 

representatives of each family would even further reduce issues related to poor taxon 

sampling[83]. While producing phylogenies with entire genomes is still too expensive for 

most multi-taxon studies, having a high quality genome for each family would enable more 

economical reduced-representation phylogenomics across more taxa [89,90]. Having a 

complete sampling of Hymenoptera genomes at the family level, would also provide a better 

evaluation of genome size variation and gene family evolution over the entire order. For 

developmental biology examinations, species should include samples that are readily 

available for experiments such as embryological and larval time series sampling for gene 

expression and localization.

Parasitoids are an immensely diverse group for those interested in biological control 

applications and evolutionary biology[91,92], however the genomes of only 14 species in 

five families have been published, with draft genomes of ~30 more species (one additional 

family) in progress (Figure 1, Table 1).

To study polyembryonic development[78], genomes from the four families have this trait 

and comparative genomics across these families would be informative. Two have been 

sequenced (Table 1, M. cingulum (Braconidae) and C. floridanum (Encyrtidae)); thus 

including at least one polyembryonic species from the Platygastridae and Dryinidae families 

is a priority that would fit in the 0.05% species sample. Because different families of 

parasitoids use different taxa of hosts with very different biologies, understanding 

mechanisms parasitoids use in overcoming host immunity and host choice will benefit by 

having genomes of at least one parasitoid species per family. Including additional samples to 

allow comparisons of parasitoids sharing the same host, such as Drosophila, and pairing 

with genomes of the hosts will greatly enable comparative studies across lineages and host/

parasite interactions[93].

Comparative genomic approaches to understanding the evolution of eusociality will benefit 

from increasing the depth of coverage within key wasp and bee families, especially the 

Vespidae, Apidae and Halictidae. Each of these families includes a diversity of social 

lifestyles, along with closely related solitary individuals. In a few key lineages such as 

vespid wasps and carpenter bees (Apidae: Xylocopinae), there are also opportunities to 

compare genomes within lineages in which the entire spectrum of sociality occurs, from 

solitary to weakly social to highly eusocial[71]. These highly informative species, though 

underrepresented in previous genome sequencing efforts, have currently projects underway 

to fill these gaps, with eventual insight into the full spectrum of sociality evolution [94]. The 

sweat bees (Halictidae) are also particularly useful for social evolution comparative studies, 

representing at least two independent origins of eusociality, a dozen lineages that have 

reverted back to a solitary lifestyle[95–97], and with several species in the genera Halictus, 

Lasioglossum, and Megalopta with facultative expression of eusociality (where individuals 

or populations vary in solitarily or socially nesting). Understanding the genomic basis for 

intra-specific variation in social behavior can illuminate the evolutionary processes that may 
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have been particularly important at the origins of eusociality. We propose including ten 

additional samples to enhance comparative genomics of social behavior corresponding to 

environmental factors, such as latitude or elevation[98–100], genetic influences [70] and 

within population variation due to foundress reproductive strategy[101] with dense sampling 

at fine phylogenetic scales.

Development of genomic resources for taxa from the non-social aculeate wasp families will 

provide a critical picture of the genomic substrate from which eusociality evolved, and 

additionally provide insight into the genomic signatures of other behavioral innovations, 

such as central place foraging (i.e., nesting), maternal care, and social parasitism. 

Particularly useful families include the spider wasps (Pompilidae), velvet ants (aka “cow 

killers”) (Mutillidae), thread-waisted wasps such as mud daubers (Sphecidae), and cicada 

killers and bee wolves (Crabronidae, including an independent origin of wasp eusociality). 

These groups are closely related to vespids and bees, and exhibit remarkable diversity in 

parental care, dietary breadth, parasitism, and venom function. Additionally, because wasp 

families are cosmopolitan and conspicuous, their genomes can be studied in the context of 

well-described behavior and natural history information.

Challenges

Several challenges may impede sequencing and assembly, as well as annotation, of the 

genomes of Hymenoptera including sample quantity, heterozygosity, and availability; 

functional interpretation, and unknowns. Though obtaining high quality DNA may be 

difficult because samples are lacking, (especially for parasitoids), for Chalcidoidea, the US 

National Science Foundation has funded a phylogenetics project that could make available 

high molecular weight DNA from 388 species in 294 genera in 24 families (John M. Heraty, 

personal communication). For bees, pinned specimens for many groups may be available 

from the U.S. National Pollinating Insect Collection at the USDA-ARS-PWA Pollinating 

Insect Research Unit. In addition, ARS scientists are routinely collecting new material in 

North America and could provide genome quality specimens (recently collected and 

identified) to interested collaborators for some families found in North America. 

Additionally, some available samples (also many parasitoids) are very small and yield ≤100 

ng of DNA per wasp. Although enough DNA for short-read sequencing library preparation, 

extractions from many individuals are needed to provide sufficient DNA for long-read 

technologies and heterozygosity in these pooled samples contributes to assembly challenges. 

Theoretically this can be solved by inbreeding for multiple generations, however some 

species cannot be inbred (e.g. those with complementary sex determination, in which 

homozygosity causes mortality or sterile diploid males). Concerning annotation, genes that 

underlie interesting differences in biology often evolve rapidly, making it difficult to find 

homologs in species where gene functions are well known. Therefore there is a need for 

experimentally determined functions, (e.g. tissue specific expression and gene knockout/

knockin). This is particularly true where differences in expression underlie differences in 

biology and distant actuators/enhancers and epigenetic modifications, may underlie 

differences in some key traits, (e.g. diapause differences among Nasonia vitripennis 
populations [102]). Finally, newly sequenced hymenopteran species may have genomic 
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features that reduce genome assembly quality including large size, complex structure and 

high GC content.

