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Abstract

The human transcriptome is composed of a vast RNA population that undergoes further 

diversification by splicing. Detecting specific splice sites in this large sequence pool is the 

responsibility of the major and minor spliceosomes in collaboration with numerous splicing 

factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious 

mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with 

substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms 

followed by a discussion of disease-associated errors, with an emphasis on recently described 

mutations that have provided new insights into splicing regulation. We also discuss emerging 

strategies for splicing-modulating therapy.

Recent analysis from the Encyclopedia of DNA Elements (ENCODE) project1 (GRCh38, 

Ensembl79) indicates that most of the human genome is transcribed and consists of ~60,000 

genes (~20,000 protein-coding genes, ~16,000 long non-coding RNAs (lncRNAs), 

~10,000 small non-coding RNA and 14,000 pseudogenes). Although this gene inventory 

will change with further analysis, the number of protein-coding genes is surprisingly low 

given the proteomic complexity that is evident in many tissues, particularly the central 

nervous system (CNS). High-resolution mass spectrometry studies have identified peptides 

encoded by most of these annotated genes2,3, but the number of isoforms expressed from 

this gene set has been estimated to be at least 5–10-fold higher. For example, long-read 

sequence analysis of adult mouse prefrontal cortex neurexin (Nrxn) mRNAs indicates that 

only three Nrxn genes produce thousands of isoform variants4. This diversity is primarily 

generated by alternative splicing, with >90% of human protein-coding genes producing 

multiple mRNA isoforms5–7. Given the complexity of the precursor RNA sequence elements 

and trans-acting splicing factors that control splicing, it is not surprising that this RNA 

Correspondence to M.S.S. mswanson@ufl.edu. 

Competing interests statement
The authors declare no competing interests.

FURTHER INFORMATION
OMIM: http://www.omim.org/
ENCODE: http://www.gencodegenes.org/
UniProtKB: http://www.uniprot.org/
RetNet: https://sph.uth.edu/retnet/
MISO Database: https://miso.readthedocs.org/en/fastmiso/annotation.html
Splice Rack Database: http://katahdin.mssm.edu/splice/splice_matrix_poster.cgi?database=spliceNew2
U12 Database: http://genome.crg.es/cgi-bin/u12db/u12db.cgi
Pictogram: http://genes.mit.edu/pictogram.html

HHS Public Access
Author manuscript
Nat Rev Genet. Author manuscript; available in PMC 2018 June 08.

Published in final edited form as:
Nat Rev Genet. 2016 January ; 17(1): 19–32. doi:10.1038/nrg.2015.3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.omim.org/
http://www.gencodegenes.org/
http://www.uniprot.org/
https://sph.uth.edu/retnet/
https://miso.readthedocs.org/en/fastmiso/annotation.html
http://katahdin.mssm.edu/splice/splice_matrix_poster.cgi?database=spliceNew2
http://genome.crg.es/cgi-bin/u12db/u12db.cgi
http://http://genes.mit.edu/pictogram.html


processing step is particularly susceptible to both hereditary and somatic mutations that are 

implicated in disease8. The central importance of splicing regulation is highlighted by the 

observation that many disease-associated single-nucleotide polymorphisms (SNPs) 

in protein-coding genes have been proposed to influence splicing. Although splicing 

efficiency may vary between individuals owing to variants in the cis-acting RNA sequence 

elements or in the genes encoding trans-acting factors that control splicing, most (>90%) 

disease-associated SNPs lie outside of protein-coding regions9. Thus, it is noteworthy that 

some non-coding RNAs (ncRNAs), including lncRNAs and circular RNAs (circRNAs), have 

been implicated in splicing regulation10,11.

In this Review, we focus on RNA mis-splicing in disease, providing background information 

on splicing mechanisms in BOX 1. We describe why splicing can be prone to errors with 

potentially pathological consequences, and then summarize mutations in both cis-acting 

RNA sequence elements and trans-acting splicing factors that are associated with various 

diseases, with an emphasis on recently described mutations. The emerging issue of 

mutation-induced splicing factor aggregation, which is particularly notable in some 

neurological diseases, is also reviewed, followed by an examination of current studies 

focused on splicing modulatory therapies to treat human disease.

Splicing errors and disease

The division of eukaryotic genes into exons and introns has clear evolutionary advantages, 

including regulatory, mutation buffering and coding capacity benefits12. However, this split 

gene architecture introduces a requirement for an intricate splicing regulatory network that 

consists of an array of RNA regulatory sequences, RNA–protein complexes and splicing 

factors. Although splicing is composed of a fairly simple set of reactions, the task of the 

splicing machinery to find authentic 5′ splice sites (5′ss) and 3′ss is problematic for several 

reasons (BOX 1). First, 5′ss and 3′ss pairs must be carefully identified, particularly in 

coding regions where a single-nucleotide mistake often results in a frameshift and 

consequent nonsense-mediated decay (NMD) of the transcript. Second, mammalian 

gene architecture complicates the difficult task of site selection owing to extensive 

alternative splicing (BOX 2) and because alternative splice sites may be preferentially 

selected during embryonic and fetal development as a mechanism to control the levels of the 

final gene products. Third, human exons are often small, with ~80% of exons <200 bp in 

length, and masked by a much larger intronic sequence pool. Fourth, splicing is primarily a 

co-transcriptional process that is modulated by the rate of transcriptional elongation by RNA 

polymerase II (RNA Pol II), so multiple regulatory machineries must properly interface to 

ensure correct splice site selection13.

As detailed below, recurring themes in splicing regulation and disease presentation are the 

genetic issues of penetrance and expressivity. Incomplete penetrance and variable 

expressivity may result from allelic variations, modifier genes and/or environmental factors.

Common cause: pre-mRNA mutations and mis-splicing

The most common type of mutations that alter splicing patterns are cis-acting and are 

located in either core consensus sequences (5′ss, 3′ss and branch point (BP)) or 
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the regulatory elements that modulate spliceosome recruitment, including exonic splicing 

enhancer (ESE), exonic splicing silencer (ESS), intronic splicing enhancer (ISE) and 

intronic splicing silencer (ISS) elements8 (BOX 1). Mutations in these regulatory elements 

have been documented in multiple diseases that have characteristic effects on many tissues 

(TABLE 1, cis). An early splicing mutation described soon after the discovery of splicing 

was a point mutation that generates an alternative 3′ss in HBB, which encodes β-globin, 

resulting in β+-thalassaemia, a condition that is characterized by reduced β-globin protein 

levels and anaemia14–16. More recent examples include: splice site mutations in dystrophin 

(DMD), which result in loss of dystrophin function and Duchenne muscular dystrophy17,18 

(discussed in further detail below); polymorphic UG and U tracts near the 3′ss of CFTR 
(cystic fibrosis transmembrane conductance regulator) exon 9, which modify the severity of 

cystic fibrosis19,20; and ESE, ESS and 5′ss mutations in MAPT (microtubule-associated 

protein tau) exon 10, which cause frontotemporal dementia with parkinsonism linked to 

chromosome 17 (FTDP-17)21.

In contrast to the above gene mutations that cause a single type of disease, mutations in 

several types of sequence elements in LMNA, the gene encoding lamins A, C, Δ10 and C2 

result in multiple pathological phenotypes22. Lamins are type V intermediate filament 

proteins of the nucleus that have crucial roles in differentiated cell nuclear architecture 

(peripheral lamins) and gene expression (nucleoplasmic lamins). Laminopathies comprise a 

heterogeneous group of over 14 diseases, including cardiomyopathies, hereditary peripheral 

neuropathies, lipodystrophies, muscular dystrophies and premature ageing (progeroid) 

syndromes23.

Interestingly, 5′ss mutations in LMNA cause two progressive but distinct disorders (FIG. 1): 

limb girdle muscular dystrophy 1B (LGMD1B) primarily affects the proximal muscles of 

the shoulders and hips, whereas familial partial lipodystrophy type 2 (FPLD2) is 

characterized by a selective loss and abnormal distribution of body fat24,25. Both 5′ss 

mutations lead to intron retention (albeit for different introns), frameshifting and the 

generation of a premature termination codon (PTC) that should activate NMD and increase 

LMNA RNA turnover. However, the different disease presentations suggest that distinct 

truncated LMNA proteins may be produced by intron 8 versus intron 9 retention (FIG. 1a,b). 

Moreover, an unrelated premature ageing disease, Hutchinson–Gilford progeria syndrome 

(HGPS), is caused by the utilization of an alternative 5′ss in LMNA exon 11, resulting in a 

150 nucleotide deletion that generates progerin, a carboxy-terminal truncated protein that is 

constitutively farnesylated and remains associated with the nuclear membrane during 

mitosis26,27 (FIG. 1c). Other mutations at the exon 4 3′ ss cause the addition of an extra 

three amino acids at the exon 3–4 border and lead to dilated cardiomyopathy (DCM), a heart 

condition that is caused by thinning and dilation of the ventricles and progressive 

atrioventricular block, a cardiac conduction defect28 (FIG. 1d). Thus, splicing mutations 

result in abnormal LMNA proteins, which themselves lead to a range of pathological effects.

Core spliceosome mutations in retinitis pigmentosa

In addition to mutations that alter precursor RNA sequence elements which regulate 

splicing, mutations in core constituents of the spliceosome also underlie a discrete set of 
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diseases, including retinal degenerative disorders and cancer (TABLE 1, spliceosome). 

Retinitis pigmentosa (RP), a progressive disease that is characterized by initial night 

blindness and loss of peripheral vision followed by central retinal degeneration, is the most 

prevalent form of hereditary blindness29. Multiple gene mutations cause autosomal 

dominant RP (adRP), but six of these genes encode components, or associated factors, of the 

spliceosomal U4/U6.U5 tri-small nuclear ribonucleoprotein particle ( tri-snRNP; namely 

pre-mRNA processing factor 3 (PRPF3), PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200 

(also known as BRR2)) (FIG. 2). Among surveyed tissues, the human retina expresses the 

highest levels of some housekeeping genes and major, as well as minor, spliceosomal 

snRNAs. Therefore, PRPF mutations might cause global splicing dysregulation that 

manifests in the retina because of enhanced splicing activity30.

Studies on patient lymphoblasts with PRPF3, PRPF8 and PRPF31 mutations show that these 

mutant cells also display impaired constitutive and alternative splicing together with changes 

in snRNA stoichiometry and tri-snRNP composition. Variable expressivity and/or 

incomplete penetrance have also been reported for RP-associated mutations in U4/U6.U5 tri-

snRNP components31–33. For PRPF31, incomplete penetrance in some families with adRP 

results from increased expression of the wild-type PRPF31 allele in asymptomatic carriers 

owing to reduced expression of the repressive modifier gene CNOT3 (CCR4-NOT 

transcription complex, subunit 3)34. These results support a haploinsufficiency model 

for spliceosome-associated adRP and highlight the importance of optimal U4/U6.U5 tri-

snRNP function in the retina.

However, gain-of-function pathogenesis models have also been proposed. For example, 

some PRPF3 mutations lead to large aggregate formation and apoptosis in photoreceptor, but 

not epithelial or fibroblast cell lines, suggesting that these aggregates may directly interfere 

with normal cellular activities35. Loss-of-function mutations may also occur in adRP. This 

possibility is exemplified by PRPF8, a highly conserved and large protein that is a 

component of the U5 snRNP and is positioned in the catalytic core of the spliceosome. 

PRPF8 C-terminal mutations cause an early onset and severe form of adRP, and structural 

analysis of this region shows that it inserts into the RNA-binding tunnel of the SNRNP200 

helicase. This insertion event intermittently blocks, and thus controls, the ATP-dependent 

U4/U6 unwinding activity of this helicase. Thus, loss of the PRPF8 RNA-blocking activity 

owing to some adRP-linked mutations would be expected to cause mis-regulation of U4/U6 

unwinding due to premature helicase activity36.

Different mutations in a single gene may also result in haploinsufficiency and dominant-

negative effects in adRP. Heterozygous single-nucleotide variants and deletion variants in the 

PRPF4 coding and promoter regions, respectively, have been reported recently37. PRPF4 
encodes a 60 kDa protein that is important for U4/U6 di-snRNP stability. Whereas the 

promoter deletion causes decreased PRPF4 expression in patient fibroblasts, the coding 

region variant (p.Pro315Leu) results in the upregulation of PRPF4 together with several U4/

U6.U5 tri-snRNP components (PRPF3, PRPF6, PRPF8 and PRPF31) and other splicing 

factors (SRSF1 and SRSF2). In addition, overexpression of human PRPF4 in which the Pro 

at position 315 is mutated to Leu (PRPF4Pro315Leu) in zebrafish results in larval deformity 

and retinal phenotypes. Although the central question of why the U4/U6.U5 tri-snRNP is 
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particularly important for normal retinal function remains unanswered, several intriguing 

clues are starting to emerge. The initial events in RP include loss of rod photoreceptors, the 

cells responsible for vision under low light conditions, and of the retinal pigment epithelium 

(RPE), the monolayer of cells that carry out functions such as the phagocytosis of the outer 

segments of photoreceptors (~10% of rod cell volume)38. Thus, the RPE has a high rhythmic 

metabolic burden, and recent results suggest that the RPE may be the primary cell type 

affected by PRPF mutations. Mouse RPE morphology is sensitive to Prpf mutations, and 

RPE phagocytic function is inhibited in Prpf3Thr494Met/Thr494Met and 

Prpf8His2309Pro/His2309Pro knock-in, as well as Prpf31+/− hemizygous RPE cell cultures39. 

Further studies designed to investigate how these Prpf mutations alter splicing patterns in 

these mutants should provide mechanistic insights into U4/U6.U5 tri-snRNP dynamics in 

normal versus diseased retinal cells.

Spliceosome dysregulation in cancer

Mis-regulation of alternative splicing is an important factor in several types of cancer40. In 

addition, somatic mutations that affect the expression of core spliceosome components have 

an important role in cancer progression. For example, PRPF6, a U5 snRNP protein that 

mediates interactions between U5 and the U4/U6 di-snRNP to form the U4/U6.U5 tri-

snRNP (FIG. 2), is overexpressed in colorectal carcinoma owing to chromosomal instability, 

copy number gain and possibly other factors41, and this promotes cancer cell proliferation. 