Genome Quality and Cost Varies

Premier genomes are produced today using a combination of long-read sequencing and de 

novo contig assembly, long-range scaffolding with complementary technologies (Hi-C and 

BNG), and short-read base quality improvement. Such genomes are more contiguous, 

complete and correct than genomes generated with Sanger sequencing and while they cost 

many times less, they are still expensive compared to short read only assemblies. Short read 

only assemblies can have high fidelity despite short contigs, but the contigs are not as well 

scaffolded and the scaffolds contain many more gaps in the sequence than the premier 

assemblies. These short contig assemblies can be used for many comparative analyses to fill 

in missing branches in a phylogeny with less cost. We propose to combine these two types of 

assemblies in a strategic way to lessen the cost and optimize the utility of the data generated.

Other useful types of genomic data have been produced (ENCODE) or proposed (FAANG) 

to annotate other animals. At a minimum, long-read transcriptome data helps inform the 

order of exon containing contigs and itemize the variety of isoforms found in the organism 

and short-read RNAseq data can deeply sample expression data.

A Complete Catalogue is Possible

Although many strategies can be envisioned for future hymenopteran genomics, we suggest 

a three-pronged strategy focused on breadth, biology and diversity. Increasing the breadth of 

genome coverage across taxa of this hyper-diverse order will provide long-term scientific 

benefits, we propose obtaining high quality genomes from at least one representative of each 

family (81 samples). For the 15 families with more than 50 genera or more than 100 species 

we propose sampling an additional 0.05% of the species (27 samples, Table 2). For families 

of particular interest such as pollinators and parasitic wasps, we propose adding 42 species, 

bringing the total to 150 or 0.1% of the species. Premier genomes are less expensive than in 

the past, but still expensive so this may not be possible for all of these samples. Short read 

assemblies or 30× comparative mapping studies can be used to fill in the phylogenetic 

sampling with additional closely related species. Including transcript sequencing (with high 

quality long read data) is a cost effective adjunct to enhance the value of lower quality 

assemblies. With available samples, robust technologies and more reliable methods, this is a 

feasible task with the potential to impact studies for years into the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Hyper-diverse Hymenoptera order includes parasitic and social insects

• Economically impactful for biological control and pollination

• Though second most sequenced order, still only 15% of families represented

• High quality genome assemblies are proposed for 150 Hymenopteran species

• With additional comparative genomes and transcriptomes to increase data 

breadth
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Figure 1. Hymenoptera phylogeny and genome assemblies
Phylogeny based upon[83,88], with dotted lines marking lineages of uncertain placement, 

branches not to scale (=cladogram). Major groups shown on right, individual superfamilies 

listed with columns indicating the numbers of Familes, Genera, Species, Genomes in NCBI 

(in Progress).
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Table 1

Hymenoptera Genomes in INDC. Family Formicidae 19 genomes are omitted (reviewed elsewhere).

Family Scientific Name Representative Assembly Reference

Agaonidae Ceratosolen solmsi GCF_000503995.1 [103]

Apidae Apis cerana GCF_001442555.1 [104]

Apidae Apis dorsata GCF_000469605.1 [105]

Apidae Apis florea GCF_000184785.2 *[12]

Apidae Apis mellifera† GCF_000002195.4 [4,13]

Apidae Bombus impatiens† GCF_000188095.1 [106]

Apidae Bombus terrestris† GCF_000214255.1 [106]

Apidae Ceratina calcarata GCF_001652005.1 [107]

Apidae Eufriesea mexicana GCF_001483705.1 [12]

Apidae Euglossa dilemma GCA_002201625.1 [10]

Apidae Habropoda laboriosa† GCF_001263275.1 [12]

Apidae Melipona quadrifasciata GCA_001276565.1 [12]

Braconidae Cotesia vestalis GCA_000956155.1 *[108]

Braconidae Diachasma alloeum GCF_001412515.1 [109]

Braconidae Fopius arisanus GCF_000806365.1 [17]

Braconidae Macrocentrus cingulum GCA_002156465.1 [110]

Braconidae Microplitis demolitor GCF_000572035.2 [65]

Cephidae Cephus cinctus GCF_000341935.1 [111]

Diprionidae Neodiprion lecontei GCF_001263575.1 [112]

Encyrtidae Copidosoma floridanum GCF_000648655.1 [113]

Figitidae Leptopilina clavipes GCA_001855655.1 [114]

Halictidae Dufourea novaeangliae GCF_001272555.1 [12]

Halictidae Lasioglossum albipes GCA_000346575.1 [115]

Megachilidae Megachile rotundata† GCF_000220905.1 [12]

Orussidae Orussus abietinus GCF_000612105.1 [116]

Pteromalidae Nasonia giraulti GCA_000004775.1 [117]

Pteromalidae Nasonia longicornis GCA_000004795.1 [117]

Pteromalidae Nasonia vitripennis GCF_000002325.3 [117]

Pteromalidae Trichomalopsis sarcophagae GCA_002249905.1 [22]

Tenthredinidae Athalia rosae GCF_000344095.1 [116]

Trichogrammatidae Trichogramma pretiosum GCF_000599845.1 [113]

Vespidae Polistes canadensis GCF_001313835.1 [18]

Vespidae Polistes dominula GCF_001465965.1 [8]

†
Important polinators.

*
Genome unpublished but included in collection.
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