The increased PRPF6 expression in cancer cell lines correlates with an alternative splicing 

event that generates an oncogenic form of the stress-activated kinase ZAK. A direct role for 

PRPF8 somatic mutations and hemizygous deletion has also been proposed for 

myelodysplastic syndromes (MDS), which are the most prevalent forms of adult myeloid 

malignancies and are characterized by abnormal growth or development of blood cells42. In 

contrast to PRPF6, reduced expression of PRPF8 correlates with increased cell proliferation, 

and PRPF8 heterozygous mutations or hemizygous deletions result in widespread alternative 

splicing defects owing to enhanced activation of suboptimal splice sites43.

Exome and whole-genome sequencing studies have also uncovered frequent somatic 

mutations in a key group of spliceosome-associated components, including SF3B1, U2AF1 

and U2AF2 (see FIG. 2) in several types of myeloid neoplasms44,45. High-throughput RNA 

sequencing (RNA-seq) results indicate that U2AF1 mutations alter haematopoiesis and 

cause changes in 3′ss recognition, resulting in the mis-splicing of hundreds of gene 

transcripts46–48. Mutations in some splicing factor genes also occur frequently in 

myelodysplastic syndromes and chronic myelomonocytic leukaemia. One example is 

SRSF2, which encodes a Ser/Arg-rich (SR) splicing factor (see BOX 1). Similar to U2AF1 
mutations, these SRSF2 mutations alter the RNA-binding characteristics of SRSF2 and 

result in extensive changes in splicing patterns and impairment of haematopoietic cell 

differentiation49–51. Importantly, antitumour drugs that target the spliceosome have been 

described, including for cancers that are driven by overexpression of the MYC oncogene and 

by increased levels of nascent RNAs52,53.
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Development and stress: key roles for the minor spliceosome

New roles for minor spliceosomal snRNAs and the U4atac/U6atac.U5 tri-snRNP during 

fetal development have been reported (FIG. 2). Homozygous mutations in RNU4ATAC, 

which codes for the U4atac snRNA, leads to microcephalic osteodysplastic primordial 

dwarfism type 1 (MOPD I; also known as Taybi–Linder syndrome), an autosomal recessive 

developmental disorder that is characterized by intrauterine growth retardation and multiple 

tissue abnormalities that lead to early death54–56 (TABLE 1). Most MOPD I mutations 

disrupt the U4atac snRNA 5′ stem-loop, inhibit binding of U4atac/U6atac di-snRNP 

proteins and decrease the levels of U4atac/U6atac.U5 tri-snRNP so that minor intron 

splicing is impaired57. Alternatively, a transition mutation (124G>A) near the Sm protein-

binding site results in reduced levels of U4atac snRNA.

The idea that minor spliceosome levels have key regulatory roles in gene expression is also 

supported by the observation that minor introns act as molecular switches that modulate 

stress-induced expression of their host genes58. Under normal conditions, U6atac is unstable 

(t1/2 <2 hours) relative to other snRNAs. However, the stress-induced kinase p38 mitogen-

activated protein kinase (MAPK) increases U6atac snRNA stability, resulting in enhanced 

splicing of genes that contain minor introns, including the tumour suppressor PTEN58.

Splicing factor dysregulation: perils of imbalance

Recruitment of the spliceosome to splice sites is modulated by the dynamic association of 

splicing factors with RNA regulatory elements on nascent transcripts. Alternative splicing is 

particularly important in the brain, and mutations in factors connected with splicing 

regulation cause a range of neurological diseases, from spinal muscular atrophy (SMA) to 

amyotrophic lateral sclerosis (ALS; also known as motor neuron disease) (both discussed in 

more detail below). RNA-binding proteins (RBPs) are generally multi-functional and many 

have key roles in splicing regulation. Moreover, ultraviolet light-induced RNA–protein 

crosslinking protocols (such as high-throughput sequencing of RNA isolated by crosslinking 

immunoprecipitation ( HITS-CLIP; also known as CLIP-seq)59, photoactivatable-

ribonucleoside-enhanced-CLIP (PAR-CLIP)60 and individual-nucleotide resolution-CLIP 

(iCLIP)61) have been used to identify hundreds of RBPs in HeLa and mouse embryonic 

stem cells62,63, as well as other cell types64. Thus, it is not surprising that mutations in the 

genes encoding RBPs have been linked to multiple disorders.

An abundant class of nuclear RBPs are factors that associate with both the RNA Pol II 

carboxy-terminal domain (CTD) and nascent transcripts (FIG. 3). Early electron microscopy 

studies on the co-transcriptional assembly of large pre-mRNA–protein complexes indicated 

that mRNA biogenesis involves an orchestrated series of RBP–RNA assembly and 

remodelling transitions65. These, and other studies suggested that both stable and transient 

protein–protein and protein–RNA interactions play key parts in splicing regulation. Some of 

the most abundant RBPs in the nucleus contain structural motifs — such as RNA 

recognition motifs (RRMs), heterogeneous nuclear RNP (hnRNP) K homology domains, 

zinc fingers and zinc knuckles — that bind RNA, as well as auxiliary, or low complexity 

(LC), regions composed of limited amino acid diversity (for example, [Gly/Ser]Tyr[Gly/Ser] 

tripeptide repeats in the RBP FUS). In some RBPs, LC regions also contain prion-like 
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domains that can function as self-templating protein conformers and which are hotspots for 

disease-associated mutations66,67. The importance of LC regions for protein–protein 

interactions has been highlighted by studies using the small molecule biotinylated isoxazole 

(b-isox)68, treatment with which results in the precipitation of numerous RBPs from cell 

lysates. The LC regions of these proteins are necessary and sufficient to drive this 

insolubility, and these regions alone undergo a concentration-dependent phase transition to a 

hydrogel that consists of polymerized amyloid-like fibres. This observation suggests that 

dynamic interactions between the LC regions of RBPs are a fundamental principle 

underlying the co-transcriptional assembly of RBP–RNA protein complexes during splicing 

(FIG. 3a). These association–dissociation events may also be modulated by signal-induced 

post-translational modifications, such as phosphorylation of Ser-rich LC regions69.

If protein–protein interaction dynamics are crucial for the assembly and disassembly of 

RBP–RNA complexes, then mutations in these protein interaction regions might result in 

coordinate perturbations in protein homeostasis (proteostasis) and RNA splicing (FIG. 3b,c). 

Indeed, this scenario is exemplified by studies designed to understand the molecular 

aetiology of ALS, a neurodegenerative disease that affects motor neurons and that leads to 

paralysis, respiratory failure and death generally within a few years of symptom onset70. 

Although ~90% of ALS cases are sporadic (sALS), the remaining 10% are familial (fALS), 

and a number of genes have been implicated in fALS by either linkage analysis or candidate 

gene studies. Relevant to this Review, several of these genes encode RBPs, including FUS 
(also known as ALS6, TLS and HNRNPP2), TDP‑43 (TAR DNA-binding protein; also 

known as TARDBP and ALS10), ATXN2 (ataxin 2; also known as ALS13), HNRNPA1, 

HNRNPA2B1 and MATR3 (matrin 3). In addition, microsatellite GGGGCC expansions 

(G4C2exp) in C9orf72 (REF. 71) cause chromosome 9p21-linked ALS and frontotemporal 

dementia (C9ALS/FTD), and one disease model proposes that these expansions are 

transcribed into rG4C2exp RNAs that disrupt splicing by sequestering splicing factors72,73. 

Indeed, a recent transcriptome analysis of autopsied brains (specifically, the cerebellum) 

from patients with C9ALS/FTD reported thousands of alternative splicing changes in fALS, 

and to lesser extent in sALS, and motif analysis indicated that many of the alternative 

cassette exon splicing changes might be regulated by hnRNP H, which has previously been 

implicated in C9ALS/FTD pathogenesis74,75. Mutations in TDP‑43 and FUS account for 

4% and 5%, respectively, of fALS cases, and most of these mutations occur in the prion-like 

domains of the encoded proteins (FIG. 3b), including the TDP-43 Gly-rich C-terminal 

region and the FUS Gln-, Gly-, Ser-, Tyr-rich and Gly-rich amino-terminal regions, although 

additional FUS mutations occur in the C-terminal Arg- and Gly-rich and nuclear localization 

signal regions67,72. Whereas earlier studies have demonstrated that TDP-43 plays a direct 

part in the splicing of specific exons, TDP-43 is a member of the hnRNP family of proteins 

that function in multiple cellular pathways, so it is not clear how many of these ALS-

associated splicing changes are directly regulated by TDP-43 versus secondary effects of 

TDP-43 nuclear depletion and/or cytoplasmic accumulation76. For example, transgenic mice 

expressing human TDP-43Gln331Lys and TDP-43Met337Val mutants at levels similar to 

endogenous TDP-43 develop progressive motor neuron degeneration with target-specific 

splicing alterations in the absence of TDP-43 nuclear depletion or aggregation77. FUS also 

recognizes a GU-rich motif (GUGGU) and binds to thousands of gene transcripts to regulate 
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splicing in the CNS78,79. Interestingly, FUS targets conserved introns within genes encoding 

RBPs that are important for splicing regulation, such as intron 7 in SNRNP70, which 

encodes the U1 snRNP-associated 70K protein (U1–70K).

In addition to splicing factors, snRNP components may also be prone to aggregation in some 

diseases. A recent surprise is the potential connection between U1 snRNP activity, splicing 

regulation and Alzheimer disease80. Mass spectrometry analysis of the sarkosylinsoluble 

proteome from the brains of patients with Alzheimer disease, which includes Aβ peptide and 

tau protein, revealed that several U1 snRNP proteins, including SNRNP70/U1–70K and 

SNRPA/U1-A, form tangle-like cytoplasmic inclusions that associate with tau neurofibrillary 

tangles. This aggregate formation correlates with the accumulation of unspliced precursor 

RNAs. Both SNRNP70 knockdown and blocking U1 snRNA with an antisense 

oligonucleotide (ASO) leads to increased levels of the amyloid precursor protein, suggesting 

that loss of U1 snRNP splicing activity may be an important feature of Alzheimer disease.

Large introns and microexons in neurological disorders

Although introns and exons are highly variable in length, current studies have shown that 

long (>100 kb) introns and small (≤51 nucleotides81) exons present particular challenges for 

the splicing machinery. For example, recursive splicing (RS) — the processing of long 

introns by sequential events that regenerate a 5′ss — was described originally in the 

Drosophila melanogaster Ultrabithorax (Ubx) gene. Recently, RS has also been documented 

in nine human genes by identifying RNA-seq sawtooth read patterns within introns82,83. In 

contrast to D. melanogaster, human RS requires the definition of an RS exon downstream of 

the RS site, and it has been suggested that mutations near these sites might contribute to 

disease. In this regard, it is noteworthy that the RS read pattern is similar to the FUS-binding 

distribution determined by iCLIP. However, the relationship between large intron splicing 

and disease has been brought to the forefront by studies on TDP-43 in ALS. High-

throughput strategies (HITS-CLIP and iCLIP) have been used to map binding sites for 

TDP-43 on RNAs in mouse and human brains84,85. The preferred binding motif for this 

protein is UG/GU-rich clusters, and the mouse brain contains thousands (>6,000) of genes 

with TDP-43-binding sites, often in distal regions of introns. Transcriptome analysis — 

using RNA-seq and splicing-sensitive microarrays — of control versus ASO-induced 

TDP-43 knockdowns in the striatum of the brain revealed that TDP-43 regulates the 

alternative splicing of target RNAs and is also important for maintaining wild-type levels of 

some transcripts with large introns84. A mechanistic connection between these observations 

has recently emerged from the demonstration that a normal function of TDP-43 is to repress 

the splicing at non-conserved cryptic splice sites, which are often located in distal 

introns, as inclusion of the resulting cryptic exons often makes the RNA susceptible to 

NMD86. Because TDP-43 is a member of the hnRNP A/B protein family, it will be 

interesting to determine whether depletion of other hnRNPs results in splicing of additional 

non-conserved cryptic exons.

At the other end of the scale, mis-splicing of microexons is involved in autism spectrum 

disorders (ASDs). ASDs are a clinically heterogeneous group of neurodevelopmental 

disorders distinguished by impaired social interactions and communication combined with 
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repetitive behaviours, possibly due to cortical circuit hyperexcitability87. Microexons are 

characterized by a high level of evolutionary conservation and have a prominent regulatory 

function during neurogenesis of the mammalian brain81,88. These exons encode peptides that 

modulate interactions between neurogenesis factors during brain development, and 

alternative splicing of microexons is regulated by the SR-related protein SRRM4 (Ser/Arg 

repetitive matrix protein 4; also known as nSR100), RBFOX (RNA-binding protein fox-1 

homologue 3) and PTBP1 (polypyrimidine tract-binding protein 1)88. Importantly, RBFOX1 

regulates the alternative splicing of genes that are important for neuronal function, and point, 

translocation and copy number mutations in RBFOX1 occur in several neurological 

disorders, including ASDs89–91. Moreover, HITS-CLIP analysis has determined that 

RBFOX targets splicing events for multiple autism-susceptibility genes in mice, including 

Shank3 (SH3 and multiple ankyrin repeat domains 3) and Tsc2 (tuberous sclerosis 2)92.

Therapies to modulate RNA mis-splicing

The prevalence of cis-, and trans-acting splicing mutations and dysregulation as the 

underlying cause of an array of diseases has led to the development of several therapeutic 

approaches that are currently in clinical trials93. Here, we review the two main strategies that 

have been pursued — ASOs and small molecule compounds — for three diseases. ASOs are 

designed either to recognize specific RNA splicing regulatory elements and 

modulate splicing or to bind nascent transcripts and promote RNase H-mediated degradation 

in the nucleus. Small molecules have been developed that target splicing factors to modulate 

their activities or RNA sequences and/or structures (such as hairpins or G-quadruplexes) in 

an effort to block the abnormal recruitment of splicing factors to mutant sequences.

Antisense oligonucleotides

Duchenne muscular dystrophy (DMD) is a progressive muscle disease that affects ~1 in 

3,500 newborn males. It is caused by mutations, often deletions, in the largest annotated 

human gene (2.4 Mb, 79 exons), DMD, which encodes dystrophin94. This protein is a key 

factor in muscle maintenance because it provides an essential link between the dystroglycan 

complex within the muscle cytoplasmic membrane, or sarcolemma, and the intracellular 

actin network. Thus, loss of dystrophin results in continuous cycles of myofibre necrosis, 

satellite cell activation and muscle regeneration, ultimately leading to premature muscle 

wasting and death. DMD mutations are often multiexon deletions that cause frameshifts, and 

a common deletion results in a frameshift at exon 51. However, the reading frame can be 

restored by skipping of exon 51, mediated by ASOs that target an exon 51 ESE. This leads 

to the production of internally deleted DMD proteins that retain partial function (FIG. 4a). 

To induce exon 51 skipping, two ASO drug candidates, drisapersen (a 2′O-

methylphosphorothioate ASO (2′OMePS)) and eteplirsen (a phosphorodiamidate 

morpholino oligomer, (PMO)), have progressed through clinical trials, although 

inflammatory responses to drisapersen have been noted95. A similar strategy has been used 

to reduce abnormal progerin expression and increase lifespan in a mouse model of HGPS by 

dual targeting of LMNA exon 10 and cryptic exon 11 5′ splice sites with vivo-morpholino 

ASOs96.
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Recent studies have also supported the efficacy of ASOs for treating SMA (also known as 

proximal/5q SMA), an autosomal recessive neuromuscular disorder that is characterized by 

progressive degeneration of spinal cord anterior horn α-motor neurons97. SMA is the 

leading genetic cause of infant mortality (1 in ~10,000 live births) and is clinically 

subdivided by age-of-onset and severity. It is caused by loss-of-function mutations and/or 

deletions in the survival of motor neuron 1 (SMN1) gene, which encodes the SMN protein 

required for the assembly of Sm proteins onto snRNAs to form functional snRNPs98. A 

paralogous gene, SMN2, also encodes SMN. However, it varies in sequence from SMN1 by 

a C>T transition in exon 7, which abrogates ESE splicing mediated by the splicing factor 

SRSF1 (REF. 99), thus promoting skipping of this exon and resulting in an unstable SMN 

isoform, denoted SMNΔ7 protein that is expressed at low levels (FIG. 4b). To activate 

SMN2 exon 7 splicing, a 2′-O-methoxyethyl (MOE) ASO (ASO-10-27), which blocks an 

ISS in SMN2 intron 7 (REF. 100), has been used to increase SMN levels in type 1 (severe) 

SMA infants and children following intrathecal injection and is currently being tested in 

Phase III clinical trials97. Interestingly, systemic administration of ASO-10-27 in neonates in 

a mouse model of SMA is effective at rescuing the mutant phenotype, suggesting that SMA 

is also a peripheral tissue splicing disease101.

For DMD and SMA, mutations result in reduced levels of the encoded proteins. By contrast, 

another class of diseases, the microsatellite expansion disorders, are associated with unusual 

RNA structures that alter splicing indirectly (FIGS 3c, 4c). Microsatellites are tandem 

repeats of 2–10 base pairs in length that comprise ~3% of the human genome and are prone 

to instability due to DNA replication, recombination and repair errors102. Although 

microsatellites undergo both expansions and contractions, expansions cause >30 hereditary 

diseases. When these repeats occur in non-coding regions, such as untranslated regions 

(UTRs) and introns, and expand beyond a particular threshold length, they gain a dominant-

negative function at the RNA level by sequestering splicing factors, which results in the mis-

splicing of hundreds to thousands of RNAs103,104. A prominent case is myotonic dystrophy 

(dystrophia myotonica; DM), which is the most common adult-onset muscular dystrophy 

and is associated with either a CTG expansion (CTGexp) in the DM protein kinase (DMPK) 

3′ UTR (for DM1 disease) or an intronic CCTGexp in CCHC-type zinc finger, nucleic acid 

binding protein (CNBP; for DM2 disease)73. Following transcription, these non-coding 

repeats fold into stable hairpin structures that sequester the muscleblind-like (MBNL) 

proteins while also triggering CELF1 hyperphosphorylation. MBNL and CELF proteins are 

alternative splicing factors that act antagonistically during development105, and MBNL loss-

of-function due to sequestration by expansion RNAs activates fetal splicing patterns in adult 

tissues, leading to the characteristic pathophysiology of DM. Although CAG25 morpholinos 

have been used to displace MBNL proteins from CUGexp RNAs, disperse RNA foci and 

reverse mis-regulated RNA splicing in a mouse transgenic model of DM106, systemic uptake 

requires coupling to cell-penetrating peptides, such as peptide-linked morpholinos 

(PPMOs)107. Another approach, currently being tested in Phase II clinical trials, is the use of 

ASO gapmers, which are composed of arms with MOE modifications for stability together 

with a central gap of ten unmodified nucleotides that are susceptible to RNase H-mediated 

cleavage. These gapmers are designed to target sequences outside the CUG expansion region 

in the DMPK transcript108. This is an effective strategy, as mutant allele transcripts are 
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preferentially targeted because RNase H is localized in the nucleus (cytoplasmic activity is 

confined to mitochondria), and mutant DMPK mRNAs accumulate in nuclear RNA foci 

whereas normal mRNAs are efficiently transported into the cytoplasm.

Small molecules

A variety of small molecule strategies have been reported that target disease-relevant mis-

splicing. For DMD, the ASOs that promote DMD exon 51 skipping result in low levels of 

dystrophin production in humans (~2–16% of normal levels) so small molecule screens have 

been used to identify drug candidates that increase ASO-induced skipping109. One example 

is dantrolene, which modulates ryanodine receptor activity and is currently used to treat 

malignant hyperthermia and muscle spasticity. In one study, dantrolene administered 

together with suboptimal ASO dose was found to increase exon 51 skipping ~10-fold 

compared with the vehicle (dimethyl sulfoxide) dose in DMD myotubes (patient fibroblasts 

that have been re-reprogrammed following MYOD1 expression)109.

For SMA, a number of compounds that increase SMN protein levels have been identified by 

high-throughput screens97,110. Analogous to ASO splice-switching strategies, a recent study 

uncovered potential drug splicing modifiers that enhance SMN2 exon 7 inclusion111. Using 

an SMN2 minigene reporter cell-based assay, the study found that treatment of SMA type 1 

fibroblasts and induced pluripotent stem cell-derived motor neurons with several compounds 

(SMNC1, SMNC2 and SMNC3) resulted in increased full-length SMN protein levels. 

Moreover, RNA-seq analysis demonstrated that these compounds are fairly selective and do 

not cause widespread transcriptome changes111. Importantly, these compounds increased 

SMN protein levels and improved motor function in a mouse model of severe SMA111. A 

similar high-throughput screen of NSC34 motor neurons expressing a SMN2 splicing 

reporter was used to identify other compounds (NVS-SM1, NVS-SM2, NVS-SM3 and 

NVS-SM4) that can increase SMN protein levels. One of these, NVS-SM1, achieved a dose-

dependent elevation of SMN protein levels and increased the lifespan of SMNΔ7 mice — 

which are deleted for their single endogenous Smn gene but express SMNΔ7 from human 

SMN2 trans-genes — from ~15 to >35 days112. The structurally similar NVS-SM2 acts by 

sequence-dependent stabilization of U1 snRNP bound to the SMN2 exon 7 5′ss.

A wide array of small molecule compounds also block the toxic effects of non-coding 

microsatellite expansion RNAs. For DM, high-throughput screens as well as more targeted 

screens have identified a number of compounds that block MBNL1 sequestration and rescue 

mis-splicing (FIG. 4c). These include a substituted naphthyridine that interacts with UU 

loops in CUGexp RNA (DM1)113, a kanamycin A derivative (multivalent K-alkyne) that 

binds CCUGexp RNA (DM2)114, the antifungal pentamidine115, the natural antimicrobial 

lomofungin116 and ligand 1 (REF. 117).

Conclusions and perspectives

Human gene structure necessitates an intricate regulatory system to generate the proper set 

of processed RNA products that are required by the vast assortment of developmental and 

adult cell types. Hereditary and somatic mutations, which underlie a wide range of diseases 

from retinal and developmental disorders to cancer, have been documented in both the 
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conserved protein and RNA components of the core spliceosome. Recent studies have 

highlighted key roles for the U4/U6.U5 tri-snRNP in spliceosomal dynamics, particularly in 

some specialized cells. Although the limited number of snRNA mutations linked to disease 

is striking, this probably reflects the essential roles of these RNAs during embryonic 

development. Another emerging theme in splicing dysregulation is the importance of 

mutations in LC regions of some splicing factors, including TDP-43 and FUS. Although 

these mutations often result in aberrant aggregation of these proteins and possible loss- or 

gain-of-function effects on multiple pathways, mutant LC regions may also interfere with 

the co-transcriptional dynamics of RNA–RNP complexes that are required to modulate 

normal splicing patterns.

Owing to the increasing number of annotated ncRNAs in the human genome and the fact 

that most (>90%) disease-associated SNPs lie outside of protein-coding regions, ncRNAs 

have also been proposed as regulatory factors that affect both splicing regulation and 

disease118. LncRNAs, which are generally inefficiently spliced and expressed at lower levels 

than coding RNAs, could influence splicing through interactions with splicing factors (to act 

as molecular scaffolds and/or sponges) or other RNAs (to repress or activate RNA-based 

activities)119,120. Indeed, lncRNAs have been implicated in schizophrenia, a chronic and 

disabling brain disorder for which genome-wide association studies have identified >100 

independent disease-associated loci121. For example, the nuclear-retained myocardial 

infarction associated transcript (MIAT; also known as Gomafu) lncRNA binds several 

splicing factors in vitro, including quaking (QKI), which has been implicated in 

schizophrenia; MIAT is downregulated in the brains of those with schizophrenia, and the 

MIAT gene is located in a locus linked to schizophrenia (22q12.1)11. CircRNAs, which are 

widely expressed mammalian ncRNAs and are often generated by head-to-tail splicing of 

exons, have also been proposed as important regulators of gene expression, possibly by 

competing with linear splicing122. Interestingly, several splicing factors that have been 

implicated in disease, including QKI and MBNL, regulate circRNA biogenesis10,123. 

Additional studies should be designed to determine whether these ncRNAs have direct 

functional roles in splicing and disease.

The future will probably reveal many surprises in splicing regulation and mis-splicing in 

disease. New examples of RNA splicing errors should emerge as a result of our enhanced 

understanding of the human transcriptome, owing to improvements in single-cell RNA-

seq and single-molecule RNA sequencing technologies. Complementary machine-learning 

approaches that focus on analysing sequence variants in disease should accelerate our 

understanding of the ‘splicing code’ (REF. 124). Furthermore, functional network analysis 

of the spliceosomal machinery using knockdown and other approaches will lead to new 

insights into how variations in core spliceosomal components influence differentiation, 

development and disease125. Finally, clinical trials using splicing modulatory strategies have 

produced some encouraging results for several diseases, and these approaches should be 

applicable to additional disorders caused by mis-splicing.
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Glossary

Long non-coding RNAs (lncRNAs)
RNAs of >200 nucleotides in length that generally do not encode proteins

Pseudogenes
Non-functional versions of genes that are generated either by duplication and mutation or by 

retrotransposition

Splicing factors
Proteins that participate in splicing regulation but are not stable constituents of small nuclear 

ribonucleoprotein particles (snRNPs)

Single-nucleotide polymorphisms (SNPs)
Variations in individual nucleotides that are common in the human genome and can 

influence splicing regulation

Nonsense-mediated decay (NMD)
A process of enhanced RNA turnover induced by a premature termination codon (PTC) 

which is designed to block the synthesis of truncated proteins and modulate the appearance 

of full-length proteins during development

Penetrance
The percentage of individuals carrying a disease mutation who show clinical symptoms. 

Incomplete, or reduced, penetrance occurs when not all individuals with a particular genetic 

mutation develop the associated disease

Expressivity
The degree to which a mutant gene is phenotypically expressed. Variable expressivity refers 

to the symptomatic range that is displayed by different individuals with the same mutation

Core consensus sequences
Conserved RNA sequence motifs, including the 5′ and 3′ splice sites and the branch point 

region, which are required for spliceosome recruitment

Branch point (BP)
A partially conserved sequence, generally <50 nucleotides upstream of the 3′ splice site 

(see BOX 1), that reacts with the 5′ splice site during the first step of the splicing reaction

Spliceosome
The large RNA–protein complex that catalyses splicing and is composed of multiple small 

nuclear RNAs (snRNAs) and many associated protein factors. Whereas the major and minor 
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spliceosomes both contain U5, the other snRNA components differ (for the major 

spliceosome, U1, U2, U4, U6; for the minor spliceosome, U11, U12, U4atac, U6atac) (see 

FIG. 2)

Tri-snRNP
A preassembled complex of U4 snRNA hybridized to U6 (U4/U6 or U4atac/U6atac) that 

also contains U5 (U4/U6.U5) together with associated proteins (see FIG. 2)

Haploinsufficiency
A condition due to inactivating mutations in one copy of a gene when expression from the 

remaining copy is insufficient to produce an unaffected phenotype

HITS-CLIP
(High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation; also 

known as CLIP–seq). A technique to map the binding sites of splicing, and other, factors on 

target RNAs. Related techniques include photoactivatable-ribonucleoside-enhanced-CLIP 

(PAR-CLIP) and individual-nucleotide resolution CLIP (iCLIP)

Cryptic splice sites
Splice sites that are not normally recognized by the spliceosome but can be activated either 

by mutations in cis-acting elements or trans-acting factors

Splicing regulatory elements
RNA sequence motifs in either exons or introns that modulate splicing primarily by binding 

trans-acting splicing regulatory factors

Morpholino
An antisense oligomer with standard nucleic acid bases but instead of deoxyribose contains 

a six-member morpholine ring linked with phosphorodiamidate (PMO). PMOs function by 

steric blocking and vivo-morpholinos, composed of a morpholino oligomer covalently 

attached to an octa-guanidine dendrimer, are optimized for in vivo delivery

Human transcriptome
All of the RNAs transcribed from the human genome
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Box 1

RNA splicing regulation

RNA splicing, which is the removal of introns followed by exon ligation, is a two-step 

biochemical process. Sequential transesterification reactions are initiated by a 

nucleophilic attack of the 5′ splice site (5′ss) by the branch adenosine (branch point; BP) 

in the downstream intron resulting in the formation of an intron lariat intermediate with a 

2′, 5′-phosphodiester linkage. This is followed by a 5′ss-mediated attack on the 3′ss, 

leading to the removal of the intron lariat and the formation of the spliced RNA product 

(see the figure, part a).

The difficult tasks of splice site identification and regulated splicing is accomplished 

principally by two exceptionally dynamic macromolecular machines, the major (U2-

dependent) and minor (U12-dependent) spliceosomes. Each spliceosome contains five 

small nuclear ribonucleoprotein particles (snRNPs): U1, U2, U4, U5 and U6 snRNAs for 

the major spliceosome (which processes ~95.5% of all introns126); and U11, U12, 

U4atac, U5 and U6atac snRNAs for the minor spliceosome (see the figure, part b). 

Spliceosome recognition of consensus sequence elements at the 5′ss, 3′ss and BP sites is 

a crucial step in the splicing pathway, and is modulated by an array of cis-acting exonic 

and intronic splicing enhancers (ESEs and ISEs, respectively) and exonic and intronic 

splicing silencers (ESSs and ISSs, respectively), which are recognized by auxiliary 

splicing factors, including the Ser/Arg-rich (SR) proteins and heterogeneous nuclear 

ribonucleoproteins (hnRNPs). Although early studies indicated that U12-dependent 

introns initiated with AT and ended with AC, previously referred to as ATAC introns (this 

is also why the minor spliceosome snRNAs are named U4atac and U6atac), subsequent 

studies demonstrated that these terminal dinucleotides were not required126. In part b of 

the figure, the height of the residue corresponds to relative frequency of each nucleotide 

in each given position. U2 and U12 consensus sequence frequencies were obtained from 

the Splice Rack and U12 databases, respectively, and BP site data and probabilities were 

calculated with Pictogram (see further information). Ultimately, this intricate network of 

RNA and protein interactions results in the recruitment of spliceosomal components 

followed by snRNP remodelling, spliceosome activation, catalysis and generation of the 

spliced RNA product.
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Box 2

Alternative splicing

High-throughput RNA sequencing (RNA-seq) studies have suggested that alternative 

splicing is a routine activity in human cells with 90–95% of human multi-exon genes 

producing transcripts that are alternatively spliced5,7. Alternative splicing adds another 

layer of complexity with multiple and developmentally regulated splicing patterns 

including the inclusion of alternative first and last exons (AFE and ALE, respectively), 

retained intron, cassette exon, mutually exclusive cassettes and alternative 5′ and 3′ 
splice sites5 (see the figure). Cassette exon skipping is the most common alternative 

splicing event in humans but a recent study demonstrates that intron retention is also 

routine in mammals, occurring in nearly 75% of multi-exon genes, and is a co- or post-

transcriptional mechanism designed to reduce transcript levels during development6,127. 

The interrelationship of a large array of cis-regulatory elements and trans-acting RNA-

binding proteins (RBPs) suggests that alternative splicing is controlled by a ‘splicing 

code’ that could be useful as a predictive tool for cell-, and tissue-specific responses to 

developmental transitions and environmental changes.
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Figure 1. Mis-splicing of a single gene results in different diseases
Aberrant splicing of lamin A (LMNA) pre ‑mRNA is associated with multiple hereditary 

disorders. Normal exons are shown in blue, introns are shown as thick black lines, normal 

splicing is indicated by thin black lines, and disease-associated splicing is indicated in dotted 

lines or purple boxes (intron retention). a | Limb girdle muscular dystrophy type 1B 

(LGMD1B) is caused by a G>C 5′ splice site (5′ss) mutation that results in intron 9 

retention, a premature termination codon (PTC) and nonsense‑mediated decay (NMD). c.

1608 + 5 indicates that the mutations occurs 5 nucleotides into the intron that follows coding 

position (c) 1608. However, a lamin A/C protein truncated in intron 9 with a unique 

carboxy‑terminal sequence may also be produced. b | In familial partial lipodystrophy type 

2 (FPLD2), a G>C transversion mutation occurs in the exon 8 5′ss, leading to intron 8 

retention, NMD and potential translation of another truncated lamin A/C with a unique 

C‑terminal region. c | A common cause of Hutchinson–Gilford progeria syndrome (HGPS) 

is a C>T transition in exon 11, which activates a cryptic 5′ss and results in a 150 nucleotide 

deletion that is translated into the ageing‑associated protein progerin. d | For LMNA‑linked 

dilated cardiomyopathy (DCM), an alternative 3′ss is generated by an A>G mutation 

upstream of the normal exon 4 3′ ss so that nine additional nucleotides are inserted in-frame 

between exons 3 and 4, resulting in a 3-amino-acid insertion in the resultant protein.
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Figure 2. Major and minor spliceosome mutations
The figure shows the splicing steps and core spliceosomal components of both the major 

(U2‑dependent) and minor (U12‑dependent) spliceosomes, including their interactions in 

the pre‑spliceosomal complex (complex A) and spliceosome (complex C). Pre‑mRNA 

processing factor 3 (PRPF3), PRPF4), PRPF6, PRPF8 and PRPF31 components of the U4/

U6.U5 tri‑small nuclear ribonucleoprotein (tri‑snRNP) dysregulated in autosomal dominant 

retinitis pigmentosa (adRP) are shown. Also indicated is the SNRNP200 helicase, which is 

required at several dissociation steps in the spliceosomal cycle. Several PRPF components 

are common to both the U4/U6.U5 tri‑snRNP and the U4atac/U6atac.U5 tri‑snRNP 

complexes. Some mutations in the U4atac snRNA 5′ stem-loop found in microcephalic 

osteodysplastic primordial dwarfism type 1 (MOPD I) are highlighted in red. In addition, 

stress‑induced upregulation of p38 mitogen‑activated protein kinase (MAPK) leads to 

increased stability of U6atac (t1/2 <2 hours).
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Figure 3. Co-transcriptional splicing factor recruitment and disease mutations
Models for splicing factor and precursor RNA mutations and disease-associated mis-

splicing. a | Splicing factors recognize and bind to RNA polymerase II (RNA Pol II) 

transcripts in the nucleoplasm or directly at the carboxy‑terminal domain (CTD) of RNA 

Pol II. These factors may contain RNA‑binding motifs (such as RNA recognition motifs 

(RRMs) or zinc fingers (ZnFs)), as well as auxiliary domains composed of low complexity 

(LC) regions with prion‑like domains in heterogeneous nuclear ribonucleoprotein A1 

(hnRNPA1), TDP‑43 and FUS (LC regions shown as green, yellow or red lines for 

hnRNPA1, TDP‑43 and FUS, respectively), or other regions that either mediate protein–

protein interactions (in muscleblind‑like (MBNL)) or function as flexible linkers between 

RRMs (in hnRNPH). Splicing factors might bind to single‑stranded RNA (ssRNA) motifs or 

pre‑formed RNA structures (for example, G‑quadruplexes), resulting in the formation of 

dynamic RNA–RNP complexes that are continuously remodelled by RNA helicases and 

protein–protein interactions before nuclear export. b | Mutations (red star) in the LC regions 

of hnRNPA1, TDP‑43 and FUS could cause mis‑folding of RNA–RNP complexes and lead 

to abnormal splicing. c | For diseases caused by microsatellite expansions, splicing factors 

such as MBNL, which recognize a motif within the repeated sequence, are sequestered by 

the repeat expansion (ssRNA, top; RNA hairpin, bottom), leading to loss‑of‑function and 

mis‑splicing.
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Figure 4. Therapeutic strategies
Examples of therapies based on antisense oligonucleotide (ASO) and small molecule 

approaches. a | Duchenne muscular dystrophy is often caused by chromosomal deletions 

(black triangle) that remove exons 48–50, resulting in a frameshift (blue rectangles, exons 

with intact codons; trapezoids, exons with incomplete codons) and loss of dystrophin 

protein. The red hexagon indicates the premature stop codon resulting from frameshifted 

exon 51. To prevent frameshifting, both phosphorodiamidate morpholino oligomer (PMO) 

and 2′OMePS (2′O‑methyl‑phosphorothioate) ASOs (black semicircle) block an exon 51 

exonic splicing enhancer (ESE; green rectangle) and shift splicing to the in‑frame exon 52. 

b | In spinal muscular atrophy, survival of motor neuron 1 (SMN1), which produces the 

majority of SMN protein, is either deleted or inactivated by mutations, and the paralogous 

SMN2 expresses low levels of SMN due to a C>T transition (grey box) that suppresses exon 

7 splicing. ASO‑10‑27 targets an intronic splicing silencer (ISS; red bar) and enhances exon 

7 splicing to produce stable SMN protein. c | In myotonic dystrophy type 1, CUG expansion 

(CUGexp) RNA (red hairpin) binds muscleblind‑like (MBNL) proteins (green ovals) and 

causes mis‑splicing of MBNL RNA targets. Mutant MBNL–RNA complexes accumulate in 

the nucleus, and so ASO gapmers preferentially target mutant RNAs for degradation (dotted 
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red line). Alternatively, small molecule compounds bind to mutant CUGexp RNA, displace 

MBNL and rescue abnormal splicing. DMPK, DM protein kinase.
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Table 1

Disease-associated splicing alterations

Disease Gene (mutation) Mechanism Splicing effect Inheritance

Cis

Limb girdle muscular dystrophy 
type 1B (LGMD1B)

LMNA24 (c.1608 + 5G>C) 5′ss mutation Intron 9 retention resulting 
in NMD

Dominant

Familial partial lipodystrophy type 
2 (FPLD2)

LMNA25 (c.1488 + 5G>C) 5′ss mutation Intron 8 retention resulting 
in NMD

Dominant

Hutchinson–Gilford progeria 
syndrome (HGPS)

LMNA26 (c.1824 C>T) Alternative 5′ss 150 nt deletion in exon 11, 
resulting in progerin 
generation

Dominant

Dilated cardiomyopathy (DCM) LMNA28 (c.640-10A>G) Alternative 3′ss Extension of exon 4 adding 
3 amino acids to lamin A/C

Dominant

Familial dysautonomia (FD) IKBKAP128 (c.2204 + 6T>C) Decreased U1 recruitment Exon 20 skipping Recessive

Duchenne muscular dystrophy 
(DMD)

DMD129 Exon 45–55 deletions are 
common

Exon deletions and skipping Frameshift resulting in NMD X-linked

Becker muscular dystrophy (BMD) DMD130 (c.4250T>A) ESS creation Exon 31 partial in-frame 
skipping

X-linked

Early-onset Parkinson disease (PD) PINK1 (REF 131) (c.1488 + 1G>A) U1 5′ss mutation Cryptic splice site usage, 
resulting in exon 7 skipping

Recessive

Frontotemporal dementia with 
parkinsonism chromosome 17 
(FTDP-17)

MAPT132 (c.892A>G) ESS mutation Increased exon 10 inclusion Dominant

X-linked parkinsonism with 
spasticity (XPDS)

ATP6AP2 (REF 133) (c.345C>T) Novel ESS creation Increased exon 4 exclusion X-linked

Spliceosome

Retinitis pigmentosa (adRP) PRPF6 (REF. 134) (c.2185C>T) Abnormal nuclear localization Decreased U4/U6 interaction 
affecting spliceosome 
assembly and recycling

Dominant

SNRNP200 (REF. 135) (c.
3260C>T), (c.3269G>T)

• Decreased 
helicase activity

• Decreased 
proof-reading

Compromised splice site 
recognition, leading to mis-
spliced mRNAs

Dominant

Myelodysplastic syndromes (MDS) U2AF1 (REF 46) (c.101G>A) Altered 3′ss preference Increased alternative 3′ss 
usage

Somatic

Microcephalic osteodysplastic 
primordial dwarfism type 1 
(MOPD I)

RNU4ATAC54–56 (g.30G>A), (g.
50G>A), (g.50G>C), (g.51G>A), (g.
53C>G), (g.55G>A), (g.111G>A)

5′ and 3′ stem loop 
mutations & secondary 
structure disruption

Compromised minor 
spliceosome activity

Recessive

Trans

Spinal muscular atrophy (SMA) SMN1 (REFS 136,137) (c.922 + 6 
T/G), deletion

Loss of SMN full-length 
protein

Altered RNP biogenesis98 Recessive

Amyotrophic lateral sclerosis 
(ALS)

TARDP77 (c.991C>A), (c.1009A>G) C-terminal mutations alter 
protein-protein interactions

TDP-43 target mis-splicing Sporadic and Dominant

FUS138 (c. 1566C>T), (c. 1561T>G) • Decreased U1 
interaction

• Increased SMN 
binding

FUS target mis-splicing Dominant

Dilated cardiomyopathy (DCM) RBM20 (REF 139) (c.1962T>G) Altered R/S RNA binding 
domain

TTN mis-splicing Dominant
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Disease Gene (mutation) Mechanism Splicing effect Inheritance

Limb-girdle muscular dystrophy 
1G (LGMD1G)

HNRPDL140 (c. 1667G>A), (c. 
1667G>C)

Altered import of HNRPDL 
into nucleus

HNRPDL target mis-splicing Dominant

Autosomal dominant 
leukodystrophy (ADLD)

LMNB1 (REF. 141) duplication Increased RAVER2 expression PTBP1 target mis-splicing 
mediated by RAVER2

Dominant

ATP6AP2, ATPase, H+ transporting, lysosomal accessory protein 2; DMD, dystrophin; ESS, exonic splicing silencer; HNRPDL, heterogeneous 
nuclear ribonucleoprotein D‑like; IKBKAP, inhibitor of κ‑light polypeptide gene enhancer in B cells, kinase complex‑associated protein; LMNA, 
lamin A; MAPT, microtubule‑associated protein tau; NMD, nonsense‑mediated decay; PRPF6, pre‑mRNA processing factor 6; PTBP1, 
polypyrimidine tract binding protein 1; RNP, ribonucleoprotein; SMN1, survival of motor neuron 1; ss, splice site.
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